1
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2025; 83:109-133. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Liu D, Zhao J, Li L, Wang J, Wang C, Wu Y, Huang Y, Xing D, Chen W. CD73: agent development potential and its application in diabetes and atherosclerosis. Front Immunol 2024; 15:1515875. [PMID: 39735551 PMCID: PMC11672340 DOI: 10.3389/fimmu.2024.1515875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
CD73, an important metabolic and immune escape-promoting gene, catalyzes the hydrolysis of adenosine monophosphate (AMP) to adenosine (ADO). AMP has anti-inflammatory and vascular relaxant properties, while ADO has a strong immunosuppressive effect, suggesting that CD73 has pro-inflammatory and immune escape effects. However, CD73 also decreased proinflammatory reaction, suggesting that CD73 has a positive side to the body. Indeed, CD73 plays a protective role in diabetes, while with age, CD73 changes from anti-atherosclerosis to pro-atherosclerosis. The upregulation of CD73 with agents, including AGT-5, Aire-overexpressing DCs, Aspirin, BAFFR-Fc, CD4+ peptide, ICAs, IL-2 therapies, SAgAs, sCD73, stem cells, RAD51 inhibitor, TLR9 inhibitor, and VD, decreased diabetes and atherosclerosis development. However, the downregulation of CD73 with agents, including benzothiadiazine derivatives and CD73 siRNA, reduced atherosclerosis. Notably, many CD73 agents were investigated in clinical trials. However, no agents were used to treat diabetes and atherosclerosis. Most agents were CD73 inhibitors. Only FP-1201, a CD73 agonist, was investigated in clinical trials but its further development was discontinued. In addition, many lncRNAs, circRNAs, and genes are located at the same chromosomal location as CD73. In particular, circNT5E promoted CD73 expression. circNT5E may be a promising target for agent development. This mini-review focuses on the current state of knowledge of CD73 in diabetes, atherosclerosis, and its potential role in agent development.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jingjing Zhao
- Sleep Medicine Center, Huai’an No.3 People’s Hospital, Huaian Second Clinical College of Xuzhou Medical University, Huaian, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yucun Huang
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| |
Collapse
|
3
|
Wang Z, Mu L, Feng H, Yao J, Wang Q, Yang W, Zhou H, Li Q, Xu L. Expression patterns of platinum resistance-related genes in lung adenocarcinoma and related clinical value models. Front Genet 2022; 13:993322. [PMID: 36506331 PMCID: PMC9730711 DOI: 10.3389/fgene.2022.993322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to explore platinum resistance-related biomarkers and mechanisms in lung adenocarcinoma. Through the analysis of gene expression data of lung adenocarcinoma patients and normal patients from The Cancer Genome Atlas, Gene Expression Omnibus database, and A database of genes related to platinum resistance, platinum resistance genes in lung adenocarcinoma and platinum resistance-related differentially expressed genes were obtained. After screening by a statistical significance threshold, a total of 252 genes were defined as platinum resistance genes with significant differential expression, of which 161 were up-regulated and 91 were down-regulated. The enrichment results of up-regulated gene Gene Ontology (GO) showed that TOP3 entries related to biological processes (BP) were double-strand break repair, DNA recombination, DNA replication, the down-regulated gene GO enriches the TOP3 items about biological processes (BP) as a response to lipopolysaccharide, muscle cell proliferation, response to molecule of bacterial origin. Gene Set Enrichment Analysis showed that the top three were e2f targets, g2m checkpoint, and rgf beta signaling. A prognostic model based on non-negative matrix factorization classification showed the characteristics of high- and low-risk groups. The prognostic model established by least absolute shrinkage and selection operator regression and risk factor analysis showed that genes such as HOXB7, NT5E, and KRT18 were positively correlated with risk score. By analyzing the differences in m6A regulatory factors between high- and low-risk groups, it was found that FTO, GPM6A, METTL3, and YTHDC2 were higher in the low-risk group, while HNRNPA2B1, HNRNPC, TGF2BP1, IGF2BP2, IGF2BP3, and RBM15B were higher in the high-risk group. Immune infiltration and drug sensitivity analysis also showed the gene characteristics of the platinum-resistant population in lung adenocarcinoma. ceRNA analysis showed that has-miR-374a-5p and RP6-24A23.7 were lower in the tumor expression group, and that the survival of the low expression group was worse than that of the high expression group. In conclusion, the results of this study show that platinum resistance-related differentially expressed genes in lung adenocarcinoma are mainly concentrated in biological processes such as DNA recombination and response to lipopolysaccharide. The validation set proved that the high-risk group of our prognostic model had poor survival. M6A regulatory factor analysis, immune infiltration, and drug sensitivity analysis all showed differences between high and low-risk groups. ceRNA analysis showed that has-miR-374a-5p and RP6-24A23.7 could be protective factors. Further exploration of the potential impact of these genes on the risk and prognosis of drug-resistant patients with lung adenocarcinoma would provide theoretical support for future research.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Mu
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Feng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiling Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinglin Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang, China,*Correspondence: Qinglin Li, ; Ling Xu,
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Qinglin Li, ; Ling Xu,
| |
Collapse
|
4
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
5
|
Lee H, Jeong SH, Lee H, Kim C, Nam YJ, Kang JY, Song MO, Choi JY, Kim J, Park EK, Baek YW, Lee JH. Analysis of lung cancer-related genetic changes in long-term and low-dose polyhexamethylene guanidine phosphate (PHMG-p) treated human pulmonary alveolar epithelial cells. BMC Pharmacol Toxicol 2022; 23:19. [PMID: 35354498 PMCID: PMC8969249 DOI: 10.1186/s40360-022-00559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung injury elicited by respiratory exposure to humidifier disinfectants (HDs) is known as HD-associated lung injury (HDLI). Current elucidation of the molecular mechanisms related to HDLI is mostly restricted to fibrotic and inflammatory lung diseases. In our previous report, we found that lung tumors were caused by intratracheal instillation of polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. However, the lung cancer-related genetic changes concomitant with the development of these lung tumors have not yet been fully defined. We aimed to discover the effect of long-term exposure of PHMG-p on normal human lung alveolar cells. METHODS We investigated whether PHMG-p could increase distorted homeostasis of oncogenes and tumor-suppressor genes, with long-term and low-dose treatment, in human pulmonary alveolar epithelial cells (HPAEpiCs). Total RNA sequencing was performed with cells continuously treated with PHMG-p and harvested after 35 days. RESULTS After PHMG-p treatment, genes with transcriptional expression changes of more than 2.0-fold or less than 0.5-fold were identified. Within 10 days of exposure, 2 protein-coding and 5 non-coding genes were selected, whereas in the group treated for 27-35 days, 24 protein-coding and 5 non-coding genes were identified. Furthermore, in the long-term treatment group, 11 of the 15 upregulated genes and 9 of the 14 downregulated genes were reported as oncogenes and tumor suppressor genes in lung cancer, respectively. We also found that 10 genes of the selected 24 protein-coding genes were clinically significant in lung adenocarcinoma patients. CONCLUSIONS Our findings demonstrate that long-term exposure of human pulmonary normal alveolar cells to low-dose PHMG-p caused genetic changes, mainly in lung cancer-associated genes, in a time-dependent manner.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Myeong Ok Song
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Yong-Wook Baek
- Environmental Health Research Department, Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea.
| |
Collapse
|
6
|
CircRNA ANXA2 Promotes Lung Cancer Proliferation and Metastasis by Upregulating PDPK1 Expression. JOURNAL OF ONCOLOGY 2022; 2021:4526609. [PMID: 34992655 PMCID: PMC8727169 DOI: 10.1155/2021/4526609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is a common malignant tumor that seriously threatens human health. It has become the top malignant tumor in terms of morbidity and mortality. In recent years, circRNA, a special noncoding RNA molecule, has attracted considerable interest. This study focused on the role of circRNA ANXA2 (circANXA2) in lung cancer and the molecular mechanism of cancer promotion. Real-time quantitative PCR (RT-PCR) was used in detecting the expression abundance of circANXA2 in different lung cancer cells and tissues. The subcellular localization of circANXA2 was detected through fluorescence in situ hybridization. circANXA2 expression was knocked down through siRNA. CCK-8, clone formation assay, and TUNEL assay were used in evaluating the effects of circANXA2 on cell proliferation, clone formation ability, and apoptosis. The role of circANXA2 in tumor proliferation was further verified in vivo using the tumor transplantation model in nude mice. The molecular mechanism of circANXA2 was investigated with luciferase activity assay and RT-PCR. The expression abundance of circANXA2 is high in lung cancer cell lines and tissues. Knocking down of circANXA2 inhibits the proliferation and clonogenesis of the lung cancer cells. Knocking down circANXA2 promotes apoptosis. circANXA2 further affects downstream PDPK1 expression by regulating miR-33a-5p and thereby affecting the malignancy of the lung cancer cells. circANXA2 inhibits miR-33a-5p activity by directly interacting with miR-33a-5p. circANXA2 regulates the transcription of the miR-33a-5p downstream target gene PDPK1 and affects the malignant progression of lung cancer.
Collapse
|
7
|
Yang Y, Fan X, Nie Y, Liu D, Zhu D, Wu K, Zhang Y, Li W, Tian X, Wang H, Fan Y. CircTUBGCP3 facilitates the tumorigenesis of lung adenocarcinoma by sponging miR-885-3p. Cancer Cell Int 2021; 21:651. [PMID: 34872582 PMCID: PMC8647460 DOI: 10.1186/s12935-021-02356-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/17/2021] [Indexed: 01/17/2023] Open
Abstract
Background Circular RNAs (circRNAs) act pivotal roles in the progression of multiple malignancies. However, the underlying mechanisms by which hsa_circ_0007031 (circTUBGCP3) contributes to lung adenocarcinoma (LAC) remain largely unknown. Methods The association of circTUBGCP3 expression with clinicopathological characteristics and prognosis in patients with LAC was determined by RT-qPCR and fluorescence in situ hybridization. The in vitro functional experiments as well as a subcutaneous tumorigenesis model were executed to estimate the role of circTUBGCP3 in LAC cells. The interaction between circTUBGCP3 and miR-885-3p was confirmed by RNA immunoprecipitation, luciferase gene report and RT-qPCR assays. The effects of circTUBGCP3 on miR-885-3p-mediated Wnt10b/β-catenin signaling were evaluated by Western blot. Results The upregulation of circTUBGCP3 or downregulation of miR-885-3p was associated with the pathological stage and poor survival in patients with LAC. Restored expression of circTUBGCP3 facilitated the growth and invasion of LAC cells, but knockdown of circTUBGCP3 harbored the opposite effects. In mechanism, circTUBGCP3 could act as a sponge of miR-885-3p, which suppressed the cell proliferation and colony formation and attenuated the tumor-promoting effects of circTUBGCP3. Wnt10b as a target of miR-885-3p could be upregulated be circTUBGCP3 and indicate poor survival in patient with LAC. Conclusions Our findings demonstrated that circTUBGCP3 promoted LAC progression by sponging miR-885-3p, and might represent a prognostic factor for LAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02356-2.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunfei Nie
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huaqi Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, China.
| | - Yuxia Fan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, China.
| |
Collapse
|
8
|
Alcedo KP, Bowser JL, Snider NT. The elegant complexity of mammalian ecto-5'-nucleotidase (CD73). Trends Cell Biol 2021; 31:829-842. [PMID: 34116887 PMCID: PMC8448938 DOI: 10.1016/j.tcb.2021.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a fundamental mechanism used by all cells to control their internal activities and interact with the environment. A key component of the purinergic system, the enzyme ecto-5'-nucleotidase (CD73) catalyzes the last step in the extracellular metabolism of ATP to form adenosine. Efforts to harness the therapeutic potential of endogenous adenosine in cancer have culminated in the ongoing clinical development of multiple CD73-targeting antibodies and small-molecule inhibitors. However, recent studies are painting an increasingly complex picture of CD73 mRNA and protein regulation and function in cellular homeostasis, physiological adaptation, and disease development. This review discusses the latest conceptual and methodological advances that are helping to unravel the complexity of this important enzyme that was identified nearly 90 years ago.
Collapse
Affiliation(s)
- Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Liu Z, Li M. Circular RNAs and their role in renal cell carcinoma: a current perspective. Cancer Cell Int 2021; 21:469. [PMID: 34488780 PMCID: PMC8422676 DOI: 10.1186/s12935-021-02181-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a new class of long non-coding RNAs, that results from a special type of alternative splicing referred to as back-splicing. They are widely distributed in eukaryotic cells and demonstrate tissue-specific expression patterns in humans. CircRNAs actively participate in various important biological activities like gene transcription, pre-mRNA splicing, translation, sponging miRNA and proteins, etc. With such diverse biological functions, circRNAs not only play a crucial role in normal human physiology, as well as in multiple diseases, including cancer. In this review, we summarized our current understanding of circRNAs and their role in renal cell carcinoma (RCC), the most common cancer of kidneys. Studies have shown that the expression level of several circRNAs are considerably varied in RCC samples and RCC cell lines suggesting the potential role of these circRNAs in RCC progression. Several circRNAs promote RCC development and progression mostly via the miRNA/target gene axis making them ideal candidates for novel anti-cancer therapy. Apart from these, there are a few circRNAs that are significantly downregulated in RCC and overexpression of these circRNAs leads to suppression of RCC growth. Differential expression patterns and novel functions of circRNAs in RCC suggest that circRNAs can be utilized as potential biomarkers and therapeutic targets for RCC therapy. However, our current understanding of the role of circRNA in RCC is still in its infancy and much comprehensive research is needed to achieve clinical translation of circRNAs as biomarkers and therapeutic targets in developing effective treatment options for RCC.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
10
|
Chen HH, Zhang TN, Wu QJ, Huang XM, Zhao YH. Circular RNAs in Lung Cancer: Recent Advances and Future Perspectives. Front Oncol 2021; 11:664290. [PMID: 34295810 PMCID: PMC8290158 DOI: 10.3389/fonc.2021.664290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, lung cancer is the most commonly diagnosed cancer and carries with it the greatest mortality rate, with 5-year survival rates varying from 4–17% depending on stage and geographical differences. For decades, researchers have studied disease mechanisms, occurrence rates and disease development, however, the mechanisms underlying disease progression are not yet fully elucidated, thus an increased understanding of disease pathogenesis is key to developing new strategies towards specific disease diagnoses and targeted treatments. Circular RNAs (circRNAs) are a class of non-coding RNA widely expressed in eukaryotic cells, and participate in various biological processes implicated in human disease. Recent studies have indicated that circRNAs both positively and negatively regulate lung cancer cell proliferation, migration, invasion and apoptosis. Additionally, circRNAs could be promising biomarkers and targets for lung cancer therapies. This review systematically highlights recent advances in circRNA regulatory roles in lung cancer, and sheds light on their use as potential biomarkers and treatment targets for this disease.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Yi Q, Cui H, Liao Y, Xiong J, Ye X, Sun W. A minor review of microRNA-338 exploring the insights of its function in tumorigenesis. Biomed Pharmacother 2021; 139:111720. [PMID: 34243620 DOI: 10.1016/j.biopha.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs(miRNAs) are small non-coding RNAs which have a critical role in various biological processes via direct binding and post-transcriptionally regulating targeted genes expression. More than one-half of human genes were regulated by miRNAs and their aberrant expression was detected in various human diseases, including cancers. miRNA-338 is a new identified miRNA and increasing evidence show that miRNA-338 participates in the progression of lots of cancers, such as lung cancer, hepatocellular cancer, breast cancer, glioma, and so on. Although a range of targets and signaling pathways such as MACC1 and Wnt/β-catenin signaling pathway were illustrated to be regulated by miRNA-338, which functions in tumor progression are still ambiguous and the underlying molecular mechanisms are also unclear. Herein, we reviewed the latest studies in miRNA-338 and summarized its roles in different type of human tumors, which might provide us new idea for further investigations and potential targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hanwei Cui
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Yi Liao
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Xiufeng Ye
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Weichao Sun
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| |
Collapse
|
12
|
Yang J, Liu X, Dai G, Qu L, Tan B, Zhu B, Qi F, Gai X, Cheng B. CircNT5E promotes the proliferation and migration of bladder cancer via sponging miR-502-5p. J Cancer 2021; 12:2430-2439. [PMID: 33758619 PMCID: PMC7974885 DOI: 10.7150/jca.53385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggest that circRNA RNAs (circRNAs) play important roles in tumor formation and development. circNT5E has been shown to be an oncogenic gene in several types of cancer, and the high expression of circNT5E lead to tumorigenesis and cancer progression. However, the precise role of circNT5E in bladder cancer (Bca) has not been characterized. In this study, we observed that circNT5E expression was augmented in Bca tissues compared with that in adjacent normal tissues, and its expression level was positively associated with larger tumor size and lower survival rate. Further experiments showed that suppression of circNT5E restrained the growth and metastasis of Bca cells in vitro. circNT5E was mainly distributed in the cytoplasm and it captured miR-502-5p to increase HOXC8 mRNA and protein expression. Moreover, decreased miR-502-5p obviously reversed the circNT5E silencing-mediated inhibition of Bca cell growth and migration. Thus, this study suggested that circNT5E may act as a pro-oncogene in the development and progression of Bca and it may become a useful tumor biomarker and promising therapeutic target for Bca treatment.
Collapse
Affiliation(s)
- Jinhui Yang
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Xiaoyun Liu
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Guangcheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Lanying Qu
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Bo Tan
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Bo Zhu
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Fuming Qi
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Xinyu Gai
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Bo Cheng
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| |
Collapse
|
13
|
Feng B, Zhou H, Wang T, Lin X, Lai Y, Chu X, Wang R. Insights Into circRNAs: Functional Roles in Lung Cancer Management and the Potential Mechanisms. Front Cell Dev Biol 2021; 9:636913. [PMID: 33634138 PMCID: PMC7900409 DOI: 10.3389/fcell.2021.636913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lung cancer is the most prevalent cancer globally. It is also the leading cause of cancer-related death because of the late diagnosis and the frequent resistance to therapeutics. Therefore, it is impending to identify novel biomarkers and effective therapeutic targets to improve the clinical outcomes. Identified as a new class of RNAs, circular RNAs (circRNAs) derive from pre-mRNA back splicing with considerable stability and conservation. Accumulating research reveal that circRNAs can function as microRNA (miRNA) sponges, regulators of gene transcription and alternative splicing, as well as interact with RNA-binding proteins (RBPs), or even be translated into proteins directly. Currently, a large body of circRNAs have been demonstrated differentially expressed in physiological and pathological processes including cancer. In lung cancer, circRNAs play multiple roles in carcinogenesis, development, and response to different therapies, indicating their potential as diagnostic and prognostic biomarkers as well as novel therapeutics. In this review, we summarize the multi-faceted functions of circRNAs in lung cancer and the underlying mechanisms, together with the possible future of these discoveries in clinical application.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| |
Collapse
|
14
|
Wang X, Li H, Lu Y, Cheng L. Circular RNAs in Human Cancer. Front Oncol 2021; 10:577118. [PMID: 33537235 PMCID: PMC7848167 DOI: 10.3389/fonc.2020.577118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction.
Collapse
Affiliation(s)
| | | | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Sun Z, Niu S, Xu F, Zhao W, Ma R, Chen M. CircAMOTL1 Promotes Tumorigenesis Through miR-526b/SIK2 Axis in Cervical Cancer. Front Cell Dev Biol 2020; 8:568190. [PMID: 33344445 PMCID: PMC7744824 DOI: 10.3389/fcell.2020.568190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Background Cervical cancer is one of the most common malignancies in women, leading to major health problems for its high morbidity and mortality. Numerous studies have demonstrated that circular RNAs (circRNAs) could be participated in the progression of multifarious diseases, especially plentiful carcinomas. CircAMOTL1 (angiomotin-like1, ID: hsa_circ_0004214), which is located on human chromosome 11:9 4532555-94533477, is involved in the occurrence of breast cancer, etc. However, the intrinsic and concrete molecular mechanism of circAMOTL1 in cervical carcinomas remained thoroughly unclear, which was also the bottleneck of circRNAs studies in cancer. Methods The relative expression levels of circAMOTL1 and miR-526b in cervical carcinoma patients’ specimens and cervical carcinoma cell lines were detected by RT-qPCR. Through experiments including loss-function and overexpression, the biological effects of circAMOTL1 and miR-526b on the proliferation, migration, apoptosis, and tumorigenicity were explored in cervical carcinomas. Dual luciferase reporter gene analysis, western blot, and other methods were adopted to explore the circAMOTL1 potential mechanism in cervical carcinomas. Results In our experiments, our researches displayed that circAMOTL1 was significantly higher expression in cervical carcinomas specimens and cell lines. Further experiments illustrated that the knockdown of circAMOTL1 could restrain the malignant phenotype, AKT signaling, and epithelial–mesenchymal transition (EMT) of in cervical carcinomas cells. Meanwhile miR-526b was downregulated in cervical carcinomas and even miR-526b could partially reverse circAMOTL1 function in malignant cervical tumor cells. CircAMOTL1 acts as a microRNA (miRNA) sponge that actively regulates the expression of salt-inducible kinase 2 (SIK2) to sponge miR-526b and subsequently increases malignant phenotypes of cervical carcinomas cells. In a word, circAMOTL1 acts a carcinogenic role and miR-526b serves as the opposite function of antioncogene in the cervical carcinoma pathogenesis. Conclusion CircAMOTL1-miR-526b-SIK2 axis referred to the malignant progression and development of cervical carcinomas. CircAMOTL1 expression was inversely correlated with miR-526b and positively correlated with SIK2 mRNA in cervical cancer tissues. Thus, circAMOTL1 exerted an oncogenic role in cervical cancer progression through sponging miR-526b. Taken together, our study revealed that circAMOTL1 acted as an oncogene and probably was a potential therapeutic target for the cervical cancer.
Collapse
Affiliation(s)
- Zhengwei Sun
- Department of Obstetrics & Gynecology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Sanqiang Niu
- Department of Obstetrics & Gynecology, Bozhou People's Hospital, Bozhou, China
| | - Fuxia Xu
- Department of Obstetrics & Gynecology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Weidong Zhao
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of USTC, Hefei, China
| | - Rong Ma
- Department of Obstetrics & Gynecology, Anhui Women and Child Health Care Hospital, Hefei, China
| | - Mingwei Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Shen D, Zhao H, Zeng P, Song J, Yang Y, Gu X, Ji Q, Zhao W. Circular RNA hsa_circ_0005556 Accelerates Gastric Cancer Progression by Sponging miR-4270 to Increase MMP19 Expression. J Gastric Cancer 2020; 20:300-312. [PMID: 33024586 PMCID: PMC7521983 DOI: 10.5230/jgc.2020.20.e28] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 02/03/2023] Open
Abstract
Purpose Circular RNAs (circRNAs) are a new class of RNA molecules whose function is largely unknown. There is a growing evidence that circRNAs play an important regulatory role in the progression of a variety of human cancers. However, the exact roles and the mechanisms of circRNAs in gastric cancer are not clear. In this study, we aimed to elucidate the mechanism of hsa_circ_0005556. Materials and Methods Real-time quantitative polymerase chain reaction was used to detect the expression of hsa_circ_0005556, miR-4270, and matrix metalloproteinase-19 (MMP19) in gastric cancer tissues and cell lines. The expression of hsa_circ_0005556 in gastric cancer cells was silenced by lentivirus, and cell proliferation, invasion, migration, and tumorigenesis in nude mice were assessed to evaluate the function of hsa_circ_0005556 in gastric cancer. Results The expression of hsa_circ_0005556 in gastric cancer tissues and gastric cancer cell lines was higher compared to normal controls. In vitro, the downregulation of hsa_circ_0005556 significantly inhibited proliferation, migration, and invasion of gastric cancer cells. In vivo, the downregulation of hsa_circ_0005556 suppressed tumor growth in nude mice. Conclusions Our study shows that the hsa_circ_0005556/miR-4270/MMP19 axis is involved in proliferation, migration, and invasion of gastric cancer cells through the competing endogenous RNA (ceRNA) mechanism.
Collapse
Affiliation(s)
- Duo Shen
- Medical School, Southeast University, Nanjing, China
| | - Hongyu Zhao
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Zeng
- Medical School, Southeast University, Nanjing, China
| | - Jinyun Song
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqiong Yang
- Medical School, Southeast University, Nanjing, China
| | - Xuefeng Gu
- Medical School, Southeast University, Nanjing, China
| | - Qinghua Ji
- Medical School, Southeast University, Nanjing, China
| | - Wei Zhao
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Ye Y, Zhao L, Li Q, Xi C, Li Y, Li Z. circ_0007385 served as competing endogenous RNA for miR-519d-3p to suppress malignant behaviors and cisplatin resistance of non-small cell lung cancer cells. Thorac Cancer 2020; 11:2196-2208. [PMID: 32602212 PMCID: PMC7396374 DOI: 10.1111/1759-7714.13527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNAs (circRNAs) have been closely implicated in competing endogenous RNA (ceRNA) network among human cancers including non‐small cell lung cancer (NSCLC). However, the role of most circRNAs in NSCLC remains to be determined. Here, we aimed to investigate the role of hsa_circ_0007385 (circ_0007385) in NSCLC cells. Methods Expression of hsa_circ_0007385 (circ_0007385), miRNA (miR)‐519d‐5p and high‐mobility group box 1 (HMGB1) was measured by real‐time quantitative PCR and western blotting. Functional experiments were evaluated by cell counting kit (CCK)‐8, flow cytometry, fluorescein active caspase‐3 staining kit, transwell assays, western blotting, and xenograft experiment. The relationship among circ_0007385,miR‐519d‐5p and HMGB1 was testified by dual‐luciferase reporter assay. Kaplan‐Meiersurvival curve identified overall survival in NSCLC patients. Results circ_0007385 expression was higher in NSCLC tissues and cell lines, and was associated with poor overall survival. Silencing circ_0007385 could suppress cell proliferation, migration and invasion in A549 and H1975 cells, as well as cisplatin (DDP) resistance. Moreover, circ_0007385 silence retarded tumor growth of A549 cells in vivo. Molecularly, there was a direct interaction between miR‐519d‐3p and either circ_0007385 or HMGB1; expression of miR‐519d‐3p was downregulated in NSCLC tumors in a circ_0007385‐correlated manner, and circ_0007385 could indirectly regulate HMGB1 via miR‐519d‐3p. Functionally, both inhibiting miR‐519d‐3p and restoring HMGB1 could overturn the suppressive effect of circ_0007385 knockdown on cell proliferation, migration, invasion, and DDP resistance. Conclusions Collectively, circ_0007385 deletion could function anti‐tumor role in NSCLC by suppressing malignant behaviors and DDP resistance in vitro and in vivo via circ_0007385/miR‐519d‐3p/HMGB1 axis. These outcomes might enhance our understanding of the molecular mechanisms underlying the malignant progression of NSCLC. Key points Significant findings of the study circ_0007385 was upregulated in NSCLC tissues and cells, and was associated with poor overall survival. Silenced circ_0007385 suppressed NSCLC cell proliferation, migration, invasion, and DDP resistance in vitro, and tumor growth in vivo. circ_0007385 was upregulated in NSCLC tissues and cells, and was associated with poor overall survival.
What this study adds miR‐519d‐3p could directly interact with circ_0007385 and HMGB1 in NSCLC cells. A promising circ_0007385/miR‐519d‐3p/HMGB1 regulatory pathway was determined in NSCLC cells.
Collapse
Affiliation(s)
- Yancheng Ye
- Department of Pharmacy, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Liangcun Zhao
- Department of Pharmacy, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Qingke Li
- Department of Laboratory medicine, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Caixia Xi
- Department of Respiratory Medicine, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Yinghong Li
- Department of Integrated Traditional Chinese and Western Medicine, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Zhengguo Li
- Department of Respiratory Medicine, Gansu Wuwei Tumor Hospital, Wuwei, China
| |
Collapse
|
18
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Hashemi F, Samarghandian S, Najafi M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci 2020; 256:117973. [PMID: 32569779 DOI: 10.1016/j.lfs.2020.117973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
The resistance of cancer cells into chemotherapy has restricted the efficiency of anti-tumor drugs. Oxaliplatin (OX) being an anti-tumor agent/drug is extensively used in the treatment of various cancer diseases. However, its frequent application has led to chemoresistance. As a consequence, studies have focused in finding underlying molecular pathways involved in OX resistance. MicroRNAs (miRs) are short endogenous non-coding RNAs that are able to regulate vital biological mechanisms such as cell proliferation and cell growth. The abnormal expression of miRs occurs in pathological events, particularly cancer. In the present review, we describe the involvement of miRs in OX resistance and sensitivity. The miRs are able to induce the oncogene factors and mechanisms, resulting in stimulation OX chemoresistance. Also, onco-suppressor miRs can enhance the sensitivity of cancer cells into OX chemotherapy and trigger apoptosis and cell cycle arrest, leading to reduced viability and progression of cancer cells. MiRs can also enhance the efficacy of OX chemotherapy. It is worth mentioning that miRs affect various down-stream targets in OX resistance/sensitivity such as STAT3, TGF-β, ATG4B, FOXO1, LATS2, NF-κB and so on. By identification of these miRs and their upstream and down-stream mediators, further studies can focus on targeting them to sensitize cancer cells into OX chemotherapy and induce apoptotic cell death.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | | | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|