1
|
Hu Y, Fan Y, Li N, Xu C, Wang J. Expression of LncRNAs in anterior capsule of lens in patients with pathologic myopia complicated with cataract. Int Ophthalmol 2024; 45:10. [PMID: 39680214 DOI: 10.1007/s10792-024-03366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE To explore the expressions and functions of lncRNAs in the pathogenesis of pathologic myopia complicated with cataract (PMC). METHODS The anterior capsular tissues were collected from patients with age-related cataract (ARC) and PMC. One group of the samples was used to detected by whole-transcriptome sequencing (LC-Bio, Hangzhou, China) and investigated by GO and KEGG enrichment analysis. We selected the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), predicted the miRNAs with gene binding sites to it and the downstream mRNAs with gene binding sites to miRNAs through the Starbase and Targetscan websites. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed on the other group to further preliminarily validate the prediction. RESULTS A total of 471 lncRNAs were significantly differential expressed in PMC group compared with ARC group, in which 231 lncRNAs were up-regulated, including MALAT1, and 240 lncRNAs were down-regulated. GO and KEGG enrichment analysis showed that lncRNAs targeted differential mRNAs were involved in various biological functions, cell components, molecular functions and signaling pathways. Taking MALAT1 as an example, we predicted that it had binding sites with 113 miRNAs such as hsa-miR-20a-5p, has-miR-20b-5p, hsa-miR-26a-5p, has-miR-106-5p and hsa-miR-204-5p, which were lower in PMC group than these in ARC group. Inversely, the downstream mRNAs of the above miRNAs, such as MMP9, TNF-α, TGF-β2, NF-KB, IL6 and Smad4 were higher. CONCLUSION The differentially expressed lncRNAs, especially MALAT1, may act as ceRNA via sponging miRNAs and to regulate the targeting downstream mRNAs in development of PMC and participate in numerous biological processes through interconnected signaling pathways.
Collapse
Affiliation(s)
- Yaru Hu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
- Department of Ophthalmology, Fuyang People's Hospital, Fuyang, 236000, Anhui, China
| | - Yuchen Fan
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Na Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Che Xu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Jianfeng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China.
| |
Collapse
|
2
|
Liu Y, Dong X, Wu B, Cheng Z, Zhang J, Wang J. Promising Pharmacological Interventions for Posterior Capsule Opacification: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400181. [PMID: 39679290 PMCID: PMC11637782 DOI: 10.1002/gch2.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/18/2024] [Indexed: 12/17/2024]
Abstract
Phacoemulsification combined with intraocular lens implantation is the primary treatment for cataract. Although this treatment strategy benefits patients with cataracts, posterior capsule opacification (PCO) remains a common complication that impairs vision and affects treatment outcomes. The pathogenesis of PCO is associated with the proliferation, migration, and fibrogenesis activity of residual lens epithelial cells, with epithelial-mesenchymal transition (EMT) serving as a key mechanism underlying the condition. Transforming growth factor-beta 2 (TGF-β2) is a major promotor of EMT, thereby driving PCO development. Most studies have shown that drugs and miRNAs mitigate EMT by inhibiting, clearing, or eliminating LECs. In addition, targeting EMT-related signaling pathways in TGF-β2-stimulated LECs has garnered attention as a research focus. This review highlights potential treatments for PCO and details the mechanisms by which drugs and miRNAs counter EMT.
Collapse
Affiliation(s)
- Yuxuan Liu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Xiaoming Dong
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Bin Wu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Zhigang Cheng
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Chaoyang Aier Eye HospitalChaoyangLiaoning Province122000China
| | - Jinsong Zhang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Jing Wang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
- Aier Academy of OphthalmologyCentral South UniversityNo. 188, Furong South Road, Tianxin DistrictChangshaHunan410004P. R. China
| |
Collapse
|
3
|
Ye HF, Zhang X, Zhao ZN, Zheng C, Fei P, Xu Y, Lyu J, Chen JL, Guo XX, Zhu H, Zhao PQ. Characterization of N 6-methyladenosine long non-coding RNAs in sporadic congenital cataract and age-related cataract. Int J Ophthalmol 2024; 17:1973-1986. [PMID: 39559306 PMCID: PMC11528264 DOI: 10.18240/ijo.2024.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/09/2024] [Indexed: 11/20/2024] Open
Abstract
AIM To characterize the N6-methyladenosine (m6A) modification patterns in long non-coding RNAs (lncRNAs) in sporadic congenital cataract (CC) and age-related cataract (ARC). METHODS Anterior capsule of the lens were collected from patients with CC and ARC. Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing were performed to identify m6A-tagged lncRNAs and lncRNAs expression. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and Gene Ontology annotation were used to predict potential functions of the m6A-lncRNAs. RESULTS Large amount of m6A peaks within lncRNA were identified for both CC and ARC, while the level was much higher in ARC (49 870 peaks) than that in CC (18 688 peaks), yet those difference between ARC in younger age group (ARC-1) and ARC in elder age group (ARC-2) was quite slight. A total of 1305 hypermethylated and 1178 hypomethylated lncRNAs, as well as 182 differential expressed lncRNAs were exhibited in ARC compared with CC. On the other hand, 5893 hypermethylated and 5213 hypomethylated lncRNAs, as well as 155 significantly altered lncRNA were identified in ARC-2 compared with ARC-1. Altered lncRNAs in ARC were mainly associated with the organization and biogenesis of intracellular organelles, as well as nucleotide excision repair. CONCLUSION Our results for the first time present an overview of the m6A methylomes of lncRNA in CC and ARC, providing a solid basis and uncovering a new insight to reveal the potential pathogenic mechanism of CC and ARC.
Collapse
Affiliation(s)
- Hong-Fei Ye
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhen-Nan Zhao
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai 200031, China
| | - Ce Zheng
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ji-Li Chen
- Department of Ophthalmology, Shanghai Shibei Hospital of Jing'an District, Shanghai 200040, China
| | - Xun-Xiang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pei-Quan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
4
|
Jing RH, Hu CH, Qi TT, Ma B. Role of reactive oxygen species in epithelial-mesenchymal transition and apoptosis of human lens epithelial cells. Int J Ophthalmol 2023; 16:1935-1941. [PMID: 38111943 PMCID: PMC10700083 DOI: 10.18240/ijo.2023.12.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/15/2023] [Indexed: 12/20/2023] Open
Abstract
AIM To investigate the role of reactive oxygen species (ROS) in epithelial-mesenchymal transition (EMT) and apoptosis of human lens epithelial cells (HLECs). METHODS Flow cytometry was used to assess ROS production after transforming growth factor β2 (TGF-β2) induction. Apoptosis of HLECs after H2O2 and TGF-β2 interference with or without ROS scavenger N-acetylcysteine (NAC) were assessed by flow cytometry. The corresponding protein expression levels of the EMT marker α-smooth muscle actin (α-SMA), the extracellular matrix (ECM), marker fibronectin (Fn), and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger (NAC). Wound-healing and Transwell assays were used to assess the migration capability of HLECs. RESULTS TGF-β2 stimulates ROS production within 8h in HLECs. Additionally, TGF-β2 induced HLECs cell apoptosis, EMT/ECM synthesis protein markers expression, and pro-apoptotic proteins production; nonetheless, NAC treatment prevented these responses. Similarly, TGF-β2 promoted HLECs cell migration, whereas NAC inhibited cell migration. We further determined that although ROS initiated apoptosis, it only induced the accumulation of the EMT marker α-SMA protein, but not COL-1 or Fn. CONCLUSION ROS contribute to TGF-β2-induced EMT/ECM synthesis and cell apoptosis of HLECs; however, ROS alone are not sufficient for EMT/ECM synthesis.
Collapse
Affiliation(s)
- Rui-Hua Jing
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Cong-Hui Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Tian-Tian Qi
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Bo Ma
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
5
|
Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, Fu W, Jiang J, Ma X, Song J. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res 2023; 27:3. [PMID: 36647161 PMCID: PMC9843879 DOI: 10.1186/s40824-023-00339-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) brings a heavy burden to individuals and society, and there is no effective treatment at present. Exosomes (EX) are cell secreted vesicles containing molecules such as nucleic acids and proteins, which hold promise for the treatment of SCI. Netrin-1 is an axon guidance factor that regulates neuronal growth. We investigated the effects of engineered EX enriched in netrin-1 chemically synthetic modified message RNA (modRNA) in treating SCI in an attempt to find a novel therapeutic approach for SCI. METHODS Netrin-1 modRNA was transfected into bone marrow mesenchymal stem cells to obtain EX enriched with netrin-1 (EX-netrin1). We built an inflammatory model in vitro with lipopolysaccharide (LPS) in vitro to study the therapeutic effect of EX-netrin1 on SCI. For experiments in vitro, ELISA, CCK-8 assay, immunofluorescence staining, lactate dehydrogenase release experiments test, real-time quantitative polymerase chain reaction, and western blot were conducted. At the same time, we constructed a rat model of SCI. MRI, hematoxylin-eosin and Nissl staining were used to assess the extent of SCI in rats. RESULTS In vitro experiments showed that EX had no effect on the viability of oligodendrocytes and PC12 cells. EX-netrin1 could attenuate LPS-induced inflammation and pyroptosis and accelerate axonal/dentritic growth in PC12 cells/oligodendrocytes. In addition, netrin-1 could activate the PI3K/AKT/mTOR signalling pathway upon binding to its receptor unc5b. When Unc5b and PI3K were inhibited, the effect of EX-netrin1 was weakened, which could be reversed by PI3K or mTOR activator. Our in vivo experiments indicated that EX-netrin1 could promote recovery in rats with SCI. CONCLUSION We found that EX-netrin1 regulated inflammation, pyroptosis and axon growth in SCI via the Unc5b/PI3K/AKT/mTOR pathway, which provides a new strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
6
|
Wang S, Wu Y, Liu M, Zhao Q, Jian L. DHW-208, A Novel Phosphatidylinositol 3-Kinase (PI3K) Inhibitor, Has Anti-Hepatocellular Carcinoma Activity Through Promoting Apoptosis and Inhibiting Angiogenesis. Front Oncol 2022; 12:955729. [PMID: 35903690 PMCID: PMC9315107 DOI: 10.3389/fonc.2022.955729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide with high prevalence and lethality. Due to insidious onset and lack of early symptoms, most HCC patients are diagnosed at advanced stages without adequate methods but systemic therapies. PI3K/AKT/mTOR signaling pathway plays a crucial role in the progression and development of HCC. Aberrant activation of PI3K/AKT/mTOR pathway is involved in diverse biological processes, including cell proliferation, apoptosis, migration, invasion and angiogenesis. Therefore, the development of PI3K-targeted inhibitors is of great significance for the treatment of HCC. DHW-208 is a novel 4-aminoquinazoline derivative pan-PI3K inhibitor. This study aimed to assess the therapeutic efficacy of DHW-208 in HCC and investigate its underlying mechanism. DHW-208 could inhibit the proliferation, migration, invasion and angiogenesis of HCC through the PI3K/AKT/mTOR signaling pathway in vitro. Consistent with the in vitro results, in vivo studies demonstrated that DHW-208 elicits an antitumor effect by inhibiting the PI3K/AKT/mTOR-signaling pathway with a high degree of safety in HCC. Therefore, DHW-208 is a candidate compound to be developed as a small molecule PI3K inhibitor for the treatment of HCC, and our study provides a certain theoretical basis for the treatment of HCC and the development of PI3K inhibitors.
Collapse
Affiliation(s)
- Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Wu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingyue Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Department of Pharmacy, China Medical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Lingyan Jian,
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Lingyan Jian,
| |
Collapse
|