1
|
Qin R, Ren W, Ya G, Wang B, He J, Ren S, Jiang L, Zhao S. Role of chemokines in the crosstalk between tumor and tumor-associated macrophages. Clin Exp Med 2023; 23:1359-1373. [PMID: 36173487 PMCID: PMC10460746 DOI: 10.1007/s10238-022-00888-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
Tumor microenvironment (TME) consists of a dynamic network of non-tumoral stromal cells, including cancer-associated fibroblasts, endothelial cells, tumor-associated macrophages (TAMs), B and T cells. In the TME, TAMs support tumor initiation, progression, invasion and metastasis by promoting angiogenesis and immunosuppression of the tumor cells. There is close crosstalk between TAMs and tumor cells. Notably, chemokines are a significant messenger mediating the crosstalk between tumor cells and TAMs. TAMs can promote tumor progression via secretion of chemokines. Various chemokines secreted by tumors are involved in the generation and polarization of TAMs, the infiltration of TAMs in tumors, and the development of TAMs' suppressive function. This paper reviews CCL2-CCR2, CCL3/5-CCR5, CCL15-CCR1, CCL18-CCR8, CX3CL1/CCL26-CX3CR1, CXCL8-CXCR1/2, CXCL12-CXCR4/CXCR7 signaling pathways, their role in the recruitment, polarization and exertion of TAMs, and their correlation with tumor development, metastasis and prognosis. Furthermore, we present the current research progress on modulating the effects of TAMs with chemokine antagonists and discuss the prospects and potential challenges of using chemokine antagonists as therapeutic tools for cancer treatment. The TAMs targeting by chemokine receptor antagonists in combination with chemotherapy drugs, immune checkpoint inhibitors or radiotherapy appears to be a promising approach.
Collapse
Affiliation(s)
- Rui Qin
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Guoqi Ya
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Bei Wang
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shaoxin Ren
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lu Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Dong X, Zhang J, Yang F, Liu J, Peng Y, Ge Y. CXCL8, CXCL9, and CXCL10 serum levels increase in syphilitic patients with seroresistance. J Clin Lab Anal 2021; 35:e24016. [PMID: 34555221 PMCID: PMC8605156 DOI: 10.1002/jcla.24016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/22/2022] Open
Abstract
Background Recently, the rise of syphilitic seroresistance brings great confusion to the clinical diagnosis and treatment of syphilis, and no clear diagnostic marker has been found to distinguish syphilitic seroresistance from other progression of syphilis. This study evaluated the serum chemokines levels of CCL2, CXCL8, CXCL9, and CXCL10 and its correlation with blood routine, coagulation, and biochemical indexes in seroresistant syphilitic patients. Method Serum levels of chemokines were quantitatively determined by Flow Cytometric Bead Array (CBA). The results expressed in pg/ml. Clinical parameters were detected and analyzed according to the clinical laboratory standards. A correlation analysis was subsequently performed. Results The seroresistant syphilitic patients increased significantly serum chemokines levels of CXCL8 (***p < 0.001), CXCL9 (***p < 0.001), and CXCL10 (**p < 0.01) when compared to noninfected individuals, but the CCL2 was not statistically significant, and serum CXCL8 shows a strong association with platelets (r = 0.51, **p = 0.004) and serum CXCL10 was significantly positively related to INR levels (r = 0.49, **p = 0.007). Conclusion Increasing serum abnormalities in CXCL8, CXCL9, and CXCL10 level combining with platelets of peripheral blood and plasmatic INR in syphilis patients may be helpful for the diagnosis of serofast state.
Collapse
Affiliation(s)
- Xiaoyan Dong
- Center of Clinical Laboratory Medicine, The Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Junwu Zhang
- Center of Clinical Laboratory Medicine, The Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Fangfang Yang
- Center of Clinical Laboratory Medicine, The Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Jinlin Liu
- Center of Clinical Laboratory Medicine, The Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Yumeng Peng
- Center of Clinical Laboratory Medicine, The Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Yumei Ge
- Center of Clinical Laboratory Medicine, The Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
3
|
Zhou W, Yang L, Nie L, Lin H. Unraveling the molecular mechanisms between inflammation and tumor angiogenesis. Am J Cancer Res 2021; 11:301-317. [PMID: 33575073 PMCID: PMC7868762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023] Open
Abstract
Inflammatory mediators in tumor microenvironment influence cancer occurrence, growth and metastasis through complex signaling networks. Excessive inflammation is closely associated with elevated cancer risk and mortality, in part through inflammation-induced angiogenesis. Mechanistically, multiple tumor-associated inflammatory cells increase the release and accumulation of various inflammatory products in cancerous sites. These products in turn activate tumor associated signaling cascades such as STAT3, NF-κB, PI3K/Akt and p38 MAPK, which mediate the recruitment of inflammatory cells and secretion of pro-inflammatory factors. More importantly, these events promote the secretion of various pro-angiogenesis factors from endothelial, tumor and inflammatory cells, which then drive malignancy in endothelial cells in a paracrine and/or autocrine manner. Its ultimate effect is to promote endothelial cell proliferation, migration, survival and tube formation, and to hence the formation of blood vessels in tumors. This review describes the signaling network that connects the interaction between inflammation and cancer, especially those involved in inflammation-induced angiogenesis. This will reveal potential targets for the design of anti-inflammatory treatments and drugs that inhibites tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Wenwen Zhou
- Second Clinical Medical School, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Longtao Yang
- Second Clinical Medical School, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Lin Nie
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| |
Collapse
|
4
|
Devi K, Moharana B. Cigarette smoke extract triggers neoplastic change in lungs and impairs locomotor activity through wnt3a-β-catenin signaling in aged COPD rodent model. Exp Lung Res 2020; 46:283-296. [PMID: 32729343 DOI: 10.1080/01902148.2020.1800139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Chronic cigarette smoking primes immense decline in lung functions and retardation of motor functions with increase in age. This raise the question of whether age status overwhelm the susceptibility to smoking induced lung inflammatory diseases and neuro-motor dysfunctions. METHODS To study the hypothesis 11-12 month old aged wistar rats (n = 6) were administered cigarette smoke extract (CSE) through intraperitoneal route (0.5 ml/rat) twice a week for 2 months. Respiratory lung functions were measured through whole body plethysmography. Lung histopathological evaluation and neuronal degeneration were observed by using H&E, picrosirius red and nissl staining respectively. Motor function tests were done through panel of neuro-behavioral tests and protein expressions were performed in lung and brain tissue homogenates through western blotting. RESULTS Sub-chronic CSE exposure worsened the lung functions including decreased tidal volume (p < 0.05), peak inspiratory flow (p < 0.05) and enhanced pause (p < 0.05). Grossly, solid neoplastic lesions were visible on the supra-lateral surface of the lungs of the CSE treated animals. Histopathological examination revealed immune cell infiltration, dominated with macrophages and alveolar type II cells stained positive for PCNA. Increased expression of BAX, PCNA, Wnt-3a, p-β-catenin (p < 0.05) was seen in the lungs of CSE treated aged animals. Elevated expression of inflammatory markers including NF-ϏB, TNF-α, TNF-R1, p-AKT was found in CSE treated lung tissues. Moreover, our result showed increased MCP-1, VEGF and IL-6 levels in BALF and plasma (p < 0.01) which might lead to neo-vascularization and excessive cell proliferation in lungs of CSE induced rats. Sub-chronic cigarette smoke exposure retarded the motor activity with suppression of D1 and D2 receptor expression in brain tissues. Brain tissue revealed the abundance of hyperchromatic and pyknotic nuclei suggesting neuronal degeneration. CONCLUSION So in conclusion, chronic cigarette smoking in old age creates susceptibility to fast onset of lung inflammatory diseases and neuro-motor retardation than their nonsmoker counterparts.
Collapse
Affiliation(s)
- Kusum Devi
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Baisakhi Moharana
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
5
|
Fractalkine/CX3CL1 in Neoplastic Processes. Int J Mol Sci 2020; 21:ijms21103723. [PMID: 32466280 PMCID: PMC7279446 DOI: 10.3390/ijms21103723] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fractalkine/CX3C chemokine ligand 1 (CX3CL1) is a chemokine involved in the anticancer function of lymphocytes-mainly NK cells, T cells and dendritic cells. Its increased levels in tumors improve the prognosis for cancer patients, although it is also associated with a poorer prognosis in some types of cancers, such as pancreatic ductal adenocarcinoma. This work focuses on the 'hallmarks of cancer' involving CX3CL1 and its receptor CX3CR1. First, we describe signal transduction from CX3CR1 and the role of epidermal growth factor receptor (EGFR) in this process. Next, we present the role of CX3CL1 in the context of cancer, with the focus on angiogenesis, apoptosis resistance and migration and invasion of cancer cells. In particular, we discuss perineural invasion, spinal metastasis and bone metastasis of cancers such as breast cancer, pancreatic cancer and prostate cancer. We extensively discuss the importance of CX3CL1 in the interaction with different cells in the tumor niche: tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and microglia. We present the role of CX3CL1 in the development of active human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) brain tumors. Finally, we discuss the possible use of CX3CL1 in immunotherapy.
Collapse
|
6
|
Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1. Oncogene 2020; 39:4421-4435. [PMID: 32346064 PMCID: PMC7253351 DOI: 10.1038/s41388-020-1302-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a malignant brain tumor that evades therapy regimens. Since cellular dormancy is one strategy for surviving, and since chemokines determine the environmental conditions in which dormancy occurs, we investigated how chemokines affect temozolomide (TMZ)-promoted cellular dormancy entry and exit in GBM cells. TMZ administration over ten days promoted cellular dormancy entry, whereas discontinuing TMZ for a further 15 days resulted in resumption of proliferation. Co-administration of a chemokine cocktail containing CXCL12, CXCL16, and CX3CL1 resulted in both delayed entry and exit from cellular dormancy. A microarray-based transcriptome analysis in LN229 GBM cells revealed that cellular dormancy entry was characterized by an increased expression of CCL2 and SAA2, while THSD4, FSTL3, and VEGFC were upregulated during dormancy exit. Co-stimulation with the chemokine cocktail reduced upregulation of identified genes. After verifying the appearance of identified genes in human GBM primary cultures and ex vivo samples, we clarified whether each chemokine alone impacts cellular dormancy mechanisms using specific antagonists and selective CRISPR/Cas9 clones. While expression of CCL2 and SAA2 in LN229 cells was altered by the CXCL12-CXCR4-CXCR7 axis, CXCL16 and CX3CL1 contributed to reduced upregulation of THSD4 and, to a weaker extent, of VEGFC. The influence on FSTL3 expression depended on the entire chemokine cocktail. Effects of chemokines on dormancy entry and exit-associated genes were detectable in human GBM primary cells, too, even if in a more complex, cell-specific manner. Thus, chemokines play a significant role in the regulation of TMZ-promoted cellular dormancy in GBMs.
Collapse
|
7
|
Bone Marrow CX3CL1/Fractalkine is a New Player of the Pro-Angiogenic Microenvironment in Multiple Myeloma Patients. Cancers (Basel) 2019; 11:cancers11030321. [PMID: 30845779 PMCID: PMC6469019 DOI: 10.3390/cancers11030321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
C-X3-C motif chemokine ligand 1 (CX3CL1)/fractalkine is a chemokine released after cleavage by two metalloproteases, ADAM metallopeptidase domain 10 (ADAM10) and ADAM metallopeptidase domain 17 (ADAM17), involved in inflammation and angiogenesis in the cancer microenvironment. The role of the CX3CL1/ C-X3-C motif chemokine receptor 1(CX3CR1) axis in the multiple myeloma (MM) microenvironment is still unknown. Firstly, we analyzed bone marrow (BM) plasma levels of CX3CL1 in 111 patients with plasma cell disorders including 70 with active MM, 25 with smoldering myeloma (SMM), and 16 with monoclonal gammopathy of undetermined significance (MGUS). We found that BM CX3CL1 levels were significantly increased in MM patients compared to SMM and MGUS and correlated with BM microvessel density. Secondly, we explored the source of CX3CL1 in MM and BM microenvironment cells. Primary CD138+ cells did not express CXC3L1 but up-regulated its production by endothelial cells (ECs) through the involvement of tumor necrosis factor alpha (TNFα). Lastly, we demonstrated the presence of CX3CR1 on BM CD14+CD16+ monocytes of MM patients and on ECs, but not on MM cells. The role of CX3CL1 in MM-induced angiogenesis was finally demonstrated in both in vivo chick embryo chorioallantoic membrane and in vitro angiogenesis assays. Our data indicate that CX3CL1, present at a high level in the BM of MM patients, is a new player of the MM microenvironment involved in MM-induced angiogenesis.
Collapse
|