1
|
Zeng C, Lv X, Wang F, Huang Y, Ren Y, Zhang H. Matrix Remodeling Associated Genes (MXRAs): structural diversity, functional significance, and therapeutic potential in tumor microenvironments. Discov Oncol 2025; 16:833. [PMID: 40394417 PMCID: PMC12092922 DOI: 10.1007/s12672-025-02728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025] Open
Abstract
The Matrix Remodeling Associated Genes (MXRAs) family, comprising eight distinct members (MXRA1-8), plays a crucial role in the development and maintenance of higher vertebrate cells. These proteins are primarily involved in the regulation of intercellular adhesion and the remodeling of the extracellular matrix (ECM). Recent investigations have highlighted the significant roles of MXRAs in the modulation of tumor growth and progression, establishing them as vital components in the oncogenic landscape. Notably, each MXRA member exhibits unique structural characteristics and functional properties, contributing to a diverse array of regulatory effects within the tumor context. This review seeks to provide a comprehensive analysis of the structural attributes, functional contributions, and activities of MXRAs within the tumor microenvironment. By elucidating the underlying mechanisms of action, this paper aims to offer novel insights and strategic approaches for the identification of early diagnostic biomarkers, as well as potential therapeutic targets that may facilitate molecular interventions aimed at inhibiting tumor development.
Collapse
Affiliation(s)
- Chao Zeng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Department of Obstetrics and Gynecology, Key Laboratory of Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Feng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The First School of Clinical Medicne, Lanzhou University, Lanzhou, 730030, China
| | - Yaomin Huang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The First School of Clinical Medicne, Lanzhou University, Lanzhou, 730030, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The First School of Clinical Medicne, Lanzhou University, Lanzhou, 730030, China
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, 730030, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- The First School of Clinical Medicne, Lanzhou University, Lanzhou, 730030, China.
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Dempsey B, Pereira da Silva B, Cruz LC, Vileigas D, Silva ARM, Pereira da Silva R, Meotti FC. Unraveling the effects of uric acid on endothelial cells: A global proteomic study. Redox Biol 2025; 82:103625. [PMID: 40203480 PMCID: PMC12005352 DOI: 10.1016/j.redox.2025.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid.
Collapse
Affiliation(s)
- Bianca Dempsey
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Litiele Cezar Cruz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Danielle Vileigas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Amanda R M Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Flavia Carla Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Tang XH, Liu ZY, Ren JW, Zhang H, Tian Y, Hu JX, Sun ZL, Luo GH. Comprehensive RNA-seq analysis of benign prostatic hyperplasia (BPH) in rats exposed to testosterone and estradiol. Sci Rep 2025; 15:2750. [PMID: 39838074 PMCID: PMC11751460 DOI: 10.1038/s41598-025-87205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025] Open
Abstract
The imbalance between estrogen and androgen may be an important mechanism of BPH, but the specific mechanism remains unclear. We used mixed sustained-release pellets made of testosterone and estradiol (T + E2) to stimulate the establishment of a BPH rat model. Compared to the prostate hyperplasia rat model using only androgens, the new prostate hyperplasia rat model can be observed to have better macroscopic and pathological characteristics of prostate hyperplasia. We used RNA-seq and bioinformatics to detect differentially expressed genes (DEGs) between the prostate tissue of the novel benign prostatic hyperplasia rat group and the control group, including 458 DEGs, of which 336 were upregulated and 122 were downregulated. Then, RT-qPCR confirmed the authenticity of sequencing results. The analysis results showed that Kif4a and Mki67 were the top core genes in the PPI network. Moreover, we found that these two genes have a positive correlation with each other in multiple cancer tissues, normal tissues, and cancer cells. The DEGs were mainly involved in mitotic nuclear division, nuclear chromosome segregation, and cytokine cell receptor interactions. DEGs were also regulated by 250 miRNAs. In conclusion, we built a novel T + E2-induced rat BPH model, and discovered potentially important genes, pathways, and miRNA-mRNA regulatory networks.
Collapse
Affiliation(s)
- Xiao-Hu Tang
- Department of Urology Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Zhi-Yan Liu
- Department of Urology Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Jing-Wen Ren
- Department of Urology Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Heng Zhang
- Department of Urology Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Ye Tian
- Department of Urology Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Jian-Xin Hu
- Department of Urology Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Zhao-Lin Sun
- Medical School, Guizhou University, Guiyang, 550002, Guizhou, China
| | - Guang-Heng Luo
- Department of Urology Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China.
| |
Collapse
|
4
|
Nie L, Huang L, Zhu Q, Yao Q, Wu Y, Zhao L, Yu L, Fu F. HIF-1α Activates Hypoxia-Induced MXRA5 Expression in the Progression of Ovarian Cancer. J Environ Pathol Toxicol Oncol 2025; 44:47-55. [PMID: 39462449 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The hypoxic microenvironment of tumor cells is closely related to the progression of ovarian cancer (OV). Hypoxia (HY)-related matrix-remodeling associated 5 (MXRA5) was expressed at elevated levels in many tumors, but research on the impact of MXRA5 in OV remains limited. This study aims to explore the role of MXRA5 in regulating cellular HY in OV. The MXRA5 expression and its clinical significance in OV were evaluated using GEPIA2, Kaplan-Meier plotter databases, and immunohistochemistry assay. OV cells were treated with normoxia and HY conditions. The siRNAs were designed to knock down the MXRA5 expression in hypoxic cells. The cellular capacities were detected by CCK-8 assay, EdU assay, Transwel assay, and TUNEL assay, each method targeting a different aspect of cellular behavior. The MXRA5 level was increased in OV and associated with the progression free survival and overall survival of OV patients. The proliferation and invasion abilities of OV cells were promoted, while apoptosis capacities were inhibited in hypoxic cells. After the knockdown of MXRA5 in hypoxic cells, the proliferative capacities and invasive abilities of the cells were reduced, and the apoptosis capacities were enhanced. Moreover, mechanistically, HIF-1α is a key transcription factor in response to HY that binds to the MXRA5 promoter. MXRA5 expression was induced by HY and had prognostic performance in OV. Knockdown of MXRA5 can inhibit proliferation and invasion in OV cells caused by HIF-1α, revealing that MXRA5 is one potential targets for tumor HY regulation in OV.
Collapse
Affiliation(s)
- Liju Nie
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Linfeng Huang
- Department of Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Qizhou Zhu
- Oncology Department, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Qinglan Yao
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Yiguo Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Lu Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Lamei Yu
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
| |
Collapse
|
5
|
Olascoaga S, Castañeda-Sánchez JI, Königsberg M, Gutierrez H, López-Diazguerrero NE. Oxidative stress-induced gene expression changes in prostate epithelial cells in vitro reveal a robust signature of normal prostatic senescence and aging. Biogerontology 2024; 25:1145-1169. [PMID: 39162979 PMCID: PMC11486819 DOI: 10.1007/s10522-024-10126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Oxidative stress has long been postulated to play an essential role in aging mechanisms, and numerous forms of molecular damage associated with oxidative stress have been well documented. However, the extent to which changes in gene expression in direct response to oxidative stress are related to actual cellular aging, senescence, and age-related functional decline remains unclear. Here, we ask whether H2O2-induced oxidative stress and resulting gene expression alterations in prostate epithelial cells in vitro reveal gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease. While a broad range of significant changes observed in the expression of non-coding transcripts implicated in senescence-related responses, we also note an overrepresentation of gene-splicing events among differentially expressed protein-coding genes induced by H2O2. Additionally, the collective expression of these H2O2-induced DEGs is linked to age-related pathological dysfunction, with their protein products exhibiting a dense network of protein-protein interactions. In contrast, co-expression analysis of available gene expression data reveals a naturally occurring highly coordinated expression of H2O2-induced DEGs in normally aging prostate tissue. Furthermore, we find that oxidative stress-induced DEGs statistically overrepresent well-known senescence-related signatures. Our results show that oxidative stress-induced gene expression in prostate epithelial cells in vitro reveals gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Jorge I Castañeda-Sánchez
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Mexico City, Mexico
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | | | - Norma Edith López-Diazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico.
| |
Collapse
|
6
|
Yang L, Liu J, Yin J, Li Y, Liu J, Liu D, Wang Z, DiSanto ME, Zhang W, Zhang X. S100A4 modulates cell proliferation, apoptosis and fibrosis in the hyperplastic prostate. Int J Biochem Cell Biol 2024; 169:106551. [PMID: 38360265 DOI: 10.1016/j.biocel.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men worldwide that may result in lower urinary tract symptoms (LUTS). At present, the specific pathophysiological mechanism for BPH/LUTS LUTS remains unclear. S100 calcium binding protein A4 (S100A4), a member of the calcium binding protein family, regulates a variety of biological processes including cell proliferation, apoptosis and fibrosis. The aim of the current study was to explore and clarify the possible role of S100A4 in BPH/LUTS. The human prostate stromal cell line (WPMY-1), rat prostate epithelial cells, human prostate tissues and two BPH rat models were employed in this study. The expression and localization of S100A4 were detected by quantitative real time PCR (qRT-PCR), immunofluorescence microscopy, Western blotting and immunohistochemistry analysis. Also, S100A4 knockdown or overexpression cell models were constructed and a BPH rat model was induced with testosterone propionate (T) or phenylephrine (PE). The BPH animals were treated with Niclosamide, a S100A4 transcription inhibitor. Results demonstrated that S100A4 was mainly localized in human prostatic stroma and rat prostatic epithelium, and showed a higher expression in BPH. Knockdown of S100A4 induced cell apoptosis, cell proliferation arrest and a reduction of tissue fibrosis markers. Overexpression of S100A4 reversed the aforementioned changes. We also demonstrated that S100A4 regulated proliferation and apoptosis mainly through the ERK pathway and modulated fibrosis via Wnt/β-catenin signaling. In conclusion, our novel data demonstrate that S100A4 could play a crucial role in BPH development and may be explored as a new therapeutic target of BPH.
Collapse
Affiliation(s)
- Liang Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weibing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Wang X, He W, Chen H, Yang R, Su H, DiSanto ME, Zhang X. Alteration of the Expression and Functional Activities of Myosin II Isoforms in Enlarged Hyperplastic Prostates. J Pers Med 2024; 14:381. [PMID: 38673008 PMCID: PMC11051519 DOI: 10.3390/jpm14040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) is a common pathologic process in aging men, and the contraction of the prostatic smooth muscles (SMs) in the stroma plays a vital role in this pathogenesis, leading to lower urinary tract symptoms (LUTSs). The isoforms of both the SM myosin (SMM) and non-muscle myosin (NMM) are associated with the contraction type of the prostatic SMs, but the mechanism has not been fully elucidated. METHODS We collected prostate tissues from 30 BPH patients receiving surgical treatments, and normal human prostate samples were obtained from 12 brain-dead men. A testosterone-induced (T-induced) rat model was built, and the epithelial hyperplastic prostates were harvested. Competitive RT-PCR was used to detect the expression of SMM isoforms. We investigated the contractility of human prostate strips in vitro in an organ bath. RESULTS The results regarding the comparisons of SMM isoforms varied between rat models and human samples. In comparison with T-induced rats and controls, competitive RT-PCR failed to show any statistically significant difference regarding the compositions of SMM isoforms. For human prostates samples, BPH patients expressed more SM-1 isoforms (66.8% vs. 60.0%, p < 0.001) and myosin light chain-17b (MLC17b) (35.9% vs. 28.5%, p < 0.05) when compared to young donors. There was a significant decrease in prostate myosin heavy chain (MHC) expression in BPH patients, with a 66.4% decrease in MHC at the mRNA level and a 51.2% decrease at the protein level. The upregulated expression of non-muscle myosin heavy chain-B (NMMHC-B) was 1.6-fold at the mRNA level and 2.1-fold at the protein level. The organ bath study showed that isolated prostate strips from BPH patients produced slower tonic contraction compared to normal humans. CONCLUSION In this study, we claim that in the enlarged prostates of patients undergoing surgeries, MHC expression significantly decreased compared to normal tissues, with elevated levels of SM-1, MLC17b, and NMMHC-B isoforms. Modifications in SMM and NMM might play a role in the tonic contractile properties of prostatic SMs and the development of LUTS/BPH. Understanding this mechanism might provide insights into the origins of LUTS/BPH and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Weixiang He
- Department of Urology, Xijing Hospital of the Fourth Military Medical University, Xi’an 710000, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Hongmei Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
He W, Tian Z, Dong B, Cao Y, Hu W, Wu P, Yu L, Zhang X, Guo S. Identification and functional activity of Nik related kinase (NRK) in benign hyperplastic prostate. J Transl Med 2024; 22:255. [PMID: 38459501 PMCID: PMC11367987 DOI: 10.1186/s12967-024-05048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Benign prostatic hyperplasia (BPH) is common in elder men. The current study aims to identify differentially expressed genes (DEGs) in hyperplastic prostate and to explore the role of Nik related kinase (NRK) in BPH. METHODS Four datasets including three bulk and one single cell RNA-seq (scRNA-seq) were obtained to perform integrated bioinformatics. Cell clusters and specific metabolism pathways were analyzed. The localization, expression and functional activity of NRK was investigated via RT-PCR, western-blot, immunohistochemical staining, flow cytometry, wound healing assay, transwell assay and CCK-8 assay. RESULTS A total of 17 DEGs were identified by merging three bulk RNA-seq datasets. The findings of integrated single-cell analysis showed that NRK remarkably upregulated in fibroblasts and SM cells of hyperplasia prostate. Meanwhile, NRK was upregulated in BPH samples and localized almost in stroma. The expression level of NRK was significantly correlated with IPSS and Qmax of BPH patients. Silencing of NRK inhibited stromal cell proliferation, migration, fibrosis and EMT process, promoted apoptosis and induced cell cycle arrest, while overexpression of NRK in prostate epithelial cells showed opposite results. Meanwhile, induced fibrosis and EMT process were rescued by knockdown of NRK. Furthermore, expression level of NRK was positively correlated with that of α-SMA, collagen-I and N-cadherin, negatively correlated with that of E-cadherin. CONCLUSION Our novel data identified NRK was upregulated in hyperplastic prostate and associated with prostatic stromal cell proliferation, apoptosis, cell cycle, migration, fibrosis and EMT process. NRK may play important roles in the development of BPH and may be a promising therapeutic target for BPH/LUTS.
Collapse
Affiliation(s)
- Weixiang He
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China.
| | - Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital of Air Force Medical University, Xi'an, China
| | - Bingchen Dong
- Department of Orthopedics, Ninth Hospital of Xi'an, Xi'an, China
| | - Yitong Cao
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Wei Hu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Peng Wu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Lei Yu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, China.
| | - Shanshan Guo
- Department of Physiology and Pathophysiology, Air Force Medical University, West Changle Road 169, Xi'an, China.
| |
Collapse
|
9
|
Yoshida K, Suzuki S, Yuan H, Sato A, Hirata-Tsuchiya S, Saito M, Yamada S, Shiba H. Public RNA-seq data-based identification and functional analyses reveal that MXRA5 retains proliferative and migratory abilities of dental pulp stem cells. Sci Rep 2023; 13:15574. [PMID: 37730838 PMCID: PMC10511426 DOI: 10.1038/s41598-023-42684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Dental pulp stem cells (DPSC) usually remain quiescent in the dental pulp tissue; however, once the dental pulp tissue is injured, DPSCs potently proliferate and migrate into the injury microenvironment and contribute to immuno-modulation and tissue repair. However, the key molecules that physiologically support the potent proliferation and migration of DPSCs have not been revealed. In this study, we searched publicly available transcriptome raw data sets, which contain comparable (i.e., equivalently cultured) DPSC and mesenchymal stem cell data. Three data sets were extracted from the Gene Expression Omnibus database and then processed and analyzed. MXRA5 was identified as the predominant DPSC-enriched gene associated with the extracellular matrix. MXRA5 is detected in human dental pulp tissues. Loss of MXRA5 drastically decreases the proliferation and migration of DSPCs, concomitantly with reduced expression of the genes associated with the cell cycle and microtubules. In addition to the known full-length isoform of MXRA5, a novel splice variant of MXRA5 was cloned in DPSCs. Recombinant MXRA5 coded by the novel splice variant potently induced the haptotaxis migration of DPSCs, which was inhibited by microtubule inhibitors. Collectively, MXRA5 is a key extracellular matrix protein in dental pulp tissue for maintaining the proliferation and migration of DPSCs.
Collapse
Affiliation(s)
- Kazuma Yoshida
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Shigeki Suzuki
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| | - Hang Yuan
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Akiko Sato
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Shizu Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
10
|
Li Y, Zhou Y, Liu D, Wang Z, Qiu J, Zhang J, Chen P, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Glutathione Peroxidase 3 induced mitochondria-mediated apoptosis via AMPK /ERK1/2 pathway and resisted autophagy-related ferroptosis via AMPK/mTOR pathway in hyperplastic prostate. J Transl Med 2023; 21:575. [PMID: 37633909 PMCID: PMC10463608 DOI: 10.1186/s12967-023-04432-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common disease in elderly men, mainly resulted from an imbalance between cell proliferation and death. Glutathione peroxidase 3 (GPX3) was one of the differentially expressed genes in BPH identified by transcriptome sequencing of 5 hyperplastic and 3 normal prostate specimens, which had not been elucidated in the prostate. This study aimed to ascertain the mechanism of GPX3 involved in cell proliferation, apoptosis, autophagy and ferroptosis in BPH. METHODS Human prostate tissues, GPX3 silencing and overexpression prostate cell (BPH-1 and WPMY-1) models and testosterone-induced rat BPH (T-BPH) model were utilized. The qRT-PCR, CCK8 assay, flow cytometry, Western blotting, immunofluorescence, hematoxylin and eosin, masson's trichrome, immunohistochemical staining and transmission electron microscopy analysis were performed during in vivo and in vitro experiments. RESULTS Our study indicated that GPX3 was localized both in the stroma and epithelium of prostate, and down-regulated in BPH samples. Overexpression of GPX3 inhibited AMPK and activated ERK1/2 pathway, thereby inducing mitochondria-dependent apoptosis and G0/G1 phase arrest, which could be significantly reversed by MEK1/2 inhibitor U0126 preconditioning. Moreover, overexpression of GPX3 further exerted anti-autophagy by inhibiting AMPK/m-TOR and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4, mitochondrial GPX4 and cytoplasmic GPX4) to antagonize autophagy-related ferroptosis. Consistently, GPX3 deficiency generated opposite changes in both cell lines. Finally, T-BPH rat model was treated with GPX3 indirect agonist troglitazone (TRO) or GPX4 inhibitor RAS-selective lethal 3 (RSL3) or TRO plus RSL3. These treatments produced significant atrophy of the prostate and related molecular changes were similar to our in vitro observations. CONCLUSIONS Our novel data manifested that GPX3, which was capable of inducing apoptosis via AMPK/ERK1/2 pathway and antagonizing autophagy-related ferroptosis through AMPK/m-TOR signalling, was a promising therapeutic target for BPH in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
11
|
Wen B, Liu M, Qin X, Mao Z, Chen X. Identifying immune cell infiltration and diagnostic biomarkers in heart failure and osteoarthritis by bioinformatics analysis. Medicine (Baltimore) 2023; 102:e34166. [PMID: 37390254 PMCID: PMC10313258 DOI: 10.1097/md.0000000000034166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
Heart failure (HF) and osteoarthritis (OA) are medical conditions that can significantly impact daily activities. Evidence has shown that HF and OA may share some pathogenic mechanisms. However, the underlying genomic mechanisms remain unclear. This study aimed to explore the underlying molecular mechanism and identify diagnostic biomarkers for HF and OA. With the cutoff criteria of fold change (FC) > 1.3 and P < .05, 920, 1500, 2195, and 2164 differentially expressed genes (DEGs) were identified in GSE57338, GSE116250, GSE114007, and GSE169077, respectively. After making the intersection of DEGs, we obtained 90 upregulated DEGs and 51 downregulated DEGs in HF datasets and 115 upregulated DEGs and 75 downregulated DEGs in OA datasets. Afterward, we conducted genome ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, protein-protein interaction (PPI) networks, and hub genes screening based on DEGs. Then, 4 common DEGs (fibroblast activation protein alpha [FAP], secreted frizzled-related protein 4 (SFRP4), Thy-1 cell surface antigen (THY1), matrix remodeling associated 5 [MXRA5]) between HF and OA were screened and validated in GSE5406 and GSE113825 datasets, based on which we established the support vector machine (SVM) models. The combined area under the receiver operating characteristic curve (AUC) of THY1, FAP, SFRP4, and MXRA5 in the HF training and test sets reached 0.949 and 0.928. While in the OA training set and test set, the combined AUC of THY1, FAP, SFRP4, and MXRA5 reached 1 and 1, respectively. The analysis of immune cells in HF revealed high levels of dendritic cell (DC), B cells, natural killer T cell (NKT), Type 1 regulatory T cell (Tr1), cytotoxic T cell (Tc), exhausted T cell (Tex), and mucosal-associated invariant T cell (MAIT), while displaying lower levels of monocytes, macrophages, NK, CD4 + T, gamma delta T (γδ T), T helper type 1 (Th1), T helper type 2 (Th2), and effector memory T cell (Tem). Moreover, the 4 common DEGs were positively correlated with DCs and B cells and negatively correlated with γδ T. In OA patients, the abundance of monocyte, macrophage, CD4 + naïve, and natural T regulatory cell (nTreg) was higher, while the infiltration of CD8 + T, γδ T, CD8 + naïve, and MAIT was lower. The expression of THY1 and FAP was significantly correlated with macrophage, CD8 + T, nTreg, and CD8 + naïve. SFRP4 was correlated with monocyte, CD8 + T, γδ T, CD4 + naïve, nTreg, CD8 + naïve and MAIT. MXRA5 was correlated with macrophage, CD8 + T, nTreg and CD8 + naïve. FAP, THY1, MXRA5, and SFRP4 may be diagnostic biomarkers for both HF and OA, and their correlation with immune cell infiltrations suggests shared immune pathogenesis.
Collapse
Affiliation(s)
- Bo Wen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Mengna Liu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianyun Qin
- Department of Orthopedics, No.945 Hospital of the PLA Joint Logistics Support Force, Yaan, Sichuan, China
| | - Zhiyou Mao
- Department of Orthopedics, No.945 Hospital of the PLA Joint Logistics Support Force, Yaan, Sichuan, China
| | - Xuewei Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
12
|
Ying A, Zhao Y, Hu X. Identification of biomarkers related to prostatic hyperplasia based on bioinformatics and machine learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:12024-12038. [PMID: 37501430 DOI: 10.3934/mbe.2023534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In older adults, benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms (LUTS). This study aimed to explore the genes with diagnostic value in patients with BPH, reveal the relationship between the expression of diagnosis-related genes and the immune microenvironment, and provide a reference for molecular diagnosis and immunotherapy of BPH. The combined gene expression data of GSE6099, GSE7307 and GSE119195 in the GEO database were used. The differential expression of autophagy-related genes between BPH patients and healthy controls was obtained by differential analysis. Then the genes related to BPH diagnosis were screened by a machine learning algorithm and verified. Finally, five important genes (IGF1, PSIP1, SLC1A3, SLC2A1 and T1A1) were obtained by random forest (RF) algorithm, and their relationships with the immune microenvironment were discussed. Five genes play an essential role in the occurrence and development of BPH and may become new diagnostic markers of BPH. Among them, immune cells have significant correlation with some genes. The signal transduction of IL-4 mediated by M2 macrophages is closely related to the progress of BPH. There are abundant active mast cells in BPH. The adoption and metastasis of regulatory T cells may be an important method to treat BPH.
Collapse
Affiliation(s)
- Aiying Ying
- Department of Urology, Yongkang first people's Hospital, Yongkang, China
| | - Yueguang Zhao
- Department of Urology, Yongkang first people's Hospital, Yongkang, China
| | - Xiang Hu
- Department of Urology, Yongkang first people's Hospital, Yongkang, China
| |
Collapse
|
13
|
Zhou L, Li Y, Li J, Yao H, Huang J, Li C, Wang L. Decoding ceRNA regulatory network and autophagy-related genes in benign prostatic hyperplasia. Int J Biol Macromol 2023; 225:997-1009. [PMID: 36403772 DOI: 10.1016/j.ijbiomac.2022.11.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease among aging males. We obtained BPH transcriptional signatures by high-throughput RNA sequencing analysis. Accordingly, we determined the differentially expressed RNAs (DERNAs) between BPH tissues and normal prostate tissues. WebGestalt and R package (clusterprofiler) was used to enrichment analysis. Clinical correlations were analyzed using Spearman's coefficient. TargetScan, ENCORI, miRNet, and miRDB databases were used to predict targets' relationships in ceRNA networks. Immunofluorescence staining and qRT-PCR analyses were performed to validate the findings. Microarray analysis of the datasets showed 369 DElncRNAs, 122 DEpseudogenes, 6 DEmiRNAs and 1358 DEmRNAs. DEmRNAs were particularly enriched in the autophagy-related pathways. Following the screening of DEmRNAs and autophagy-related genes (ARGs), 50 DEARGs were selected. MCODE analysis on Cytoscape was performed for the 50 DEARGs, and 3 hub genes (ATF4, XBP1, and PPP1R15A) were obtained. Spearman's correlation analysis showed that the mRNA expression of XBP1 correlated positively with age, total score, and storage score, but negatively with the maximum flow rate. Subsequently, the pseudogene/lncRNA- hsa-miR-222-3p-XBP1 pathway was identified. Our findings elucidate that the pseudogene/lncRNA-hsa-miR-222-3p-XBP1 pathway may play a regulatory role in the occurrence of BPH through autophagy.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hanyu Yao
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jin Huang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
14
|
Changes in the Expression and Functional Activities of C-X-C Motif Chemokine Ligand 13 ( CXCL13) in Hyperplastic Prostate. Int J Mol Sci 2022; 24:ijms24010056. [PMID: 36613500 PMCID: PMC9820459 DOI: 10.3390/ijms24010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 13 (CXCL13), a member of the CXC subtype in chemokine superfamily, affects numerous biological processes of various types of cells and the progress of a great number of clinical diseases. The purpose of the current study was to reveal the internal mechanism between CXCL13 and benign prostatic hyperplasia (BPH). METHODS Human serum, prostate tissues and human prostate cell lines (BPH-1, WPMY-1) were utilized. The effect of recombinant human CXCL13 (rHuCXCL13) protein and the influences of the knockdown/overexpression of CXCL13 on two cell lines were studied. Rescue experiments by anti-CXCR5 were also conducted. In vivo, rHuCXCL13 was injected into the ventral prostate of rats. Additionally, a tissue microarray of hyperplastic prostate tissues was constructed to analyze the correlations between CXCL13 and clinical parameters. RESULTS CXCL13 was highly expressed in the prostate tissues and upregulated in the BPH group. It was observed that CXCL13 modulated cell proliferation, apoptosis, and the epithelial-mesenchymal transition (EMT) through CXCR5 via AKT and the ERK1/2 pathway in BPH-1, while it contributed to inflammation and fibrosis through CXCR5 via the STAT3 pathway in WPMY-1. In vivo, rHuCXCL13 induced the development of rat BPH. Additionally, CXCL13 was positively correlated with the prostate volume and total prostate specific antigen. CONCLUSIONS Our novel data demonstrated that CXCL13 modulated cell proliferation, cell cycle, the EMT of epithelial cells, and induced the fibrosis of prostatic stromal cells via a variety of inflammatory factors, suggesting that CXCL13 might be rediscovered as a potential therapeutic target for the treatment of BPH.
Collapse
|
15
|
Chen S, Jiang Y, Qi X, Song P, Tang L, Liu H. Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery. Adipocyte 2022; 11:550-561. [PMID: 36036283 PMCID: PMC9427031 DOI: 10.1080/21623945.2022.2115212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Shuai Chen
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yicheng Jiang
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoyang Qi
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Peng Song
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Liming Tang
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,CONTACT Liming Tang
| | - Hanyang Liu
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,Hanyang Liu Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, 68 Gehu Rd, Wujin District, Changzhou, Jiangsu, China
| |
Collapse
|
16
|
Liu Z, Lin Z, Cao F, Jiang M, jin S, Cui Y, Niu YN. Upregulation of mir-1199-5p is associated with reduced type 2 5-α reductase expression in benign prostatic hyperplasia. BMC Urol 2022; 22:172. [PMID: 36344974 PMCID: PMC9639318 DOI: 10.1186/s12894-022-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Background
5-α reductase inhibitors (5-ARIs) are first-line drugs for managing benign prostatic hyperplasia (BPH). Unfortunately, some patients do not respond to 5-ARI therapy and may even show worsening symptoms. The decreased expression of steroid 5-α reductase type 2(SRD5A2) in BPH tissues may explain the failure of 5-ARI therapy, however, the mechanisms underlying SRD5A2 decreased remained unelucidated. Objectives
To investigate microRNA-mediated regulation of the expression of SRD5A2 resulting in 5-ARI therapy failure. Materials and methods
The expression of SRD5A2 and microRNAs in BPH tissues and prostate cells were detected by immunohistochemistry, western blotting, and quantitative real-time PCR. Dual-luciferase reporter assay was performed to confirm that microRNA directly combine to SRD5A2 mRNA. The apoptosis of prostatic cells was detected by flow cytometry. Results
SRD5A2 expression was variable; it was negative, weak, and strong in 13.6%, 28.8%, and 57.6% of BPH tissues respectively. The normal human prostatic epithelial cell line RWPE-1 strongly expressed SRD5A2, whereas the immortalized human prostatic epithelial cell line BPH-1 weakly expressed SRD5A2. miR-1199-5p expression was remarkably higher in BPH-1 than in RWPE-1 cells(P<0.001), and miR-1199-5p expression was significantly upregulated in BPH tissues with negative SRD5A2 expression than those with positive SRD5A2 expression. Transfection of miR-1199-5p mimics in RWPE-1 cells led to a marked decrease in SRD5A2 expression, whereas miR-1199-5p inhibitor increased SRD5A2 expression in BPH-1 cells. Dual-luciferase reporter assay showed that miR-1199-5p could bind the 3′untranslated region of SRD5A2 mRNA. miR-1199-5p also decreased the RWPE-1 sensibility to finasteride, an inhibitor of SRD5A2. Conclusion
Our results show that SRD5A2 expression varies in BPH tissues and miR-1199-5p might be one of the several factors contributing to differential SRD5A2 expression in BPH patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-022-01121-5.
Collapse
|
17
|
Boyang C, Yuexing L, Yiping Y, Haiyang Y, Xufei Z, Liancheng G, Yunzhi C. Construction and analysis of heart failure diagnosis model based on random forest and artificial neural network. Medicine (Baltimore) 2022; 101:e31097. [PMID: 36254001 PMCID: PMC9575800 DOI: 10.1097/md.0000000000031097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Heart failure is a global health problem and the number of sufferers is increasing as the population grows and ages. Existing diagnostic techniques for heart failure have various limitations in the clinical setting and there is a need to develop a new diagnostic model to complement the existing diagnostic methods. In recent years, with the development and improvement of gene sequencing technology, more genes associated with heart failure have been identified. We screened for differentially expressed genes in heart failure using available gene expression data from the Gene Expression Omnibus database and identified 6 important genes by a random forest classifier (ASPN, MXRA5, LUM, GLUL, CNN1, and SERPINA3). And we have successfully constructed a new heart failure diagnostic model using an artificial neural network and validated its diagnostic efficacy in a public dataset. We calculated heart failure-related differentially expressed genes and obtained 24 candidate genes by random forest classification, and selected the top 6 genes as important genes for subsequent analysis. The prediction weights of the genes of interest were determined by the neural network model and the model scores were evaluated in 2 independent sample datasets (GSE16499 and GSE57338 datasets). Since the weights of RNA-seq predictions for constructing neural network models were theoretically more suitable for disease classification of RNA-seq data, the GSE57338 dataset had the best performance in the validation results. The diagnostic model derived from our study can be of clinical value in determining the likelihood of HF occurring through cardiac biopsy. In the meantime, we need to further investigate the accuracy of the diagnostic model based on the results of our study.
Collapse
Affiliation(s)
- Chen Boyang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Li Yuexing
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yan Yiping
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yu Haiyang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhang Xufei
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guan Liancheng
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Yunzhi
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- * Correspondence: Chen Yunzhi, School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (e-mail: )
| |
Collapse
|
18
|
Sachdeva R, Kaur N, Kapoor P, Singla P, Thakur N, Singhmar S. Computational analysis of protein-protein interaction network of differentially expressed genes in benign prostatic hyperplasia. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:85-96. [PMID: 36059933 PMCID: PMC9336786 DOI: 10.22099/mbrc.2022.43721.1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a commonly occurring disease in aging men. It involves cellular proliferation of stromal and glandular tissues leading to prostate enlargement. Current drug therapies show several adverse effects such as sexual dysfunctions and cardiovascular side effects. Therefore, there is a need to develop more effective medical treatment for BPH. In this regard, we aimed to identify genes which play a critical role in BPH. We have obtained the dataset of differentially expressed genes (DEGs) of BPH from NCBI GEO. DEGs were investigated in the context of their protein-protein interactions (PPI). Hub genes i.e. genes associated with BPH were scrutinized based on the topological parameters of the PPI network. These were analyzed for functional annotations, pathway enrichment analysis and transcriptional regulation. In total, 38 hub genes were identified. Hub genes such as transcription factor activator protein-1 and adiponectin were found to play key roles in cellular proliferation and inflammation. Another gene peroxisome proliferator activated receptor gamma was suggested to cause obesity, a common comorbidity of BPH. Moreover, our results indicated an important role of transforming growth factor-beta (TGF-β) signaling and smooth muscle cell proliferation which may be responsible for prostate overgrowth and associated lower urinary tract symptoms frequently encountered in BPH patients. Zinc finger protein Snai1 was the most prominent transcription factor regulating the expression of hub genes that participate in TGF-β signaling. Overall, our study has revealed significant hub genes that can be employed as drug targets to develop potential therapeutic interventions to treat BPH.
Collapse
Affiliation(s)
- Ruchi Sachdeva
- Corresponding Author: Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India. Tel: +91 9876481718; Fax: +91 172 2661077, E. mail: AND
| | | | | | | | | | | |
Collapse
|
19
|
The Prostate-Associated Gene 4 (PAGE4) Could Play a Role in the Development of Benign Prostatic Hyperplasia under Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7041739. [PMID: 35633887 PMCID: PMC9135540 DOI: 10.1155/2022/7041739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with uncertain molecular mechanism, and oxidative stress (OS) has also been found associated with BPH development. Recently, we found that prostate-associated gene 4 (PAGE4) was one of the most significantly changed differentially expressed genes (DEGs) in BPH, which can protect cells against stress stimulation. However, the exact role of PAGE4 in BPH remains unclear. This study is aimed at exploring the effect of PAGE4 in BPH under OS. Human prostate tissues and cultured WPMY-1 and PrPF cells were utilized. The expression and localization of PAGE4 were determined with qRT-PCR, Western blotting, and immunofluorescence staining. OS cell models induced with H2O2 were treated with PAGE4 silencing or PAGE4 overexpression or inhibitor (N-acetyl-L-cysteine (NAC)) of OS. The proliferation activity, apoptosis, OS markers, and MAPK signaling pathways were detected by CCK-8 assay, flow cytometry analysis, and Western blotting. PAGE4 was shown to be upregulated in human hyperplastic prostate and mainly located in the stroma. Acute OS induced with H2O2 increased PAGE4 expression (which was prevented by OS inhibitor), apoptosis, cell cycle arrest, and reactive oxygen species (ROS) accumulation in WPMY-1 and PrPF cells. siPAGE4 plus H2O2 potentiated H2O2 effect via reducing the p-ERK1/2 level and increasing p-JNK1/2 level. Consistently, overexpression of PAGE4 offset the effect of H2O2 and partially reversed the PAGE4 silencing effect. However, knocking down and overexpression of PAGE4 alone determined no significant effects. Our novel data demonstrated that augmented PAGE4 promotes cell survival by activating p-ERK1/2 and decreases cell apoptosis by inhibiting p-JNK1/2 under the OS, which could contribute to the development of BPH.
Collapse
|
20
|
Liu D, Liu J, Li Y, Liu H, Hassan HM, He W, Li M, Zhou Y, Fu X, Zhan J, Wang Z, Yang S, Chen P, Xu D, Wang X, DiSanto ME, Zeng G, Zhang X. Upregulated bone morphogenetic protein 5 enhances proliferation and epithelial-mesenchymal transition process in benign prostatic hyperplasia via BMP/Smad signaling pathway. Prostate 2021; 81:1435-1449. [PMID: 34553788 DOI: 10.1002/pros.24241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. METHODS Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial-mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. RESULTS Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. CONCLUSION Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.
Collapse
Affiliation(s)
- Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hassan M Hassan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deqiang Xu
- Department of Pediatric Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Cao J, Liu Z, Liu J, Li C, Zhang G, Shi R. Bioinformatics Analysis and Identification of Genes and Pathways in Ischemic Cardiomyopathy. Int J Gen Med 2021; 14:5927-5937. [PMID: 34584445 PMCID: PMC8464396 DOI: 10.2147/ijgm.s329980] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Ischemic cardiomyopathy (ICM) is considered to be the most common cause of heart failure, with high prevalence and mortality. This study aimed to investigate the different expressed genes (DEGs) and pathways in the pathogenesis of ICM using bioinformatics analysis. Methods The control and ICM datasets GSE116250, GSE46224 and GSE5406 were collected from the gene expression omnibus (GEO) database. DEGs were identified using limma package of R software, and co-expressed genes were identified using Venn diagrams. Then, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to explore the biological functions and signaling pathways. Protein-protein interaction (PPI) networks were assembled with Cytoscape software to identify hub genes related to the pathogenesis of ICM. RT-PCR of Heart tissues (n=2 for non-failing controls and n=4 for ischemic cardiomyopathy patients) was used to validate the bioinformatic results. Results A total of 844 DEGs were screened from GSE116250, of which 447 were up-regulated genes and 397 were down-regulated genes, respectively. A total of 99 DEGs were singled out from GSE46224, of which 58 were up-regulated genes and 41 were down-regulated genes, respectively. Thirty DEGs were screened from GSE5406, including 10 genes with up-regulated expression and 20 genes with down-regulated expression. Five up-regulated and 3 down-regulated co-expressed DEGs were intersected in three datasets. GO and KEGG pathway analyses revealed that DEGs are mainly enriched in collagen fibril organization, protein digestion and absorption, AGE-RAGE signaling pathway and other related pathways. Collagen alpha-1(III) chain (COL3A1), collagen alpha-2(I) chain (COL1A2) and lumican (LUM) are the three hub genes in all three datasets through PPI network analysis. The expression of 5 DEGs (SERPINA3, FCN3, COL3A1, HBB, MXRA5) in heart tissues by qRT-PCR results was consistent with our GEO analysis, while expression of 3 DEGs (ASPN, LUM, COL1A2) was opposite with GEO analysis. Conclusion These findings from this bioinformatics network analysis investigated key hub genes, which contributed to better understanding the mechanism and new therapeutic targets of ICM.
Collapse
Affiliation(s)
- Jing Cao
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhaoya Liu
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
22
|
NELL2 modulates cell proliferation and apoptosis via ERK pathway in the development of benign prostatic hyperplasia. Clin Sci (Lond) 2021; 135:1591-1608. [PMID: 34195782 DOI: 10.1042/cs20210476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a quite common illness but its etiology and mechanism remain unclear. Neural epidermal growth factor-like like 2 (NELL2) plays multifunctional roles in neural cell growth and is strongly linked to the urinary tract disease. Current study aims to determine the expression, functional activities and underlying mechanism of NELL2 in BPH. Human prostate cell lines and tissues from normal human and BPH patients were utilized. Immunohistochemical staining, immunofluorescent staining, RT-polymerase chain reaction (PCR) and Western blotting were performed. We further generated cell models with NELL2 silenced or overexpressed. Subsequently, proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry analysis. The epithelial-mesenchymal transition (EMT) and fibrosis process were also analyzed. Our study revealed that NELL2 was up-regulated in BPH samples and localized in the stroma and the epithelium compartments of human prostate tissues. NELL2 deficiency induced a mitochondria-dependent cell apoptosis, and inhibited cell proliferation via phosphorylating extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Additionally, suppression of ERK1/2 with U0126 incubation could significantly reverse NELL2 deficiency triggered cell apoptosis. Consistently, overexpression of NELL2 promoted cell proliferation and inhibited cell apoptosis. However, NELL2 interference was observed no effect on EMT and fibrosis process. Our novel data demonstrated that up-regulation of NELL2 in the enlarged prostate could contribute to the development of BPH through enhancing cell proliferation and inhibited a mitochondria-dependent cell apoptosis via the ERK pathway. The NELL2-ERK system might represent an important target to facilitate the development of future therapeutic approaches in BPH.
Collapse
|
23
|
Bratchikov OI, Tyuzikov IA, Dubonos PA. Nutritional supplementation of the pharmacotherapy of prostate diseases. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.67465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Nutritional supplementation is an integral part of modern pharmacotherapeutic strategies for prostate diseases with different levels of evidence for specific nutrients.
Provitamin A (beta-carotene), vitamin A (retinol) and prostate diseases. Their effects have not been sufficiently studied, and the available data are conflicting to recommend them as a nutritional supplement.
Vitamin E (tocopherol) and prostate diseases. Its effects have not been sufficiently studied, and the available data are conflicting to recommend it as a nutritional supplement.
Vitamin C (ascorbic acid) and prostate diseases. Its effects have not been sufficiently studied, and the available data are conflicted to recommend it as a nutritional supplement.
Vitamin K and prostate diseases. Its effects have not been sufficiently studied, and the available data are conflicted to recommend it as a nutritional supplement.
Vitamin D and prostate diseases. The evidence base of the vitamin D prostatotropic effects has been accumulated, which allows us to consider its deficiency replacement as an effective nutritional supplement in prostate diseases.
Omega-3 PUFAs and prostate diseases. They have universal physiological effects; however, the evidence base for their recommendation as a nutritional supplement for prostate diseases is still insufficient.
Zinc and prostate diseases. Positive effects of zinc on the prostate gland are known for a fact and allow us to recommend it as a nutritional supplement for prostate diseases.
Selenium and prostate diseases. The reliably proven positive effects of selenium on the prostate gland allow us to recommend it as a nutritional supplement for prostate diseases.
Magnesium and prostate diseases. Its effects have not been sufficiently studied, and the available data are conflicting to recommend it as a nutritional supplement.
Collapse
|
24
|
MXRA5 Is a Novel Immune-Related Biomarker That Predicts Poor Prognosis in Glioma. DISEASE MARKERS 2021; 2021:6680883. [PMID: 34211612 PMCID: PMC8211501 DOI: 10.1155/2021/6680883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Background Glioma is the most common primary intracranial tumor and is associated with poor prognosis. Identifying effective biomarkers for glioma is particularly important. MXRA5, a secreted glycoprotein, is involved in cell adhesion and extracellular matrix remodeling and has been reported to be expressed in many cancers. However, the role and mechanism of action of MXRA5 in gliomas remain unclear. This study was aimed at investigating the role of MXRA5 at the transcriptome level and its clinical prognostic value. Methods In this study, RNA microarray data of 301 glioma patients from the Chinese Glioma Genome Atlas (CGGA) were collected as a training cohort and RNA-seq data of 702 glioma samples from The Cancer Genome Atlas (TCGA) were used for validation. We analyzed the clinical and molecular characteristics as well as the prognostic value of MXRA5 in glioma. In addition, the expression level of MXRA was evaluated in 28 glioma tissue samples. Results We found that MXRA5 expression was significantly upregulated in high-grade gliomas and IDH wild-type gliomas compared to controls. Receiver operating characteristic (ROC) analysis showed that MXRA5 is a potential marker of the mesenchymal subtype of glioblastoma multiforme (GBM). We found that MXRA5 expression is highly correlated with immune checkpoint molecule expression levels and tumor-associated macrophage infiltration. High MXRA5 expression could be used as an independent indicator of poor prognosis in glioma patients. Conclusion Our study suggests that MXRA5 expression is associated with the clinicopathologic features and poor prognosis of gliomas. MXRA5 may play an important role in the immunosuppressive microenvironment of glioma. As a secreted glycoprotein, MXRA5 is a potential circulating biomarker for glioma, deserving further investigation.
Collapse
|
25
|
Qian Q, He W, Liu D, Yin J, Ye L, Chen P, Xu D, Liu J, Li Y, Zeng G, Li M, Wu Z, Zhang Y, Wang X, DiSanto ME, Zhang X. M2a macrophage can rescue proliferation and gene expression of benign prostate hyperplasia epithelial and stroma cells from insulin-like growth factor 1 knockdown. Prostate 2021; 81:530-542. [PMID: 33861464 DOI: 10.1002/pros.24131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common disease in elderly men and is often accompanied by chronic inflammation. Macrophages (several subtypes) are the main inflammatory cells that infiltrate the hyperplastic prostate and are found to secrete cytokines and growth factors. The current study aims to explore the effect of M2a macrophages on the development of BPH via insulin-like growth factor 1 (IGF-1). METHODS Human prostate tissues, prostate, and monocyte cell lines (WPMY-1, BPH-1, and THP-1) were used. THP-1 was polarized into several subtypes with cytokines. The expression and localization of IGF-1 and M2 macrophages were determined via immunofluorescent staining, quantitative real-time polymerase chain reaction, and Western blot analysis. Flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were used to investigate the effects of different subtypes of macrophages on prostate cells. IGF-1 in WPMY-1 and BPH-1 cells was silenced and cocultured with or without M2a macrophages. Cell proliferation, apoptosis, cell cycle, epithelial-mesenchymal transition (EMT), and fibrosis processes were examined. RESULTS The polarized subtypes of macrophages were verified by amplifying their specific markers. M2a macrophages enhanced prostate cell proliferation more significantly and CD206 was more expressed in hyperplastic prostate. IGF-1 was localized in both epithelial and stromal components of prostate and upregulated in BPH tissues. M2a macrophages expressed more IGF-1 than other subtypes. Knockdown of IGF-1 in WPMY-1 and BPH-1 cells attenuated cell proliferation, promoted cell apoptosis, retarded cell cycle at the G0/G1 phase, and suppressed the EMT process in BPH-1 cells as well as the fibrotic process in WPMY-1 cells, which was reversible when cocultured with M2a macrophages. CONCLUSION These data demonstrated that knockdown of IGF-1 expression in cultured BPH epithelial and stromal cells reduces proliferation and increases apoptosis. These effects are reversed by coculture with M2a macrophages.
Collapse
Affiliation(s)
- Qiaofeng Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linpeng Ye
- Department of Urology, Huangmei People's Hospital, Huangmei, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deqiang Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhonghua Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Liu J, Yin J, Chen P, Liu D, He W, Li Y, Li M, Fu X, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Smoothened inhibition leads to decreased cell proliferation and suppressed tissue fibrosis in the development of benign prostatic hyperplasia. Cell Death Discov 2021; 7:115. [PMID: 34006832 PMCID: PMC8131753 DOI: 10.1038/s41420-021-00501-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in aging males. It has been proven that the Hedgehog (HH) is implied as an effective and fundamental regulatory growth factor signal for organogenesis, homeostasis, and regeneration. Smoothened (SMO), as the major control point of HH signals, activates aberrantly in most human solid tumors. However, the specific function of SMO and its downstream glioma-associated oncogene (GLI) family in BPH has not been well understood. Here, we first revealed that the SMO cascade was upregulated in BPH tissues and was localized in both the stromal and the epithelium compartments of human prostate tissues. Cyclopamine, as a specific SMO inhibitor, was incubated with BPH-1 and WPMY-1, and intraperitoneally injected into a BPH rat model established by castration with testosterone supplementation. SMO inhibition could induce cell apoptosis, cell cycle arrest at the G0/G1 phase, and a reduction of tissue fibrosis markers, both in vitro and in vivo. Finally, a tissue microarray, containing 104 BPH specimens, was constructed to analyze the correlations between the expression of SMO cascade and clinical parameters. The GLI2 was correlated positively with nocturia and negatively with fPSA. The GLI3 was in a positive relationship with International Prostate Symptom Score and nocturia. In conclusion, our study suggested that SMO cascade could play important roles in the development of BPH and it might be rediscovered as a promising therapeutic target for BPH.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
27
|
Of mice and men - and guinea pigs? Ann Anat 2021; 238:151765. [PMID: 34000371 DOI: 10.1016/j.aanat.2021.151765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
This year marks the twentieth anniversary of the publication of the first draft of the human genome and its broad availability to the scientific community. In parallel, the annotation of the mouse genome led to the identification and analysis of countless genes by means of genetic manipulation. Today, when comparing both genomes, it might surprise that some genes are still seeking their respective homologs in either species. In this review, we aim at raising awareness for the remarkable differences between the researcher's favorite rodents, i.e., mice and rats, when it comes to the generation of rodent research models regarding genes with a particular delicate localization, namely the pseudoautosomal region on both sex chromosomes. Many of these genes are of utmost clinical relevance in humans and still miss a rodent disease model giving their absence in mice and rats or low sequence similarity compared to humans. The abundance of rodents within mammals prompted us to investigate different branches of rodents leading us to the re-discovery of the guinea pig as a mammalian research model for a distinct group of genes.
Collapse
|
28
|
Identification of key genes in benign prostatic hyperplasia using bioinformatics analysis. World J Urol 2021; 39:3509-3516. [PMID: 33564912 DOI: 10.1007/s00345-021-03625-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/30/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE This study aimed to identify differentially expressed genes (DEGs) and pathways in benign prostatic hyperplasia (BPH) by comprehensive bioinformatics analysis. METHODS Data of the gene expression microarray (GSE6099) were downloaded from GEO database. DEGs were obtained by GEO2R. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction network was constructed through STRING. Anterior gradient 2 (ARG2) and lumican (LUM) staining in paraffin-embedded specimens from BPH and normal prostate (NP) were detected by immunohistochemistry (IHC). Differences between groups were analyzed by the Student's t test. RESULTS A total of 24 epithelial DEGs and 39 stromal DEGs were determined. The GO analysis results showed that epithelial DEGs between BPH and NP were enriched in biological processes of glucose metabolic process, glucose homeostasis and negative regulation of Rho protein signal transduction. For DEGs in stroma, enriched biological processes included response to ischemia, antigen processing and presentation, cartilage development, T cell costimulation and energy reserve metabolic process. ARG2, as one of the epithelial DEGs, was mainly located in epithelial cells of prostate. In addition, LUM is primarily expressed in the stroma. We further confirmed that compared with NP, the BPH have the lower ARG2 protein level (p = 0.029) and higher LUM protein level (p = 0.003) using IHC. CONCLUSIONS Our study indicated that there are possible differentially expressed genes in epithelial and stromal cells, such as ARG2 and LUM, which may provide a novel insight for the pathogenesis of BPH.
Collapse
|