1
|
Wang L, Li X, Men X, Liu X, Luo J. Research progress on antioxidants and protein aggregation inhibitors in cataract prevention and therapy (Review). Mol Med Rep 2025; 31:22. [PMID: 39513587 PMCID: PMC11574704 DOI: 10.3892/mmr.2024.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Cataracts are primarily caused by aging or gene mutations and are the leading cause of blindness globally. As the older population increases, the number of patients with a cataract is expected to grow rapidly. At present, cataract surgery to replace the lens with an artificial intraocular lens is the principal treatment method. However, surgery has several drawbacks, including economic burdens and complications such as inflammation, xerophthalmia, macular edema and posterior capsular opacification. Thus, developing an effective non‑surgical treatment strategy is beneficial to both patients and public health. Mechanistically, cataract formation may be due to various reasons but is primarily initiated and promoted by oxidative stress and is closely associated with crystallin aggregation. In the present review, the current research progress on anti‑cataract drugs, including antioxidants and protein aggregation inhibitors is examined. It summarizes strategies for preventing and treating cataract through cell apoptosis and protein aggregation inhibition while discussing their limitations and further prospects.
Collapse
Affiliation(s)
- Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Xiaoju Men
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Xiangyi Liu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Jinque Luo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| |
Collapse
|
2
|
Chen HA, Tai YN, Hsieh EH, Thacker M, Lin IC, Tseng CL, Lin FH. Injectable cross-linked hyaluronic acid hydrogels with epigallocatechin gallate loading as vitreous substitutes. Int J Biol Macromol 2024; 275:133467. [PMID: 38945319 DOI: 10.1016/j.ijbiomac.2024.133467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hyaluronic acid (HA) serves as a vitreous substitute owing to its ability to mimic the physical functions of native vitreous humor. However, pure HA hydrogels alone do not provide sufficient protection against potential inflammatory risks following vitrectomy. In this study, HA was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) to form HA hydrogels (HB). Subsequently, the anti-inflammatory agent epigallocatechin gallate (EGCG) was added to the hydrogel (HBE) for ophthalmic applications as a vitreous substitute. The characterization results indicated the successful preparation of HB with transparency, refractive index, and osmolality similar to those of native vitreous humor, and with good injectability. The anti-inflammatory ability of HBE was also confirmed by the reduced expression of inflammatory genes in retinal pigment epithelial cells treated with HBE compared with those treated with HB. In a New Zealand white rabbit model undergoing vitreous substitution treatment, HBE 50 (EGCG 50 μM addition) exhibited positive results at 28 days post-surgery. These outcomes included restored intraocular pressure, improved electroretinogram responses, minimal increase in corneal thickness, and no inflammation during histological examination. This study demonstrated the potential of an injectable HA-BDDE cross-linked hydrogel containing EGCG as a vitreous substitute for vitrectomy applications, offering prolonged degradation time and anti-inflammatory effects postoperatively.
Collapse
Affiliation(s)
- Huai-An Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Yi-Ning Tai
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Minal Thacker
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan..
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan; Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli County, Taiwan.
| |
Collapse
|
3
|
Lin R, Wang Y, Cheng H, Ye X, Chen S, Pan H. Epigallocatechin-3-gallate stabilizes aqueous curcumin by generating nanoparticles and its application in beverages. Food Chem 2024; 444:138655. [PMID: 38330612 DOI: 10.1016/j.foodchem.2024.138655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
In this study, we addressed the limited water solubility of curcumin by utilizing epigallocatechin-3-gallate to form nanoparticles through self-assembly. The resulting particles, ranging from 100 to 150 nm, exhibited a redshift in the UV-visible spectrum, from 425 nm to 435 nm, indicative of potential π-π stacking. Molecular docking experiments supported this finding. Curcumin loaded with epigallocatechin-3-gallate showed exceptional dispersibility in aqueous solutions, with 90.92 % remaining after 60 days. The electrostatic screening effect arises from the charge carried by epigallocatechin-3-gallate on the nanoparticles, leading to enhanced retention of curcumin under different pH, temperature, and ionic strength conditions. Furthermore, epigallocatechin-3-gallate can interact with other hydrophobic polyphenols, improving their dispersibility and stability in aqueous systems. Applying this principle, a palatable beverage was formulated by combining turmeric extract and green tea. The nanoparticles encapsulated with epigallocatechin-3-gallate show potential for improving the applicability of curcumin in aqueous food systems.
Collapse
Affiliation(s)
- Ruge Lin
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|