1
|
Phovisay S, Kodchasee P, Abdullahi AD, Kham NNN, Unban K, Kanpiengjai A, Saenjum C, Shetty K, Khanongnuch C. Tannin-Tolerant Saccharomyces cerevisiae Isolated from Traditional Fermented Tea Leaf (Miang) and Application in Fruit Wine Fermentation Using Longan Juice Mixed with Seed Extract as Substrate. Foods 2024; 13:1335. [PMID: 38731704 PMCID: PMC11083779 DOI: 10.3390/foods13091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This study focused on isolating tannin-tolerant yeasts from Miang, a fermented tea leaf product collected from northern Laos PDR, and investigating related food applications. From 43 Miang samples, six yeast isolates capable of ethanol production were obtained, with five isolates showing growth on YPD agar containing 4% (w/v) tannic acid. Molecular identification revealed three isolates as Saccharomyces cerevisiae (B5-1, B5-2, and C6-3), along with Candida tropicalis and Kazachstania humilis. Due to safety considerations, only Saccharomyces spp. were selected for further tannic acid tolerance study to advance food applications. Tannic acid at 1% (w/v) significantly influenced ethanol fermentation in all S. cerevisiae isolates. Notably, B5-2 and C6-3 showed high ethanol fermentation efficiency (2.5% w/v), while others were strongly inhibited. The application of tannin-tolerant yeasts in longan fruit wine (LFW) fermentation with longan seed extract (LSE) supplementation as a source of tannin revealed that C6-3 had the best efficacy for LFW fermentation. C6-3 showed promising efficacy, particularly with LSE supplementation, enhancing phenolic compounds, antioxidant activity, and inhibiting α-glucosidase activity, indicating potential antidiabetic properties. These findings underscore the potential of tannin-tolerant S. cerevisiae C6-3 for fermenting beverages from tannin-rich substrates like LSE, with implications for functional foods and nutraceuticals promoting health benefits.
Collapse
Affiliation(s)
- Somsay Phovisay
- Multidisciplinary School, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.P.); (P.K.); (A.D.A.); (N.N.N.K.)
- Department of Food Science and Technology, Faculty of Agriculture and Forest Resource, Souphanouvong University, Luang Prabang 06000, Laos
| | - Pratthana Kodchasee
- Multidisciplinary School, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.P.); (P.K.); (A.D.A.); (N.N.N.K.)
| | - Aliyu Dantani Abdullahi
- Multidisciplinary School, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.P.); (P.K.); (A.D.A.); (N.N.N.K.)
| | - Nang Nwet Noon Kham
- Multidisciplinary School, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.P.); (P.K.); (A.D.A.); (N.N.N.K.)
| | - Kridsada Unban
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Muang, Chiang Mai 50100, Thailand;
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Apinun Kanpiengjai
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Chemistry, Faculty of Science, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand
| | - Chalermpong Saenjum
- Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50100, Thailand;
| | - Kalidas Shetty
- Global Institute of Food Security and International Agriculture (GIFSIA), Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Chartchai Khanongnuch
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Huay Kaew Rd., Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Changes in Bioactive Compounds, Antioxidant Activities and Chemical Properties of Pickled Tea By-Product Fermentation: Promising Waste Management and Value-Added Product. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pickled tea is an ethnic fermented product produced using Assam tea (Camellia sinensis var. assamica) leaves. It is produced in large quantities every year and the liquid waste from its production is estimated to be up to 2500 mL per every kilogram of pickled tea production. To reduce the waste, pickled tea juice remaining from the process was developed into (1) pineapple kombucha and (2) formulated functional drinks as “value added” products. The juice used for making kombucha was collected at 15 days of pickled tea fermentation due to its high value in antioxidant activity (previous study, 2250 µmol TE per g DW). After fermenting the juice with starter culture, the properties of pineapple kombucha were assessed at 0, 1, 3, 5, 7, 9, 11 days. Results showed that the total phenolic of pineapple kombucha was reduced, while antioxidant assay (FRAP and ORAC) slightly increased. The most suitable fermentation period of pineapple kombucha was at day 3. The formulated drink was made from mixing pineapple kombucha with ginger and lemon juice at various ratios including 100:0:0, 80:10:10 and 80:15:5. The ratio 80:10:10 gave the highest TP and antioxidant activity for the functional drink. In addition, for sensory analysis, liking attribute of 80:15:5 fermented juice kombucha pineapple favor was significantly higher compared to other formulations. The study demonstrates the promising second fermentation process of by-product juice from pickled tea production for the conversion to value-added functional drink with reasonable antioxidant properties.
Collapse
|
3
|
Chupeerach C, Aursalung A, Watcharachaisoponsiri T, Whanmek K, Thiyajai P, Yosphan K, Sritalahareuthai V, Sahasakul Y, Santivarangkna C, Suttisansanee U. The Effect of Steaming and Fermentation on Nutritive Values, Antioxidant Activities, and Inhibitory Properties of Tea Leaves. Foods 2021; 10:117. [PMID: 33429899 PMCID: PMC7827290 DOI: 10.3390/foods10010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023] Open
Abstract
Fermented tea (Cha-miang in Thai) is a local product made by traditional food preservation processes in Northern Thailand that involve steaming fresh tea leaves followed by fermenting in the dark. Information on changes in nutritive values, bioactive compounds, antioxidant activities, and health properties that occur during the steaming and fermenting processes of tea leaves is, however, limited. Changes in nutritive values, phenolics, antioxidant activities, and in vitro health properties through inhibition of key enzymes that control obesity (lipase), diabetes (α-amylase and α-glucosidase), hypertension (angiotensin-converting enzyme (ACE)), and Alzheimer's disease (cholinesterases (ChEs) and β-secretase (BACE-1)) of fermented tea were compared to the corresponding fresh and steamed tea leaves. Results showed that energy, carbohydrate, and vitamin B1 increased after steaming, while most nutrients including protein, dietary fiber, vitamins (B2, B3, and C), and minerals (Na, K, Ca, Mg, Fe, and Zn) decreased after the steaming process. After fermentation, energy, fat, sodium, potassium, and iron contents increased, while calcium and vitamins (B1, B2, B3, and C) decreased compared to steamed tea leaves. However, the contents of vitamin B1 and iron were insignificantly different between fresh and fermented tea leaves. Five flavonoids (quercetin, kaempferol, cyanidin, myricetin, and apigenin) and three phenolic acids (gallic acid, caffeic acid, and p-coumaric acid) were identified in the tea samples. Total phenolic content (TPC) and antioxidant activities increased significantly after steaming and fermentation, suggesting structural changes in bioactive compounds during these processes. Steamed tea exhibited high inhibition against lipase, α-amylase, and α-glucosidase, while fermented tea possessed high anti-ChE and anti-ACE activities. Fresh tea exhibited high BACE-1 inhibitory activity. Results suggest that tea preparations (steaming and fermentation) play a significant role in the amounts of nutrients and bioactive compounds, which, in turn, affect the in vitro health properties. Knowledge gained from this research will support future investigations on in vivo health properties of fermented tea, as well as promote future food development of fermented tea as a healthy food.
Collapse
Affiliation(s)
- Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Thareerat Watcharachaisoponsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Kanyawee Whanmek
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Parunya Thiyajai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Kachakot Yosphan
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Varittha Sritalahareuthai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
4
|
Doungtip P, Kim KT, Hong H, Ju SE, Choi JW, Siriwoharn T, Prinyawiwatkul W, Sriwattana S. Effects of immersion in fermented tea liquid and steam treatments on physicochemical properties and ginsenoside profiles of Korean ginseng. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kyung Tack Kim
- Division of Strategic Food Technology Korea Food Research Institute Gyeonggi‐do Republic of Korea
| | - Hee‐Do Hong
- Division of Strategic Food Technology Korea Food Research Institute Gyeonggi‐do Republic of Korea
| | - Shin Eun Ju
- Division of Strategic Food Technology Korea Food Research Institute Gyeonggi‐do Republic of Korea
| | - Jae Woong Choi
- Division of Strategic Food Technology Korea Food Research Institute Gyeonggi‐do Republic of Korea
| | | | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University, Agricultural Center Baton Rouge LA USA
| | | |
Collapse
|
5
|
Bo B, Kim SA, Han NS. Bacterial and fungal diversity in Laphet, traditional fermented tea leaves in Myanmar, analyzed by culturing, DNA amplicon-based sequencing, and PCR-DGGE methods. Int J Food Microbiol 2020; 320:108508. [PMID: 31986350 DOI: 10.1016/j.ijfoodmicro.2020.108508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Laphet is a traditional fermented food in Myanmar, made from tea leaves (Camellia sinensis) by fermentation with limited air passage. We performed microbial diversity analyses on 14 Laphet products collected from different locations in Myanmar. Amplicon-based sequencing results revealed Lactobacillus and Acetobacter were abundant bacteria and Candida, Pichia, Cyberlindnera, and Debaryomyces were abundant yeast. Using selective media, eight species of lactic acid bacteria and nine species of yeast were isolated; Lactobacillus plantarum and L. collinoides were dominant bacteria and Pichia manshurica, Candida boidinii, and Cyberlindnera jadinii were major yeasts. PCR-DGGE analysis confirmed that most of the dominant bacterial and yeast species found in culture dependent analysis were present in Laphet samples. Microbial diversity and pH of Laphet were different between samples from tea plantation area and local markets due to possible differences in incubation time periods. When tannase activity was tested, 23 among 29 bacterial isolates and two among 36 yeast isolates showed positive activities. These findings provide new insights into microbial diversity of Laphet and increased our understanding of the core bacterial and yeast species involved in the manufacture of Laphet.
Collapse
Affiliation(s)
- Bo Bo
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea; Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Division, Myanmar
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|