1
|
Wang Y, Li H, Hu W, Li B, Du Y, Li F. The dosimetric value and safety evaluation of 3D printed bolus in adjuvant intensity-modulated radiotherapy after radical mastectomy for breast cancer: a prospective cohort study. Radiat Oncol 2025; 20:91. [PMID: 40450338 DOI: 10.1186/s13014-025-02659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/06/2025] [Indexed: 06/03/2025] Open
Abstract
PURPOSE Breast cancer patients may use a bolus to increase the dose to skin in radiotherapy after radical mastectomy. The 3D printed bolus (3DPB) specifically customized based on individual conditions offers better conformity. This study aims to provide clinical insights by evaluating the dosimetric benefits and safety of 3DPB in radiotherapy following radical mastectomy for breast cancer. MATERIALS AND METHODS The study included breast cancer patients who received post-mastectomy radiotherapy with 3DPB. Researchers retrospectively collected dose data from patients' radiotherapy plans, including with and without 3DPB, and prospectively observed the acute and late side effects in the cohort of patients undergoing mixed plan radiotherapy. To compare the dosimetric differences between radiotherapy plans with and without 3DPB, such as the dose distribution data of CTV, PTV, and organs at risk, matched sample T-test was used for data conforming to normal distribution, and non-parametric test was used for data not conforming to normal distribution. P < 0.05 was considered statistically significant. RESULTS A total of 35 patients were included with a median follow-up time of 16 months. In terms of radiotherapy side-effects, no level 4 acute side-effects occurred. A total of 82.2% of the patients had no obvious side-effects. No late radiotherapy side-effects of level 2 or higher occurred. In terms of dosage, radiotherapy plans with 3DPB showed better conformance (P < 0.001) and dose homogeneity (P < 0.001) than plans without 3DPB. The results indicated that the V95% dose of CTV1, CTV2, P-CTV, P-CTV1, and P-CTV2 was higher in the plans with 3DPB than in those without 3DPB (all P < 0.001). CONCLUSIONS The use of 3DPB in breast cancer radiotherapy is effective, achieving higher and more uniform dose distribution and better target conformity compared to without 3DPB. Additionally, it is associated with a low incidence of acute and late side effects.
Collapse
Affiliation(s)
- Yaxue Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Hanzong Li
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Wendie Hu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Bohan Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yujie Du
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Fengyan Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Chon J, Laub P, Wesolowski M, Bajwa S, Drew T, Desai N, Azarvash N, Wick JS, King T. Presence of Tissue Expanders Does Not Affect Radiotherapy Dose Distribution to Heart and Lungs. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6819. [PMID: 40438525 PMCID: PMC12119047 DOI: 10.1097/gox.0000000000006819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/01/2025] [Indexed: 06/01/2025]
Abstract
Background Breast cancer treatment often involves mastectomy and postmastectomy radiotherapy (PMRT). PMRT rates are increasing and can improve outcomes in node-positive cases. Although the risks of PMRT to reconstructed breasts are known, the influence of tissue expanders (TEs) on radiation to nearby organs such as the heart and lungs remains unclear. Methods Patients who underwent total mastectomy and completed a full course of PMRT with 3-dimensional computer tomography planning between January 2014 and August 2022 at Loyola University Medical Center were included. Patient dose statistics for ipsilateral lung, heart, and clinical target volume, as well as demographics, clinical characteristics, PRMT boost, and bolus were collected. Dose statistics for ipsilateral lung and heart were compared between mastectomy versus mastectomy + TE, and dose statistics were compared between dichotomized TE intraoperative fill volumes. Correlations between dose statistics and BMI were analyzed. Results A total of 124 patients were included in the study. There were no significant differences in lung or heart radiotherapy across all dose metrics between patients who underwent mastectomy versus mastectomy + TE, or between patients with TE fill volume 60 mL or less versus 60 mL or more. Correlations between BMI and heart maximum dose (P = 0.03) were significantly different and showed a positive, monoclonal correlation (correlation: 0.20, 95% confidence interval: 0.02-0.37). Conclusions The presence of TE and intraoperative expander fill volume did not affect dose distribution or complications to the organs at risk. Increased BMI correlated with an increased maximum dose to the heart.
Collapse
Affiliation(s)
- Jeewon Chon
- From the Loyola University Stritch School of Medicine, Maywood, IL
| | - Peter Laub
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Loyola University Medical Center, Maywood, IL
| | - Mike Wesolowski
- From the Loyola University Stritch School of Medicine, Maywood, IL
| | - Safi Bajwa
- From the Loyola University Stritch School of Medicine, Maywood, IL
| | - Taylor Drew
- From the Loyola University Stritch School of Medicine, Maywood, IL
| | - Naomi Desai
- From the Loyola University Stritch School of Medicine, Maywood, IL
| | - Nazanin Azarvash
- From the Loyola University Stritch School of Medicine, Maywood, IL
| | - Jennifer S. Wick
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL
| | - Timothy King
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Loyola University Medical Center, Maywood, IL
| |
Collapse
|
3
|
McGarry CK, Tonino Baldion A, Burnley J, Byrne N, Doolan PJ, Jenkins R, Jones E, Jones MR, Marshall HL, Milliken F, Sands G, Woolliams P, Wright T, Clark CH. IPEM topical report: guidance on 3D printing in radiotherapy. Phys Med Biol 2025; 70:04TR01. [PMID: 39746307 DOI: 10.1088/1361-6560/ada518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
There has been an increase in the availability and utilization of commercially available 3D printers in radiotherapy, with applications in phantoms, brachytherapy applicators, bolus, compensators, and immobilization devices. Additive manufacturing in the form of 3D printing has the advantage of rapid production of personalized patient specific prints or customized phantoms within a short timeframe. One of the barriers to uptake has been the lack of guidance. The aim of this topical review is to present the radiotherapy applications and provide guidance on important areas for establishing a 3D printing service in a radiotherapy department including procurement, commissioning, material selection, establishment of relevant quality assurance, multidisciplinary team creation and training.
Collapse
Affiliation(s)
- Conor K McGarry
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 1NN, United Kingdom
- Radiotherapy Physics, Belfast Health and Social Care Trust, Belfast, BT9 7AB, United Kingdom
| | | | - James Burnley
- Mount Vernon Cancer Centre, Northwood, Middlesex HA6 2RN, United Kingdom
| | - Nicholas Byrne
- Medical Physics and Clinical Engineering, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, United Kingdom
| | - Paul James Doolan
- Department of Radiation Oncology, German Oncology Center, Limassol 4108, Cyprus
| | - Rhys Jenkins
- NHS Wales Swansea Bay University Health Board, Port Talbot SA12 7BR, United Kingdom
| | - Emma Jones
- Medical Physics and Clinical Engineering, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| | - Matthew R Jones
- Department of Medical Physics, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, United Kingdom
| | - Hannah L Marshall
- Radiotherapy Physics, Belfast Health and Social Care Trust, Belfast, BT9 7AB, United Kingdom
| | | | - Gordon Sands
- Saolta University Health Care Group Galway, H91 YR71, Ireland
| | - Peter Woolliams
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Tristan Wright
- Oncology Physics Department, Edinburgh Cancer Centre, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Catharine H Clark
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
- Department of Radiotherapy Physics, UCLH NHS Foundation Trust, London, NW1 2PG, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London NW1 2PG, United Kingdom
| |
Collapse
|
4
|
Ashenafi M, Jeong S, Wancura JN, Gou L, Webster MJ, Zheng D. A quick guide on implementing and quality assuring 3D printing in radiation oncology. J Appl Clin Med Phys 2023; 24:e14102. [PMID: 37501315 PMCID: PMC10647979 DOI: 10.1002/acm2.14102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
As three-dimensional (3D) printing becomes increasingly common in radiation oncology, proper implementation, usage, and ongoing quality assurance (QA) are essential. While there have been many reports on various clinical investigations and several review articles, there is a lack of literature on the general considerations of implementing 3D printing in radiation oncology departments, including comprehensive process establishment and proper ongoing QA. This review aims to guide radiation oncology departments in effectively using 3D printing technology for routine clinical applications and future developments. We attempt to provide recommendations on 3D printing equipment, software, workflow, and QA, based on existing literature and our experience. Specifically, we focus on three main applications: patient-specific bolus, high-dose-rate (HDR) surface brachytherapy applicators, and phantoms. Additionally, cost considerations are briefly discussed. This review focuses on point-of-care (POC) printing in house, and briefly touches on outsourcing printing via mail-order services.
Collapse
Affiliation(s)
- Michael Ashenafi
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Seungkyo Jeong
- Department of Applied MathematicsUniversity of RochesterRochesterNew YorkUSA
| | - Joshua N. Wancura
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Lang Gou
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Matthew J. Webster
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Dandan Zheng
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
5
|
Fahimian BP, Liu W, Skinner L, Yu AS, Phillips T, Steers JM, DeMarco J, Fraass BA, Kamrava M. 3D printing in brachytherapy: A systematic review of gynecological applications. Brachytherapy 2023; 22:446-460. [PMID: 37024350 DOI: 10.1016/j.brachy.2023.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE To provide a systematic review of the applications of 3D printing in gynecological brachytherapy. METHODS Peer-reviewed articles relating to additive manufacturing (3D printing) from the 34 million plus biomedical citations in National Center for Biotechnology Information (NCBI/PubMed), and 53 million records in Web of Science (Clarivate) were queried for 3D printing applications. The results were narrowed sequentially to, (1) all literature in 3D printing with final publications prior to July 2022 (in English, and excluding books, proceedings, and reviews), and then to applications in, (2) radiotherapy, (3) brachytherapy, (4) gynecological brachytherapy. Brachytherapy applications were reviewed and grouped by disease site, with gynecological applications additionally grouped by study type, methodology, delivery modality, and device type. RESULTS From 47,541 3D printing citations, 96 publications met the inclusion criteria for brachytherapy, with gynecological clinical applications compromising the highest percentage (32%), followed by skin and surface (19%), and head and neck (9%). The distribution of delivery modalities was 58% for HDR (Ir-192), 35% for LDR (I-125), and 7% for other modalities. In gynecological brachytherapy, studies included design of patient specific applicators and templates, novel applicator designs, applicator additions, quality assurance and dosimetry devices, anthropomorphic gynecological applicators, and in-human clinical trials. Plots of year-to-year growth demonstrate a rapid nonlinear trend since 2014 due to the improving accessibility of low-cost 3D printers. Based on these publications, considerations for clinical use are provided. CONCLUSIONS 3D printing has emerged as an important clinical technology enabling customized applicator and template designs, representing a major advancement in the methodology for implantation and delivery in gynecological brachytherapy.
Collapse
Affiliation(s)
- Benjamin P Fahimian
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA.
| | - Wu Liu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Tiffany Phillips
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jennifer M Steers
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - John DeMarco
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Benedick A Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mitchell Kamrava
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
6
|
Sheykholeslami N, Parwaie W, Vaezzadeh V, Babaie M, Farzin M, Geraily G, Karimi AH. Dual application of Polyvinyl Alcohol Glutaraldehyde Methylthymol Blue Fricke hydrogel in clinical practice: Surface dosimeter and bolus. Appl Radiat Isot 2023; 197:110827. [PMID: 37086713 DOI: 10.1016/j.apradiso.2023.110827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/26/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
An essential issue is an accurate evaluation of surface dose distribution for such sensitive treatments. This work aimed to feasibility of the dual application of the Ferrous Polyvinyl Alcohol Glutaraldehyde Methylthymol Blue (PVA-GTA-MTB) gel as a bolus compensator and surface dosimeter in breast radiotherapy. The differences between the surface dose measured using PVA-GTA-MTB gel and film dosimetry in the medial and lateral parts of the breast were 3.74% and 4.18%, respectively. A qualitative comparison of the isodose curves showed that the PVA-GTA-MTB bolus creates a uniform dose distribution similar to the superflab bolus in the target volume.
Collapse
Affiliation(s)
- Nooshin Sheykholeslami
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Wrya Parwaie
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical Sciences, Iran
| | - Vahid Vaezzadeh
- Radiation Oncology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Babaie
- Radiation Oncology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Farzin
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Radiation Oncology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Karimi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Radiation Oncology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Evans LM, Sözümert E, Keenan BE, Wood CE, du Plessis A. A Review of Image-Based Simulation Applications in High-Value Manufacturing. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1495-1552. [PMID: 36685137 PMCID: PMC9847465 DOI: 10.1007/s11831-022-09836-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) based simulations. Whilst IBSim originates in the biomedical field, the wider adoption of imaging for non-destructive testing and evaluation (NDT/NDE) within the High-Value Manufacturing (HVM) sector has allowed wider use of IBSim in recent years. IBSim is invaluable in scenarios where there exists a non-negligible variation between the 'as designed' and 'as manufactured' state of parts. It has also been used for characterisation of geometries too complex to accurately draw with CAD. IBSim simulations are unique to the geometry being imaged, therefore it is possible to perform part-specific virtual testing within batches of manufactured parts. This novel review presents the applications of IBSim within HVM, whereby HVM is the value provided by a manufactured part (or conversely the potential cost should the part fail) rather than the actual cost of manufacturing the part itself. Examples include fibre and aggregate composite materials, additive manufacturing, foams, and interface bonding such as welding. This review is divided into the following sections: Material Characterisation; Characterisation of Manufacturing Techniques; Impact of Deviations from Idealised Design Geometry on Product Design and Performance; Customisation and Personalisation of Products; IBSim in Biomimicry. Finally, conclusions are drawn, and observations made on future trends based on the current state of the literature.
Collapse
Affiliation(s)
- Llion Marc Evans
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
- United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB UK
| | - Emrah Sözümert
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
| | - Bethany E. Keenan
- Cardiff School of Engineering, Cardiff University, Cardiff, CF24 3AA UK
| | - Charles E. Wood
- School of Mechanical & Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ UK
| | - Anton du Plessis
- Object Research Systems, Montreal, H3B 1A7 Canada
- Research Group 3DInnovation, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
8
|
Buildup Factor Computation and Percentage Depth Dose Simulation of Tissue Mimicking Materials for an External Photon Beam (0.15–15 MeV). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, the use of tissue mimicking material (TMM) is widespread in both diagnostic and therapeutic medicine, as well as for quality assurance and control. For example, patient exposure evaluation during therapeutic tests has been commonly measured using TMMs. However, only a few materials have been developed for research use at the megavoltage photon energy encountered in medical radiology. In this paper, we extended our previous work to cover the photon energy range of 0.15–15 MeV for five human tissues (adipose, cortical bone, fat, lung and muscle). As a selection criterion for TMM, other than the attenuation coefficient, we introduced the computation of the buildup factor (BUF) for a given couple of energy and depth based on the geometric progression fitting method. Hence, we developed a C++ program able to compute BUF for depths up to 40 mean free path. Moreover, we simulated the percentage depth dose (PDD) of a 6 MV photon beam through each tissue and their equivalent materials using the Geant4 Monte Carlo toolkit (version 10.5). After the comparison of a set of parameters (mass attenuation and mass energy absorption coefficients, BUF, equivalent and effective atomic numbers, electron density, superficial and maximal dose and dose at 10 and 20 cm depths), we found that SB3 (a mixture of epoxy and calcium carbonate) and MS15 (a mixture of epoxy, phenol, polyethylene and aluminum oxide) accurately imitate cortical bone and muscle tissues, respectively. AP6 (a mixture of epoxy, phenol, polyethylene and teflon), glycerol trioleate and LN1 (a mixture of polyurethane and aluminum oxide) are also suitable TMMs for adipose, fat and lung tissues, respectively. Therefore, this work can be useful to physician researchers in dosimetry and radiological diagnosis.
Collapse
|