1
|
Moldovan F, Moldovan L. An Orthopedic Healthcare Facility Governance Assessed with a New Indicator System. Healthcare (Basel) 2024; 12:1080. [PMID: 38891155 PMCID: PMC11172014 DOI: 10.3390/healthcare12111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES A sustainability-oriented hospital governance has the potential to increase the efficiency of healthcare services and reduce the volume of expenses. The objective of this research is to develop a new complex tool for evaluating healthcare facility governance as a component of social responsibility, integrated into sustainability. MATERIALS AND METHODS We designed the research to develop the domains of a new reference framework for evaluating healthcare facility governance. The methodology for designing the indicators that make up the new reference framework consists of collecting and processing the most recent and relevant practices regarding the governance of healthcare facilities that have been reported by representative hospitals around the world. RESULTS We designed eight indicators that are brought together in the healthcare facility governance indicators matrix. They have descriptions and qualitative and quantitative rating scales with values from 0 to 5 that allow the degree of fulfillment to be quantified. The importance of the indicators is evaluated on a specific scale described qualitatively and quantitatively by values from 0 to 5. The values of the degree of achievement-importance couples of the indicators allow the development of improvement measures with priority according to the results revealed by the Eisenhower-type assessment diagram. CONCLUSIONS Validation in practice of the system of indicators at an emergency hospital in an orthopedic profile highlighted the fact that they can be integrated into other national and international reference frameworks implemented in the hospital. The added value of the implementation consists of the facilitation of sustainable development and the orientation of health personnel, patients, and interested parties toward sustainability.
Collapse
Affiliation(s)
- Flaviu Moldovan
- Orthopedics-Traumatology Department, Faculty of Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Liviu Moldovan
- Faculty of Engineering and Information Technology, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
2
|
Patel JM, Saleh KS, Burdick JA, Mauck RL. Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomater 2019; 93:222-238. [PMID: 30711660 PMCID: PMC6616001 DOI: 10.1016/j.actbio.2019.01.061] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
Articular cartilage is a remarkable tissue whose sophisticated composition and architecture allow it to withstand complex stresses within the joint. Once injured, cartilage lacks the capacity to self-repair, and injuries often progress to joint wide osteoarthritis (OA) resulting in debilitating pain and loss of mobility. Current palliative and surgical management provides short-term symptom relief, but almost always progresses to further deterioration in the long term. A number of bioactive factors, including drugs, corticosteroids, and growth factors, have been utilized in the clinic, in clinical trials, or in emerging research studies to alleviate the inflamed joint environment or to promote new cartilage tissue formation. However, these therapies remain limited in their duration and effectiveness. For this reason, current efforts are focused on improving the localization, retention, and activity of these bioactive factors. The purpose of this review is to highlight recent advances in drug delivery for the treatment of damaged or degenerated cartilage. First, we summarize material and modification techniques to improve the delivery of these factors to damaged tissue and enhance their retention and action within the joint environment. Second, we discuss recent studies using novel methods to promote new cartilage formation via biofactor delivery, that have potential for improving future long-term clinical outcomes. Lastly, we review the emerging field of orthobiologics, using delivered and endogenous cells as drug-delivering "factories" to preserve and restore joint health. Enhancing drug delivery systems can improve both restorative and regenerative treatments for damaged cartilage. STATEMENT OF SIGNIFICANCE: Articular cartilage is a remarkable and sophisticated tissue that tolerates complex stresses within the joint. When injured, cartilage cannot self-repair, and these injuries often progress to joint-wide osteoarthritis, causing patients debilitating pain and loss of mobility. Current palliative and surgical treatments only provide short-term symptomatic relief and are limited with regards to efficiency and efficacy. Bioactive factors, such as drugs and growth factors, can improve outcomes to either stabilize the degenerated environment or regenerate replacement tissue. This review highlights recent advances and novel techniques to enhance the delivery, localization, retention, and activity of these factors, providing an overview of the cartilage drug delivery field that can guide future research in restorative and regenerative treatments for damaged cartilage.
Collapse
Affiliation(s)
- Jay M Patel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States
| | - Kamiel S Saleh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States
| | - Jason A Burdick
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
3
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|