1
|
Hooks O, Nagpal Y, Childers JT, Childers LT, Ahmad S. Theranostic implications of Nectin-4 oncoprotein in gynecologic cancers: A review. Pathol Res Pract 2025; 269:155913. [PMID: 40101551 DOI: 10.1016/j.prp.2025.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Gynecologic cancers, in order of prevalence, include uterine, ovarian, cervical, vaginal, and vulvar cancers. In 2024, there will be more than 116,000 new cases of gynecologic cancers and 33,800 disease-related deaths. Therefore, a concerted effort has been made to better understand the underlying pathophysiological processes and identify novel theranostic approaches. PURPOSE Comprehensively examine the current peer-reviewed literature surrounding Nectin-4 and its implication in the identification and treatment of gynecologic cancers. METHODS PubMed and Google search with relevant keywords for articles published in the last 15 years. RESULTS Nectin-4 as a cell adhesion molecule (CAM) promotes cell growth through intra-tumoral angiogenesis, strengthens cell-cell bonds, and creates a tight spheroid structure, which is more chemotherapy resistant. In high-grade serous ovarian cancer (HGSOC), Nectin-4 is strongly associated with the presence of peritoneal metastases and worse prognoses. When compared to CA-125, a common tumor marker for ovarian cancer, Nectin-4 showed higher specificity and sensitivity for predictive value of tumorigenesis. Regarding cervical cancer, inhibition of Nectin-4 by nanoformulated Quinacrine inhibits both cancer stem cell proliferation and DNA damage. Nectin-4 as a tumor marker can discriminate endometrial cancer from healthy adjacent tissue with a specificity of 95.4 % and sensitivity of 82.81 %. Lastly, there is scarce evidence of Nectin-4 and fallopian tube, vaginal, or vulvar cancer but given ovarian cancer cells may originate from the fallopian tube, there is plausibility of using Nectin-4 to detect fallopian and/or ovarian cancer earlier. CONCLUSION Overall, Nectin-4 as a promoter of cancer cell growth and metastasis supports the emphasis in current peer-reviewed literature as an effective theranostic biomarker.
Collapse
Affiliation(s)
- Olivia Hooks
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yash Nagpal
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Justin T Childers
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL 32804, USA.
| |
Collapse
|
2
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
3
|
Wen Q, Xie X, Chen C, Wen B, Liu Y, Zhou J, Lin X, Jin H, Shi K. Lipid reprogramming induced by the NNMT-ABCA1 axis enhanced membrane fluidity to promote endometrial cancer progression. Aging (Albany NY) 2023; 15:11860-11874. [PMID: 37889548 PMCID: PMC10683614 DOI: 10.18632/aging.205142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Elucidating the mechanism for the high metastasis capacity of Endometrial cancer (EC) is crucial to improve treatment outcomes of EC. We have recently reported that nicotinamide N-methyltransferase (NNMT) is overexpressed in EC, especially in EC, and predicts poor survival of chemotherapy patients. Here, we aimed to determine the function and mechanism of NNMT on metastasis of EC. Additionally, analysis of public datasets indicated that NNMT is involved in cholesterol metabolism. In vitro, NNMT overexpression promoted migration and invasion of EC by reducing cholesterol levels in the cytoplasm and cell membrane. Mechanistically, NNMT activated ABCA1 expression, leading to cholesterol efflux and membrane fluidity enhancement, thereby promoting EC's epithelial-mesenchymal transition (EMT). In vivo, the metastasis capacity of EC was weakened by targeting NNMT. Our findings suggest a new molecular mechanism involving NNMT in metastasis, poor survival of EC mediated by PP2A and affecting cholesterol metabolism.
Collapse
Affiliation(s)
- Qirong Wen
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Xie
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Caiyuan Chen
- Prenatal Diagnosis Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangzhou Medical University, Guangzhou, China
| | - Bolun Wen
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yaqiong Liu
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jie Zhou
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaobin Lin
- Department of Breast Surgery and General Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Han Jin
- Prenatal Diagnosis Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Shi
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Hu JH, Li SY, Yu LH, Guan ZR, Jiang YP, Hu D, Wang HJ, Zhao LP, Zhou ZH, Yan YX, Xie T, Huang ZH, Lou JS. TFEB: a double-edged sword for tumor metastasis. J Mol Med (Berl) 2023; 101:917-929. [PMID: 37328669 DOI: 10.1007/s00109-023-02337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Transcription factor EB, a member of the microphthalmia-associated transcription factor (MiTF/TFE) family, is a master regulator of autophagy, lysosome biogenesis, and TAMs. Metastasis is one of the main reasons for the failure of tumor therapy. Studies on the relationship between TFEB and tumor metastasis are contradictory. On the positive side, TFEB mainly affects tumor cell metastasis via five aspects, including autophagy, epithelial-mesenchymal transition (EMT), lysosomal biogenesis, lipid metabolism, and oncogenic signaling pathways; on the negative side, TFEB mainly affects tumor cell metastasis in two aspects, including tumor-associated macrophages (TAMs) and EMT. In this review, we described the detailed mechanism of TFEB-mediated regulation of metastasis. In addition, we also described the activation and inactivation of TFEB in several aspects, including the mTORC1 and Rag GTPase systems, ERK2, and AKT. However, the exact process by which TFEB regulates tumor metastasis remains unclear in some pathways, which requires further studies.
Collapse
Affiliation(s)
- Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shou-Ye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang, 311258, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhen-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Zhi-Hui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
5
|
Schüler-Toprak S, Skrzypczak M, Gründker C, Ortmann O, Treeck O. Role of Estrogen Receptor β, G-Protein Coupled Estrogen Receptor and Estrogen-Related Receptors in Endometrial and Ovarian Cancer. Cancers (Basel) 2023; 15:2845. [PMID: 37345182 DOI: 10.3390/cancers15102845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Ovarian and endometrial cancers are affected by estrogens and their receptors. It has been long known that in different types of cancers, estrogens activate tumor cell proliferation via estrogen receptor α (ERα). In contrast, the role of ERs discovered later, including ERβ and G-protein-coupled ER (GPER1), in cancer is less well understood, but the current state of knowledge indicates them to have a considerable impact on both cancer development and progression. Moreover, estrogen related receptors (ERRs) have been reported to affect pathobiology of many tumor types. This article provides a summary and update of the current findings on the role of ERβ, GPER1, and ERRs in ovarian and endometrial cancer. For this purpose, original research articles on the role of ERβ, GPER1, and ERRs in ovarian and endometrial cancers listed in the PubMed database have been reviewed.
Collapse
Affiliation(s)
- Susanne Schüler-Toprak
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Olaf Ortmann
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| | - Oliver Treeck
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| |
Collapse
|
6
|
ERRα Up-Regulates Invadopodia Formation by Targeting HMGCS1 to Promote Endometrial Cancer Invasion and Metastasis. Int J Mol Sci 2023; 24:ijms24044010. [PMID: 36835419 PMCID: PMC9964422 DOI: 10.3390/ijms24044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Estrogen-related receptor alpha (ERRα) plays an important role in endometrial cancer (EC) progression. However, the biological roles of ERRα in EC invasion and metastasis are not clear. This study aimed to investigate the role of ERRα and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) in regulating intracellular cholesterol metabolism to promote EC progression. ERRα and HMGCS1 interactions were detected by co-immunoprecipitation, and the effects of ERRα/HMGCS1 on the metastasis of EC were investigated by wound-healing and transwell chamber invasion assays. Cellular cholesterol content was measured to verify the relationship between ERRα and cellular cholesterol metabolism. Additionally, immunohistochemistry was performed to confirm that ERRα and HMGCS1 were related to EC progression. Furthermore, the mechanism was investigated using loss-of-function and gain-of-function assays or treatment with simvastatin. High expression levels of ERRα and HMGCS1 promoted intracellular cholesterol metabolism for invadopodia formation. Moreover, inhibiting ERRα and HMGCS1 expression significantly weakened the malignant progression of EC in vitro and in vivo. Our functional analysis showed that ERRα promoted EC invasion and metastasis through the HMGCS1-mediated intracellular cholesterol metabolism pathway, which was dependent on the epithelial-mesenchymal transition pathway. Our findings suggest that ERRα and HMGCS1 are potential targets to suppress EC progression.
Collapse
|
7
|
Su P, Yu L, Mao X, Sun P. Role of HIF-1α/ERRα in Enhancing Cancer Cell Metabolism and Promoting Resistance of Endometrial Cancer Cells to Pyroptosis. Front Oncol 2022; 12:881252. [PMID: 35800058 PMCID: PMC9253301 DOI: 10.3389/fonc.2022.881252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
Oxygen is critical to energy metabolism, and tumors are often characterized by a hypoxic microenvironment. Owing to the high metabolic energy demand of malignant tumor cells, their survival is promoted by metabolic reprogramming in the hypoxic microenvironment, which can confer tumor cell resistance to pyroptosis. Pyroptosis resistance can inhibit anti-tumor immunity and promote the development of malignant tumors. Hypoxia inducible factor-1α (HIF-1α) is a key regulator of metabolic reprogramming in tumor cells, and estrogen-related receptor α (ERRα) plays a key role in regulating cellular energy metabolism. Therefore, the close interaction between HIF-1α and ERRα influences the metabolic and functional changes in cancer cells. In this review, we summarize the reprogramming of tumor metabolism involving HIF-1α/ERRα. We review our understanding of the role of HIF-1α/ERRα in promoting tumor growth adaptation and pyroptosis resistance, emphasize its key role in energy homeostasis, and explore the regulation of HIF-1α/ERRα in preventing and/or treating endometrial carcinoma patients. This review provides a new perspective for the study of the molecular mechanisms of metabolic changes in tumor progression.
Collapse
Affiliation(s)
- Pingping Su
- Laboratory of Gynecological Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lirui Yu
- Laboratory of Gynecological Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaodan Mao
- Laboratory of Gynecological Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, China
| | - Pengming Sun
- Laboratory of Gynecological Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, China
- *Correspondence: Pengming Sun,
| |
Collapse
|
8
|
Mao X, Lei H, Yi T, Su P, Tang S, Tong Y, Dong B, Ruan G, Mustea A, Sehouli J, Sun P. Lipid reprogramming induced by the TFEB-ERRα axis enhanced membrane fluidity to promote EC progression. J Exp Clin Cancer Res 2022; 41:28. [PMID: 35045880 PMCID: PMC8767755 DOI: 10.1186/s13046-021-02211-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/04/2021] [Indexed: 01/17/2023] Open
Abstract
Background Estrogen-related receptor α (ERRα) has been reported to play a critical role in endometrial cancer (EC) progression. However, the underlying mechanism of ERRα-mediated lipid reprogramming in EC remains elusive. The transcription factor EB (TFEB)-ERRα axis induces lipid reprogramming to promote progression of EC was explored in this study. Methods TFEB and ERRα were analyzed and validated by RNA-sequencing data from the Cancer Genome Atlas (TCGA). The TFEB-ERRα axis was assessed by dual-luciferase reporter and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). The mechanism was investigated using loss-of-function and gain-of-function assays in vitro. Lipidomics and proteomics were performed to identify the TFEB-ERRα-related lipid metabolism pathway. Pseudopods were observed by scanning electron microscope. Furthermore, immunohistochemistry and lipidomics were performed in clinical tissue samples to validate the ERRα-related lipids. Results TFEB and ERRα were highly expressed in EC patients and correlated to EC progression. ERRα is the direct target of TFEB to mediate EC lipid metabolism. TFEB-ERRα axis mainly affected glycerophospholipids (GPs) and significantly elevated the ratio of phosphatidylcholine (PC)/sphingomyelin (SM), which indicated the enhanced membrane fluidity. TFEB-ERRα axis induced the mitochondria specific phosphatidylglycerol (PG) (18:1/22:6) + H increasing. The lipid reprogramming was mainly related to mitochondrial function though combining lipidomics and proteomics. The maximum oxygen consumption rate (OCR), ATP and lipid-related genes acc, fasn, and acadm were found to be positively correlated with TFEB/ERRα. TFEB-ERRα axis enhanced generation of pseudopodia to increase the invasiveness. Mechanistically, our functional assays indicated that TFEB promoted EC cell migration in an ERRα-dependent manner via EMT signaling. Consistent with the in vitro, higher PC (18:1/18:2) + HCOO was found in EC patients, and those with higher TFEB/ERRα had deeper myometrial invasion and lower serum HDL levels. Importantly, PC (18:1/18:2) + HCOO was an independent risk factor positively related to ERRα for lymph node metastasis. Conclusion Lipid reprogramming induced by the TFEB-ERRα axis increases unsaturated fatty acid (UFA)-containing PCs, PG, PC/SM and pseudopodia, which enhance membrane fluidity via EMT signaling to promote EC progression. PG (18:1/22:6) + H induced by TFEB-ERRα axis was involved in tumorigenesis and PC (18:1/18:2) + HCOO was the ERRα-dependent lipid to mediate EC metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02211-2.
Collapse
|
9
|
Urra FA, Fuentes-Retamal S, Palominos C, Rodríguez-Lucart YA, López-Torres C, Araya-Maturana R. Extracellular Matrix Signals as Drivers of Mitochondrial Bioenergetics and Metabolic Plasticity of Cancer Cells During Metastasis. Front Cell Dev Biol 2021; 9:751301. [PMID: 34733852 PMCID: PMC8558415 DOI: 10.3389/fcell.2021.751301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
The role of metabolism in tumor growth and chemoresistance has received considerable attention, however, the contribution of mitochondrial bioenergetics in migration, invasion, and metastasis is recently being understood. Migrating cancer cells adapt their energy needs to fluctuating changes in the microenvironment, exhibiting high metabolic plasticity. This occurs due to dynamic changes in the contributions of metabolic pathways to promote localized ATP production in lamellipodia and control signaling mediated by mitochondrial reactive oxygen species. Recent evidence has shown that metabolic shifts toward a mitochondrial metabolism based on the reductive carboxylation, glutaminolysis, and phosphocreatine-creatine kinase pathways promote resistance to anoikis, migration, and invasion in cancer cells. The PGC1a-driven metabolic adaptations with increased electron transport chain activity and superoxide levels are essential for metastasis in several cancer models. Notably, these metabolic changes can be determined by the composition and density of the extracellular matrix (ECM). ECM stiffness, integrins, and small Rho GTPases promote mitochondrial fragmentation, mitochondrial localization in focal adhesion complexes, and metabolic plasticity, supporting enhanced migration and metastasis. Here, we discuss the role of ECM in regulating mitochondrial metabolism during migration and metastasis, highlighting the therapeutic potential of compounds affecting mitochondrial function and selectively block cancer cell migration.
Collapse
Affiliation(s)
- Félix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Charlotte Palominos
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Yarcely A Rodríguez-Lucart
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile.,Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile.,Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
10
|
Huang X, Ruan G, Sun P. Estrogen-related receptor alpha copy number variation is associated with ovarian cancer histological grade. J Obstet Gynaecol Res 2021; 47:1878-1883. [PMID: 33751740 DOI: 10.1111/jog.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 11/27/2022]
Abstract
AIM Copy number variations (CNVs) are related to the genetic and phenotypic diversity of cancers and identifying genetic alterations could improve treatment strategies. Here, we used The Cancer Genome Atlas (TCGA) to explore associations between estrogen-related receptor alpha (ESRRA) CNVs and histological grade in patients with ovarian cancer (OC). METHODS Gene expression data and clinical information of 620 OC patients were obtained from The Cancer Genome Atlas)TCGA and associations between ESRRA CNVs and clinical characteristics were evaluated. Multivariate logistic regression analyses to obtain odds ratios (ORs) using a 95% confidence interval (CI) were performed, adjusting for race, age, histological grade, and tumor size. RESULTS ESRRA CNVs were associated with histological grade (OR 0.6235 [95% CI, 0.3593-0.8877]; p < 0.05) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) CNVs (OR -0.6298 [95% CI, -0.9011 to -0.3585]; p < 0.05). In multivariate analyses, ESRRA CNVs remained significantly associated with histological grade (OR 0.6492 [95% CI, 0.3549-0.9435]; p < 0.05) and PPARGC1A CNVs (OR -0.6236 [95% CI, -0.9269 to 0.3203]; p < 0.05). CONCLUSION There was a significant association between ESRRA CNVs in patients with OC and histological grade of the cancer.
Collapse
Affiliation(s)
- Xiqi Huang
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guanyu Ruan
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Huang X, Ruan G, Liu G, Gao Y, Sun P. Immunohistochemical Analysis of PGC-1α and ERRα Expression Reveals Their Clinical Significance in Human Ovarian Cancer. Onco Targets Ther 2020; 13:13055-13062. [PMID: 33376354 PMCID: PMC7764629 DOI: 10.2147/ott.s288332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and estrogen-related receptor alpha (ERRα) play a vital role in various human cancers. The purpose of this study was to investigate whether the PGC-1α/ERRα axis could serve as an effective prognostic marker in ovarian cancer (OC). Patients and Methods We investigated the expression of both PGC-1α and ERRα in 42 ovarian cancer and 31 noncancerous ovarian samples by immunohistochemistry (IHC). The relationship between the expression of PGC-1α and ERRα in OC and the clinical characteristics of patients was evaluated. In addition, data from the Human Protein Atlas (HPA) database were collected to validate the prognostic significance of PGC-1α and ERRα mRNA expression in OC. Results PGC-1α and ERRα showed notably higher expression in OC tissues than in noncancerous tissues (P=0.0059, P=0.002). Moreover, in patients with OC, high ERRα and PGC-1α/ERRα expression significantly correlated with tumor differentiation (P=0.027; P=0.04), lymph node status (P=0.023; P=0.021), CA125 (P=0.036; P=0.021), and HE4 (P=0.021; P=0.05), while high PGC-1α expression was only significantly associated with tumor differentiation (P=0.029). The combined analysis of high PGC-1α and ERRα expression revealed a tendency towards poor cancer-specific survival (P=0.1276). Conclusion PGC-1α and ERRα are overexpressed in OC and might be significant prognostic factors for this cancer.
Collapse
Affiliation(s)
- Xiqi Huang
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guanyu Ruan
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guifen Liu
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yuqin Gao
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|