1
|
Posan E. Sweet Solutions: Unlocking the Diabetes-Dementia Connection for Better Outcomes. J Insur Med 2025; 52:14-20. [PMID: 40047116 DOI: 10.17849/insm-52-1-14-20.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 05/13/2025]
Abstract
Type 2 diabetes and Alzheimer's dementia represent important health challenges in our society today. Understanding the relationship between these conditions is crucial. This article explores the research on whether they share common risk factors or if they may influence each other's development, which could lead to more effective prevention and treatment strategies.
Collapse
|
2
|
Zhai Y, Lu K, Yuan Y, Zhang Z, Xue L, Zhao F, Xu X, Wang H. Semaglutide improves cognitive function and neuroinflammation in APP/PS1 transgenic mice by activating AMPK and inhibiting TLR4/NF-κB pathway. J Alzheimers Dis 2025; 105:416-432. [PMID: 40151913 DOI: 10.1177/13872877251329439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundAlzheimer's disease (AD) causes cognitive function disorder and has become the preeminent cause of dementia. Glucagon-like peptide-1 (GLP-1) receptor agonists, semaglutide, have shown positive effects on promoting the cognitive function. However, research about the mechanism of semaglutide as a therapeutic intervention in AD is sparse.ObjectiveThis study was to investigate the therapeutic efficacy of semaglutide in a transgenic mouse model of AD pathology and explored the detailed mechanism by semaglutide modulated neuroinflammatory processes.MethodsMale amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice were treated with semaglutide or vehicle for 8 weeks. Morris water maze test was used to assess the therapeutic efficacy of semaglutide on recognition function. Pathology analysis was performed to detect the deposition of amyloid plaques. High-throughput sequencing analysis was applied to specify the mechanism. Microglia and astrocyte activation were assessed with immunofluorescent staining. Inflammation cytokine levels were evaluated with enzyme-linked immunosorbent assay (ELISA). Related proteins and pathway were evaluated with western blot.ResultsSemaglutide treatment attenuated Aβ accumulation and enhanced cognitive function in APP/PS1 transgenic mice. Through transcriptomic profiling, immunohistochemical staining, and ELISA, semaglutide was substantiated to inhibit the overactivation of microglia and astrocytes, as well as to curtail the secretion of inflammatory mediators. Furthermore, semaglutide robustly activated AMP-activated protein kinase (AMPK) and suppressed the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling cascade, thus reducing the Aβ deposition and dampening the inflammatory cascade.ConclusionsThe results demonstrated that semaglutide mitigated neuroinflammation and decelerated the advance of AD in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Yanyu Zhai
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Kaili Lu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Yuan Yuan
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ziyao Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Lixia Xue
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Fei Zhao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Hongmei Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| |
Collapse
|
3
|
Tseng PT, Zeng BY, Hsu CW, Hung CM, Carvalho AF, Stubbs B, Chen YW, Chen TY, Lei WT, Chen JJ, Su KP, Shiue YL, Liang CS. The pharmacodynamics-based prophylactic benefits of GLP-1 receptor agonists and SGLT2 inhibitors on neurodegenerative diseases: evidence from a network meta-analysis. BMC Med 2025; 23:197. [PMID: 40189519 PMCID: PMC11974209 DOI: 10.1186/s12916-025-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a new generation of antihyperglycemic agents that operate through mechanisms distinct from conventional diabetes treatments. Beyond their metabolic effects, these medications have demonstrated neuroprotective properties in preclinical studies. While clinical trials have explored their therapeutic potential in established neurodegenerative conditions, their role in disease prevention remains unclear. We conducted a network meta-analysis (NMA) to comprehensively evaluate the prophylactic benefits of these agents across multiple neurodegenerative diseases and identify the most promising preventive strategies. METHODS We systematically searched PubMed, Embase, ClinicalKey, Cochrane CENTRAL, ProQuest, ScienceDirect, Web of Science, and ClinicalTrials.gov through October 24th, 2024, for randomized controlled trials (RCTs) of GLP-1 receptor agonists or SGLT2 inhibitors. Our primary outcome was the incidence of seven major neurodegenerative diseases: Parkinson's disease, Alzheimer's disease, Lewy body dementia, multiple sclerosis, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington's disease. Secondary outcomes included safety profiles assessed through dropout rates. We performed a frequentist-based NMA and evaluated risk of bias with Risk of Bias tool. The main result of the primary outcome in the current study would be re-affirmed via sensitivity test with Bayesian-based NMA. RESULTS Our analysis encompassed 22 RCTs involving 138,282 participants (mean age 64.8 years, 36.4% female). Among all investigated medications, only dapagliflozin demonstrated significant prophylactic benefits, specifically in preventing Parkinson's disease (odds ratio = 0.28, 95% confidence intervals = 0.09 to 0.93) compared to controls. Neither GLP-1 receptor agonists nor other SGLT2 inhibitors showed significant preventive effects for any of the investigated neurodegenerative conditions. Drop-out rates were comparable across all treatments. CONCLUSIONS This comprehensive NMA reveals a novel and specific prophylactic effect of dapagliflozin against Parkinson's disease, representing a potential breakthrough in preventive neurology. The specificity of dapagliflozin's protective effect to Parkinson's disease might rely on its highly selective inhibition to SGLT2. These findings provide important direction for future research and could inform preventive strategies for populations at risk of Parkinson's disease. TRIAL REGISTRATION PROSPERO CRD42021252381.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Institute of Precision Medicine, National Sun Yat-Sen University, 70 Lienhai Rd, Kaohsiung City, 80424, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Prospect Clinic for Otorhinolaryngology & Neurology, No. 252, Nanzixin Road, Nanzi District, Kaohsiung City, 81166, Taiwan.
| | - Bing-Yan Zeng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Sport, University of Vienna, Vienna, Austria
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, No. 252, Nanzixin Road, Nanzi District, Kaohsiung City, 81166, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Wei-Te Lei
- Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Hsinchu Munipical MacKay Children's Hospital, Hsinchu City, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jiann-Jy Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, No. 252, Nanzixin Road, Nanzi District, Kaohsiung City, 81166, Taiwan
- Department of Otorhinolaryngology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-Sen University, 70 Lienhai Rd, Kaohsiung City, 80424, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Chih-Sung Liang
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Beitou District, Beitou Branch, No. 60, Xinmin Road, Taipei City, 112, Taiwan.
- Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
4
|
Sabbagh M, Boschini C, Cohen S, Fugger M, Jessen F, Dandanell S, Pedersen SD, Tarazona LRS, Aroda VR. Safety considerations of semaglutide in the potential treatment of Alzheimer's disease: A pooled analysis of semaglutide in adults aged ≥ 65 years. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70076. [PMID: 40337158 PMCID: PMC12056300 DOI: 10.1002/trc2.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION The evoke/evoke+ trials are investigating semaglutide in a population with early Alzheimer's disease (AD). Specific analyses of semaglutide safety data in older adults are limited; therefore, in the current analysis, we aimed to evaluate safety considerations with semaglutide in adults ≥ 65 years. METHODS Adverse event (AE) data from three semaglutide phase 3a programs in participants ≥ 65 years with type 2 diabetes and/or overweight/obesity were pooled. Change in body weight was also assessed in a smaller subset of participants ≥ 65 years. RESULTS The analysis included 3529 participants ≥ 65 years. Baseline mean age and body mass index in participants ≥ 65 years were 69.3 to 70.2 years and 29.7 to 35.4 kg/m2, respectively, compared to 47.8 to 58.5 years and 31.3 to 36.7 kg/m2 in the overall population. AEs with semaglutide occurred in 73.6% to 92.4% of participants ≥ 65 years versus 73.2% to 90.8% of the overall population. AEs with semaglutide leading to permanent discontinuation appeared to be more frequent in participants ≥ 65 years (9.3%-12.4%) versus the overall population (5.7%-8.7%). Gastrointestinal disorders were the most frequently reported AEs with semaglutide in participants ≥ 65 years (44.6%-73.8%) and in the overall population (39.1%-73.4%). Participants aged ≥ 65 years receiving semaglutide had an estimated weight loss of 3.8% at week 52 compared to 0.1% with placebo. DISCUSSION Age ≥ 65 years did not appear to affect the safety considerations of semaglutide. The ongoing evoke/evoke+ trials will elucidate the balance of efficacy and safety in the treatment of early AD with semaglutide. Highlights This was a post hoc analysis evaluating adverse event (AE) data of semaglutide in people ≥ 65 years.The most common AE with semaglutide was gastrointestinal (GI).GI event rates were similar in people ≥ 65 years and the overall study populations.
Collapse
Affiliation(s)
- Marwan Sabbagh
- Department of NeurologyBarrow Neurological InstitutePhoenixArizonaUSA
| | | | | | | | - Frank Jessen
- Department of PsychiatryUniversity Hospital of CologneCologneGermany
| | | | | | | | - Vanita R. Aroda
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Xie Y, Choi T, Al-Aly Z. Mapping the effectiveness and risks of GLP-1 receptor agonists. Nat Med 2025; 31:951-962. [PMID: 39833406 DOI: 10.1038/s41591-024-03412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are increasingly being used to treat diabetes and obesity. However, their effectiveness and risks have not yet been systematically evaluated in a comprehensive set of possible health outcomes. Here, we used the US Department of Veterans Affairs databases to build a cohort of people with diabetes who initiated GLP-1RA (n = 215,970) and compared them to those who initiated sulfonylureas (n = 159,465), dipeptidyl peptidase 4 (DPP4) inhibitors (n = 117,989) or sodium-glucose cotransporter-2 (SGLT2) inhibitors (n = 258,614), a control group composed of an equal proportion of individuals initiating sulfonylureas, DPP4 inhibitors and SGLT2 inhibitors (n = 536,068), and a control group of 1,203,097 individuals who continued use of non-GLP-1RA antihyperglycemics (usual care). We used a discovery approach to systematically map an atlas of the associations of GLP-1RA use versus each comparator with 175 health outcomes. Compared to usual care, GLP-1RA use was associated with a reduced risk of substance use and psychotic disorders, seizures, neurocognitive disorders (including Alzheimer's disease and dementia), coagulation disorders, cardiometabolic disorders, infectious illnesses and several respiratory conditions. There was an increased risk of gastrointestinal disorders, hypotension, syncope, arthritic disorders, nephrolithiasis, interstitial nephritis and drug-induced pancreatitis associated with GLP-1RA use compared to usual care. The results provide insights into the benefits and risks of GLP-1RAs and may be useful for informing clinical care and guiding research agendas.
Collapse
Affiliation(s)
- Yan Xie
- Clinical Epidemiology Center, Research and Development Service, VA St. Louis Health Care System, St. Louis, MO, USA
- Veterans Research and Education Foundation of St. Louis, St. Louis, MO, USA
- Division of Pharmacoepidemiology, Clinical Epidemiology Center, Research and Development Service, VA St. Louis Health Care System, St. Louis, MO, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Taeyoung Choi
- Clinical Epidemiology Center, Research and Development Service, VA St. Louis Health Care System, St. Louis, MO, USA
- Veterans Research and Education Foundation of St. Louis, St. Louis, MO, USA
| | - Ziyad Al-Aly
- Clinical Epidemiology Center, Research and Development Service, VA St. Louis Health Care System, St. Louis, MO, USA.
- Veterans Research and Education Foundation of St. Louis, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Nephrology Section, Medicine Service, VA St. Louis Health Care System, St. Louis, MO, USA.
- Institute for Public Health, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Abdulhameed N, Babin A, Hansen K, Weaver R, Banks WA, Talbot K, Rhea EM. Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:173. [PMID: 39085976 PMCID: PMC11293113 DOI: 10.1186/s13195-024-01537-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aβ pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.
Collapse
Affiliation(s)
- Noor Abdulhameed
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA.
| |
Collapse
|
7
|
Kopp KO, Li Y, Glotfelty EJ, Tweedie D, Greig NH. Incretin-Based Multi-Agonist Peptides Are Neuroprotective and Anti-Inflammatory in Cellular Models of Neurodegeneration. Biomolecules 2024; 14:872. [PMID: 39062586 PMCID: PMC11275108 DOI: 10.3390/biom14070872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1)-based drugs have been approved by the United States Food and Drug Administration (FDA) and are widely used to treat type 2 diabetes mellitus (T2DM) and obesity. More recent developments of unimolecular peptides targeting multiple incretin-related receptors ("multi-agonists"), including the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon (Gcg) receptor (GcgR), have emerged with the aim of enhancing drug benefits. In this study, we utilized human and mouse microglial cell lines, HMC3 and IMG, respectively, together with the human neuroblastoma SH-SY5Y cell line as cellular models of neurodegeneration. Using these cell lines, we studied the neuroprotective and anti-inflammatory capacity of several multi-agonists in comparison with a single GLP-1 receptor (GLP-1R) agonist, exendin-4. Our data demonstrate that the two selected GLP-1R/GIPR dual agonists and a GLP-1R/GIPR/GcgR triple agonist not only have neurotrophic and neuroprotective effects but also have anti-neuroinflammatory properties, as indicated by the decreased microglial cyclooxygenase 2 (COX2) expression, nitrite production, and pro-inflammatory cytokine release. In addition, our results indicate that these multi-agonists have the potential to outperform commercially available single GLP-1R agonists in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Katherine O. Kopp
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Elliot J. Glotfelty
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA;
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| |
Collapse
|
8
|
Riemma MA, Mele E, Donniacuo M, Telesca M, Bellocchio G, Castaldo G, Rossi F, De Angelis A, Cappetta D, Urbanek K, Berrino L. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, anti-diabetic drugs in heart failure and cognitive impairment: potential mechanisms of the protective effects. Front Pharmacol 2024; 15:1422740. [PMID: 38948473 PMCID: PMC11212466 DOI: 10.3389/fphar.2024.1422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Heart failure and cognitive impairment emerge as public health problems that need to be addressed due to the aging global population. The conditions that often coexist are strongly related to advancing age and multimorbidity. Epidemiological evidence indicates that cardiovascular disease and neurodegenerative processes shares similar aspects, in term of prevalence, age distribution, and mortality. Type 2 diabetes increasingly represents a risk factor associated not only to cardiometabolic pathologies but also to neurological conditions. The pathophysiological features of type 2 diabetes and its metabolic complications (hyperglycemia, hyperinsulinemia, and insulin resistance) play a crucial role in the development and progression of both heart failure and cognitive dysfunction. This connection has opened to a potential new strategy, in which new classes of anti-diabetic medications, such as glucagon-like peptide-1 receptor (GLP-1R) agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, are able to reduce the overall risk of cardiovascular events and neuronal damage, showing additional protective effects beyond glycemic control. The pleiotropic effects of GLP-1R agonists and SGLT2 inhibitors have been extensively investigated. They exert direct and indirect cardioprotective and neuroprotective actions, by reducing inflammation, oxidative stress, ions overload, and restoring insulin signaling. Nonetheless, the specificity of pathways and their contribution has not been fully elucidated, and this underlines the urgency for more comprehensive research.
Collapse
Affiliation(s)
- Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Donniacuo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
9
|
Liu M, Ma N, Yang X, Sun M, Li X, Liu Y, Chang Q, Hei C. The Association of Circulating Glucagon-Like Peptide-1 with Cognitive Functions and Biomarkers in Alzheimer's Disease. J Alzheimers Dis 2024; 99:525-533. [PMID: 38669546 DOI: 10.3233/jad-240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Alzheimer's disease (AD) is an age-related neurodegenerative disease that is clinically characterized by progressive cognitive decline. Glucagon-like peptide-1 (GLP-1) is a hormone that belongs to the incretin family and is released in response to nutrient intake. It plays a role in maintaining metabolic homeostasis and has been suggested to be involved in maintaining the brain microenvironment. However, the role of GLP-1 in AD pathogenesis has not been fully illustrated. Objective This study aims to investigate the clinical relevance of GLP-1 in AD and the effects of GLP-1 in amyloid-β (Aβ) metabolism in vitro. Methods In this study, 39 AD patients and 120 cognitively intact controls were included. Plasma levels of GLP-1 were measured using ELISA. SH-SY5Y cells overexpressing human amyloid precursor protein (APP) were treated with GLP-1. Western blot analysis was used to assess the effects of GLP-1 on the metabolism of Aβ. Results Plasma GLP-1 levels were decreased with aging. Plasma GLP-1 levels were lower in AD patients in comparison with healthy older adults. Plasma GLP-1 levels were positively associated with Mini-Mental State Examination scores but negatively associated with plasma pTau181 levels. GLP-1 dose-dependently increased the area fraction of mitochondrial staining in vitro. Furthermore, GLP-1 dose-dependently promoted the α-cleavage of APP, thus reducing the generation of Aβ. Conclusions GLP-1 has neuroprotective effects in AD, and therefore the decrease in GLP-1 levels during aging might contribute to the development of AD.
Collapse
Affiliation(s)
- Mengqing Liu
- School of Basic Medicine, Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nenghong Ma
- School of Basic Medicine, Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiao Yang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Miao Sun
- School of Basic Medicine, Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiaowen Li
- School of Basic Medicine, Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yuhui Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical, Ningxia Medical University, Yinchuan, China
| | - Changchun Hei
- School of Basic Medicine, Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
10
|
Meng J, Yan R, Zhang C, Bai X, Yang X, Yang Y, Feng T, Liu X. Dipeptidyl peptidase-4 inhibitors alleviate cognitive dysfunction in type 2 diabetes mellitus. Lipids Health Dis 2023; 22:219. [PMID: 38082288 PMCID: PMC10712048 DOI: 10.1186/s12944-023-01985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) are commonly at high risk for developing cognitive dysfunction. Antidiabetic agents might be repurposed for targeting cognitive dysfunction in addition to modulation on glucose homeostasis. This study aimed to evaluate the impact of dipeptidyl peptidase-4 inhibitors (DPP-4i) on cognitive function in T2DM. METHODS PubMed, Embase, Cochrane Library and Web of Science were systematically searched from inception to September 30, 2023. Weighted mean differences were calculated using the Mantel-Haenszel (M-H) fixed or random effects model based on the degree of heterogeneity among studies. Heterogeneity was evaluated using a Chi-squared test and quantified with Higgins I2. Sensitivity analysis was performed with the leave-one-out method, and publication bias was evaluated according to Begg's and Egger's tests. RESULTS Six clinical trials involving 5,178 participants were included in the pooled analysis. Administration of DPP-4i generally correlated with an increase of Mini-Mental State Examination (MMSE) scores (1.09, 95% CI: 0.22 to 1.96). DPP-4i alleviated cognitive impairment in the copying skill subdomain of MMSE (0.26, 95% CI: 0.12 to 0.40). Treatment with DPP-4i also resulted in an increase of Instrumental Activities of Daily Living (IADL) scores (0.82, 95% CI: 0.30 to 1.34). However, DPP-4i produced no significant effects on Barthel Activities of Daily Living (BADL) scores (0.37, 95% CI: -1.26 to 1.99) or other test scores. CONCLUSIONS DPP-4i treatment favourably improved cognitive function in patients with T2DM. Further trials with larger samples should be performed to confirm these estimates and investigate the association of different DPP-4i with cognitive function among diabetic patients. TRIAL REGISTRATION IN PROSPERO CRD42023430873.
Collapse
Affiliation(s)
- Jie Meng
- Department of Pathology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rui Yan
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Zhang
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueyan Bai
- Department of Hemotology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingsheng Yang
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Yang
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xin Liu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|