1
|
Stromer BS, Woodbury BL, Williams CF, Spiehs MJ. Combined Treatment Methods for Removal of Antibiotics from Beef Wastewater. ACS OMEGA 2024; 9:48721-48726. [PMID: 39676941 PMCID: PMC11635675 DOI: 10.1021/acsomega.4c08114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Use of antibiotics is common practice in agriculture; however, they can be released into the environment, potentially causing antimicrobial resistance. Naturally mined diatomaceous earth with bentonite was tested as a remediation material for tylosin, chlortetracycline, and ceftiofur in wastewater from a beef cattle feedlot. Langmuir binding affinity in 10 mM sodium phosphate buffer at pH 6.7 was established prior to testing wastewater to determine binding potential. Chlortetracycline was found to have a binding affinity of 15.2 mM-1 and a binding capacity of 123 mg per g of diatomaceous earth while ceftiofur showed a much lower binding affinity and loading at 7.8 mM-1 and 3 mg per g of diatomaceous earth, respectively. From spiked wastewater, tylosin (50 μg mL-1, pH 8) and chlortetracycline (300 μg mL-1, pH 6) were removed (100 and 80%, respectively) when treated with 20 mg of diatomaceous earth while ceftiofur (300 μg mL-1, pH 8) remained in solution. When the spiked wastewater was flocculated with aluminum sulfate, a change in pH from 8 to 4 was observed, and chlortetracycline was removed from the wastewater; tylosin and ceftiofur remained in solution. When subsequently treated with diatomaceous earth, ceftiofur and tylosin were completely removed by diatomaceous earth from the flocculated wastewater.
Collapse
Affiliation(s)
- Bobbi S. Stromer
- U.S.
Meat Animal Research Center, Agricultural Research Service, United
States Department of Agriculture, Clay Center, Nebraska 68933, United States
| | - Bryan L. Woodbury
- U.S.
Meat Animal Research Center, Agricultural Research Service, United
States Department of Agriculture, Clay Center, Nebraska 68933, United States
| | - Clinton F. Williams
- U.S.
Arid Land Agricultural Research Center, Agricultural Research Service,
United States Department of Agriculture, Maricopa, Arizona 85138, United States
| | - Mindy J. Spiehs
- U.S.
Meat Animal Research Center, Agricultural Research Service, United
States Department of Agriculture, Clay Center, Nebraska 68933, United States
| |
Collapse
|
2
|
Gondek K, Micek P, Baran A, Bajda T, Kowal J, Lis M, Wyrobisz-Papiewska A, Wojtysiak D, Smoroń K. Modified Natural Diatomite with Various Additives and Its Environmental Potential. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4494. [PMID: 37374677 DOI: 10.3390/ma16124494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Diatomite has recently been the subject of intensive scientific research aimed at its extensive use in industry, breeding and agriculture. The only active diatomite mine is in Jawornik Ruski, in the Podkarpacie region of Poland. Chemical pollution in the environment, including that from heavy metals, poses a threat to living organisms. Reducing the mobility of heavy metals in the environment through the use of diatomite (DT) has recently gained much interest. More effective immobilisation of heavy metals in the environment with DT, mainly through the modification of its physical and chemical properties by various methods, should be applied. The aim of this research was to develop a simple and inexpensive material showing more favourable chemical and physical properties compared with unenriched DT in terms of metal immobilisation. Diatomite (DT), after calcination, was used in the study, considering three grain fractions, i.e., 0-1 mm (DT1); 0-0.5 mm (DT2) and 5-100 µm (DT3). Biochar (BC), dolomite (DL) and bentonite (BN) were used as additives. The proportion of DTs in the mixtures amounted to 75%, and of the additive, 25%. The use of unenriched DTs after calcination poses the risk of releasing heavy metals into the environment. Enrichment of the DTs with BC and DL resulted in a reduction or absence of Cd, Zn, Pb and Ni in aqueous extracts. It was found that for the specific surface area values obtained, the additive used for the DTs was of crucial importance. The reduction in DT toxicity has been proven under the influence of various additives. The mixtures of the DTs with DL and BN had the least toxicity. The obtained results have economic importance, as the production of the best quality sorbents from locally available raw materials reduces transport costs and thus the environmental impact. In addition, the production of highly efficient sorbents reduces the consumption of critical raw materials. It is estimated that the savings from producing sorbents with the parameters described in the article can be significant in comparison with popular competitive materials of other origins.
Collapse
Affiliation(s)
- Krzysztof Gondek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Piotr Micek
- Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Tomasz Bajda
- Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jerzy Kowal
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Marcin Lis
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Anna Wyrobisz-Papiewska
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Dorota Wojtysiak
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Krzysztof Smoroń
- Specialized Mining Company "Górtech" Sp. z o.o., Ul. Galicyjska 1/43b, 31-586 Krakow, Poland
| |
Collapse
|
3
|
Abou-Elanwar AM, Oh J, Lee S, Kim Y. Selective separation of dye/salt mixture using diatomite-based sandwich-like membrane. CHEMOSPHERE 2023; 330:138725. [PMID: 37084900 DOI: 10.1016/j.chemosphere.2023.138725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
A novel nanofiltration membrane was developed by entrapping a layer of modified diatomaceous earth between two layers of electrospun polysulfone (E-PSf) nanofibers. The diatomaceous earth particles and the fabricated membrane were characterized using FTIR, SEM, EDS, zeta potential, and water contact angle techniques. The static adsorption and dynamic separation of pristine E-PSF and sandwich-like membranes for methylene blue (MB) with/without salt were investigated under different operating conditions. The Langmuir model suited the MB adsorption isotherm data with a linear regression correlation coefficient (R2) >0.9955. As pH increased, both flux and MB rejection of the sandwich-like membrane improved by up to 183.8 LMH and 99.7%, respectively, when operated under gravity. The water flux of the sandwich-like membrane was sharply increased by increasing the pressure up to 19,518.2 LMH at 4.0 bar. However, this came at the expense of MB rejection (10.93%) and reduced its practical impact. At a high salt concentration, the sandwich-like membrane also indicated remarkable dye/salt separation with a higher permeation of salt (<0.2% NaCl rejection) and MB rejection (>99%). The performance of the regenerated diatomaceous material and membrane was maintained during five cycles of operation compared to that of the original ones.
Collapse
Affiliation(s)
- Ali M Abou-Elanwar
- Research Institute for Advanced Industrial Technology, Korea University, 2511, Sejong-ro, Sejong-si, 30019, Republic of Korea; Chemical Engineering Pilot Plant Department, Engineering Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Jongmin Oh
- Department of Environmental Engineering, Korea University, 2511, Sejong-ro, 30019, Republic of Korea
| | - Songbok Lee
- Research Institute for Advanced Industrial Technology, Korea University, 2511, Sejong-ro, Sejong-si, 30019, Republic of Korea
| | - Youngjin Kim
- Department of Environmental Engineering, Korea University, 2511, Sejong-ro, 30019, Republic of Korea.
| |
Collapse
|
4
|
Nurgain A, Nazhipkyzy M, Zhaparova A, Issanbekova A, Alfe M, Musina A. Acid Modification of Diatomite-Based Sorbents. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2020. [DOI: 10.18321/ectj975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this work, the effect of acid pre-treatment (hydrochloric acid, HCl) and calcination of diatomite, a silicon dioxide-material from natural sources, was studied with the aim to obtain diatomite-based sorbents with specific physicochemical properties. For this, acid pre-treatments with HCl at different calcination conditions, namely HCl concentration (0.5, 1 M) and calcination temperatures (from 600 to 900 °C) were studied. Morphological features different from those of natural diatomite were obtained. It has been found that treatment of diatomite with 0.5 M HCl at 800 °C showed a specific pore volume of 0.008 cm3/g, and a specific surface area of 19.26 m2/g, while the treatment of diatomite with 1.0 M HCl showed a specific pore volume of 0.011cm3/g, and a specific surface area of 25.57 m2/g. The performance of the acid pretreatment of diatomite for adsorption of Pb ions from water was also studied.
Collapse
|