1
|
Yuan Z, Yao Z, Mao X, Gao X, Wu S, Mao H. Epigenetic mechanisms in stem cell therapies for achilles tendinopathy. Front Cell Dev Biol 2025; 13:1516250. [PMID: 40181824 PMCID: PMC11965899 DOI: 10.3389/fcell.2025.1516250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Achilles tendinopathy (AT) is a chronic degenerative tendinopathy that affects people's daily lives. Multiple clinical studies have found that current conservative treatments fail to promote quality tendon healing. Recent studies have found that stem cell therapy can target pathophysiological changes in the tendon by replenishing tendon-derived cells, promoting extracellular matrix (ECM) remodeling, and modulating the inflammatory response to improve the microenvironment of Achilles tendon regeneration. And epigenetic modifications play an important role in stem cell fate determination and function. In this review, we provided a brief overview of the biological properties of relevant stem cells. The influence of epigenetic modifications on stem cell proliferation, differentiation, and immune regulatory function in the treatment of AT was also explored. We focused on gene regulatory mechanisms controlled by DNA methylation, histones and non-coding RNAs including microRNAs, circRNAs and long non-coding RNAs. We also discuss the current challenges faced by stem cell therapies in treating AT and their potential solutions. Further research in this area will provide a more comprehensive epigenetic explanation for stem cell therapy for AT, leading to the development of stable, safe and effective stem cell therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Lui PPY, Huang C, Zhang X. Selenium Nanoparticles Suppressed Oxidative Stress and Promoted Tenocyte Marker Expression in Tendon-Derived Stem/Progenitor Cells. Antioxidants (Basel) 2024; 13:1536. [PMID: 39765864 PMCID: PMC11727164 DOI: 10.3390/antiox13121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Traumatic tendon injuries generate reactive oxygen species and inflammation, which may account for slow or poor healing outcomes. Selenium is an essential trace element presented in selenoproteins, many of which are strong antioxidant enzymes. Selenium nanoparticles (SeNPs) have been reported to promote tissue repair due to their anti-oxidative, anti-inflammatory, anti-apoptotic, and differentiation-modulating properties. However, its effects on the functions of tendon-derived stem/progenitor cells (TDSCs) and tendon healing have not been reported. This study examined the effects of SeNPs on the functions of hydroperoxide (H2O2)-stimulated TDSCs. Rat patellar TDSCs were treated with H2O2 with or without SeNPs. The viability, marker of proliferation, oxidative stress, inflammation, apoptosis, and tenocyte marker expressions of H2O2-stimulated TDSCs after SeNPs treatment were assessed. Our results showed that SeNPs increased the viability and expression of the marker of proliferation of TDSCs exposed to H2O2, while concurrently reducing oxidative stress, inflammation, and apoptosis. Additionally, the expressions of tenocyte markers were significantly elevated in H2O2-treated TDSCs after treatment with SeNPs. Furthermore, the expressions of Sirt1 and Nrf2 also increased after SeNPs treatment in H2O2-stimulated TDSCs. In conclusion, SeNPs mitigated oxidative stress, inflammation, and apoptosis while enhancing the survival and expression of the marker of proliferation of TDSCs in an oxidative stress environment. Additionally, it promoted the fate of TDSCs towards the tenocyte lineage in the presence of such oxidative stress. The increased expressions of Sirt1 and Nrf2 likely mediated the anti-oxidative and anti-inflammatory effects of SeNPs. SeNPs hold promise as a novel intervention for promoting tendon healing.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Caihao Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China; (C.H.); (X.Z.)
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116000, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China; (C.H.); (X.Z.)
| |
Collapse
|
3
|
Xia X, Fang Z, Qian Y, Zhou Y, Huang H, Xu F, Luo Z, Wang Q. Role of oxidative stress in the concurrent development of osteoporosis and tendinopathy: Emerging challenges and prospects for treatment modalities. J Cell Mol Med 2024; 28:e18508. [PMID: 38953556 PMCID: PMC11217991 DOI: 10.1111/jcmm.18508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Both osteoporosis and tendinopathy are widely prevalent disorders, encountered in diverse medical contexts. Whilst each condition has distinct pathophysiological characteristics, they share several risk factors and underlying causes. Notably, oxidative stress emerges as a crucial intersecting factor, playing a pivotal role in the onset and progression of both diseases. This imbalance arises from a dysregulation in generating and neutralising reactive oxygen species (ROS), leading to an abnormal oxidative environment. Elevated levels of ROS can induce multiple cellular disruptions, such as cytotoxicity, apoptosis activation and reduced cell function, contributing to tissue deterioration and weakening the structural integrity of bones and tendons. Antioxidants are substances that can prevent or slow down the oxidation process, including Vitamin C, melatonin, resveratrol, anthocyanins and so on, demonstrating potential in treating these overlapping disorders. This comprehensive review aims to elucidate the complex role of oxidative stress within the interlinked pathways of these comorbid conditions. By integrating contemporary research and empirical findings, our objective is to outline new conceptual models and innovative treatment strategies for effectively managing these prevalent diseases. This review underscores the importance of further in-depth research to validate the efficacy of antioxidants and traditional Chinese medicine in treatment plans, as well as to explore targeted interventions focused on oxidative stress as promising areas for future medical advancements.
Collapse
Affiliation(s)
- Xianting Xia
- Department of OrthopaedicsKunshan Sixth People's HospitalKunshanJiangsuChina
| | - Zhengyuan Fang
- The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalianLiaoningChina
| | - Yinhua Qian
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Yu Zhou
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Haoqiang Huang
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Feng Xu
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Zhiwen Luo
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
- Department of Sports MedicineHuashan Hospital, Fudan UniverstiyShanghaiChina
| | - Qing Wang
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| |
Collapse
|
4
|
Schmid T, Wegener F, Hotfiel T, Hoppe MW. Moderate evidence exists for four microRNAs as potential biomarkers for tendinopathies and degenerative tendon ruptures at the upper extremity in elderly patients: conclusion of a systematic review with best-evidence synthesis. J Exp Orthop 2023; 10:81. [PMID: 37563331 PMCID: PMC10415244 DOI: 10.1186/s40634-023-00645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE The aim of this systematic review was to investigate tendon-specific microRNAs (miRNAs) as biomarkers for the detection of tendinopathies or degenerative tendon ruptures. Also, their regulatory mechanisms within the tendon pathophysiology were summarized. METHODS A systematic literature research was performed using the PRISMA guidelines. The search was conducted in the Pubmed database. The SIGN checklist was used to assess the study quality of the included original studies. To determine the evidence and direction of the miRNA expression rates, a best-evidence synthesis was carried out, whereby only studies with at least a borderline methodological quality were considered for validity purposes. RESULTS Three thousand three hundred seventy studies were reviewed from which 22 fulfilled the inclusion criteria. Moderate evidence was found for miR-140-3p and miR-425-5p as potential biomarkers for tendinopathies as well as for miR-25-3p, miR-29a-3p, miR-140-3p, and miR-425-5p for the detection of degenerative tendon ruptures. This evidence applies to tendons at the upper extremity in elderly patients. All miRNAs were associated with inflammatory cytokines as interleukin-6 or interleukin-1ß and tumor necrosis factor alpha. CONCLUSIONS Moderate evidence exists for four miRNAs as potential biomarkers for tendinopathies and degenerative tendon ruptures at the upper extremity in elderly patients. The identified miRNAs are associated with inflammatory processes.
Collapse
Affiliation(s)
- Tristan Schmid
- Movement and Training Science, Leipzig University, Jahnallee 59, 04109, Leipzig, Germany.
| | - Florian Wegener
- Movement and Training Science, Leipzig University, Jahnallee 59, 04109, Leipzig, Germany
| | - Thilo Hotfiel
- Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Am Finkenhügel 1, 49076, Osnabrueck, Germany
| | - Matthias W Hoppe
- Movement and Training Science, Leipzig University, Jahnallee 59, 04109, Leipzig, Germany
| |
Collapse
|
5
|
Lu P, Li Y, Dai G, Zhang Y, Shi L, Zhang M, Wang H, Rui Y. HMGB1: a potential new target for tendinopathy treatment. Connect Tissue Res 2023; 64:362-375. [PMID: 37032550 DOI: 10.1080/03008207.2023.2199089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Tendinopathy describes a complex pathology of the tendon characterized by abnormalities in the microstructure, composition, and cellularity of the tendon, leading to pain, limitation of activity and reduced function. Nevertheless, the mechanism of tendinopathy has not been fully elucidated, and the treatment of tendinopathy remains a challenge. High mobility group box 1 (HMGB1), a highly conserved and multifaceted nuclear protein, exerts multiple roles and high functional variability and is involved in many biological and pathological processes. In recent years, several studies have suggested that HMGB1 is associated with tendinopathy and may play a key role in the pathogenesis of tendinopathy. Therefore, this review summarizes the expression and distribution of HMGB1 in tendinopathy, focuses on the roles of HMGB1 and HMGB1-based potential mechanisms involved in tendinopathy, and finally summarizes the findings on HMGB1-based therapeutic approaches in tendinopathy, probably providing new insight into the mechanism and further potential therapeutic targets of tendinopathy.
Collapse
Affiliation(s)
- Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingjuan Li
- School of Medicine, Southeast University, Nanjing, China
- Department of Geriatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Morya VK, Lee HW, Park CW, Park CW, Hyun JT, Noh KC. Computational Analysis of miR-140 and miR-135 as Potential Targets to Develop Combinatorial Therapeutics for Degenerative Tendinopathy. Clin Orthop Surg 2023; 15:463-476. [PMID: 37274502 PMCID: PMC10232305 DOI: 10.4055/cios22237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/06/2023] Open
Abstract
Background Degenerative tendinopathy, a condition causing movement restriction due to high pain, highly impacts productivity and quality of life. The healing process is a complex phenomenon and involves a series of intra-cellular and inter-cellular processes. Proliferation and differentiation of the tenocyte is a major and essential process to heal degenerative tendinopathy. The recent development in microRNA (miRNA)-mediated reprogramming of the cellular function through specific pathways opened door for the development of new regenerative therapeutics. Based on information about gene expression and regulation of tendon injury and healing, we attempted to evaluate the combinatorial effect of selected miRNAs for better healing of degenerative tendinopathy. Methods The present study was designed to evaluate the combinatorial effect of two miRNAs (has-miR-140 and has-miR-135) in the healing process of the tendon. Publicly available information/data were retrieved from appropriate platforms such as PubMed. Only molecular data, directly associated with tendinopathies, including genes/proteins and miRNAs, were used in this study. The miRNAs involved in tendinopathy were analyzed by a Bioinformatics tools (e.g., TargetScan, miRDB, and the RNA22v2). Interactive involvement of the miRNAs with key proteins involved in tendinopathy was predicted by the Insilco approach. Results Based on information available in the public domain, tendon healing-associated miRNAs were predicted to explore their therapeutic potentials. Based on computation analysis, focusing on the potential regulatory effect on tendon healing, the miR-135 and miR-140 were selected for this study. These miRNAs were found as key players in tendon healing through Rho-associated coiled-coil containing protein kinase 1 (ROCK1), IGF-1/PI3K/Akt, PIN, and Wnt signaling pathways. It was also predicted that these miRNAs may reprogram the cells to induce proliferation and differentiation activity. Many miRNAs are likely to regulate genes important for the tendinopathy healing process, and the result of this study allows an approach for miRNA-mediated regeneration of the tenocyte for tendon healing. Based on computational analysis, the role of these miRNAs in different pathways was established, and the results provided insights into the combinatorial approach of miRNA-mediated cell reprogramming. Conclusions In this study, the association between miRNAs and the disease was evaluated to correlate the tendinopathy genes and the relevant role of different miRNAs in their regulation. Through this study, it was established that the synergistic effect of more than one miRNA on directed reprogramming of the cell could be helpful in the regeneration of damaged tissue. It is anticipated that this study will be helpful for the design of miRNA cocktails for the orchestration of cellular reprogramming events.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Ho-Won Lee
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Chang-Wook Park
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Chang-Won Park
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Jin Tak Hyun
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Kyu-Cheol Noh
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Xu X, Zou R, Liu X, Su Q. Alternative splicing signatures of congenital heart disease and induced pluripotent stem cell-derived cardiomyocytes from congenital heart disease patients. Medicine (Baltimore) 2022; 101:e30123. [PMID: 35984151 PMCID: PMC9388029 DOI: 10.1097/md.0000000000030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most serious congenital defect in newborns with higher mortality. Alternative splicing (AS) plays an essential role in numerous heart diseases. However, our understanding of the link between mRNA splicing and CHD in humans is limited. Here, we try to investigate the genome-wide AS events in CHD using bioinformatics methods. We collected available RNA-seq datasets of CHD-induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) (including single ventricle disease [SVD] and tetralogy of Fallot [TOF]) and non-CHD from the Gene Expression Omnibus database. Then, we unprecedentedly performed AS profiles in CHD-iPSC-CMs and non-CHD-iPSC-CMs. The rMAPS was used to generate RNA-maps for the analysis of RNA-binding proteins' (RBPs) binding sites. We used StringTie to identify and quantify the transcripts from aligned RNA-Seq reads. A quantification matrix was generated with respect to different groups by extracting the transcripts per million values from StringTie outputs. Then, this matrix was used for correlation analysis between the expression level of RBP and AS level. Finally, we validated our AS results using RNA-seq data from CHD and non-CHD patient tissue samples. We identified CHD-related AS events using CHD-iPSC-CMs and CHD samples from patients. The results showed that functional enrichment of abnormal AS in SVD and TOF was transcription factor-related. Using rMAPS, RNA-binding proteins which regulated these AS were also determined, and RBP-AS regulatory network was constructed. Overall, we identified abnormal AS in CHD-iPSC-CMs and CHD samples from patients. We predicted AS regulators in SVD and TOF, respectively. At last, we concluded that AS played a key role in the pathogenesis of CHD.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Renchao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Xiaoyong Liu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Qianqian Su
- Department of Laboratory Animal Science, Kunming Medical University, Kunming City, China
- *Correspondence: Qianqian Su, Department of Laboratory Animal Science, Kunming Medical University, Kunming City, Yunnan Province, China (e-mail: )
| |
Collapse
|
8
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
9
|
Eugenol-Preconditioned Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Antioxidant Capacity of Tendon Stem Cells In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3945195. [PMID: 35178155 PMCID: PMC8847013 DOI: 10.1155/2022/3945195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
Tendon stem cells (TSCs) are often exposed to oxidative stress at tendon injury sites, which impairs their physiological effect as well as therapeutic application. Recently, extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (BMSCs) were shown to mediate cell protection and survival under stress conditions. The function of BMSC-EVs may be affected by pretreatment with various factors such as eugenol (EUG)—a powerful antioxidant. In our previous study, we found that H2O2 significantly impaired TSC proliferation and tenogenic differentiation capabilities. Apoptosis and intracellular ROS accumulation in TSCs were induced by H2O2. However, such H2O2-induced damage was prevented by treatment with EUG-BMSC-EVs. Furthermore, EUG-BMSC-EVs activated the Nrf2/HO-1 pathway to counteract H2O2-induced damage in TSCs. In a rat patellar tendon injury model, the ROS level was significantly higher than that in the normal tendon and TSCs not pretreated showed a poor therapeutic effect. However, EUG-BMSC-EV-pretreated TSCs significantly improved tenogenesis and matrix regeneration during tendon healing. Additionally, the EUG-BMSC-EV group had a significantly improved fiber arrangement. Overall, EUG-BMSC-EVs protected TSCs against oxidative stress and enhanced their functions in tendon injury. These findings provide a basis for potential clinical use of EUG-BMSC-EVs as a new therapeutic vehicle to facilitate TSC therapies for tendon regeneration.
Collapse
|
10
|
Zhu Y, Zhang R, Zhang Y, Cheng X, Li L, Wu Z, Ding K. NUDT21 Promotes Tumor Growth and Metastasis Through Modulating SGPP2 in Human Gastric Cancer. Front Oncol 2021; 11:670353. [PMID: 34660260 PMCID: PMC8514838 DOI: 10.3389/fonc.2021.670353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/13/2021] [Indexed: 01/24/2023] Open
Abstract
Gastric cancer is one of the major malignancies with poor survival outcome. In this study, we reported that NUDT21 promoted cell proliferation, colony formation, cell migration and invasion in gastric cancer cells. The expression levels of NUDT21 were found to be much higher in human gastric cancer tissues compared with normal gastric tissues. NUDT21 expression was positively correlated with tumor size, lymph node metastasis and clinical stage in gastric cancer patients. High level of NUDT21 was associated with poor overall survival (OS) rates in gastric cancer patients. The expression levels of NUDT21 were also much higher in gastric cancer tissues from patients with tumor metastasis compared with those of patients without tumor metastasis. Moreover, forced expression of NUDT21 in gastric cancer cells promoted tumor growth and cell proliferation in xenograft nude mice, and depletion of NUDT21 in gastric cancer cells restrained lung metastasis in vivo. Through high throughput RNA-sequencing, SGPP2 was identified to be positively regulated by NUDT21 and mediated the tumor promoting role of NUDT21 in gastric cancer cells. Therefore, NUDT21 played an oncogenic role in human gastric cancer cells. NUDT21 could be considered as a novel potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Ying Zhang
- Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Xiao Cheng
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lin Li
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
12
|
Ding L, Wang M, Qin S, Xu L. The Roles of MicroRNAs in Tendon Healing and Regeneration. Front Cell Dev Biol 2021; 9:687117. [PMID: 34277629 PMCID: PMC8283311 DOI: 10.3389/fcell.2021.687117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 01/20/2023] Open
Abstract
Tendons connect the muscle abdomen of skeletal muscles to the bone, which transmits the force generated by the muscle abdomen contraction and pulls the bone into motion. Tendon injury is a common clinical condition occurring in certain populations, such as repeated tendon strains in athletes. And it can lead to substantial pain and loss of motor function, in severe cases, significant disability. Tendon healing and regeneration have attracted growing interests. Some treatments including growth factors, stem cell therapies and rehabilitation programs have been tried to improve tendon healing. However, the basic cellular biology and pathology of tendons are still not fully understood, and the management of tendon injury remains a considerable challenge. Regulating gene expression at post-transcriptional level, microRNA (miRNA) has been increasingly recognized as essential regulators in the biological processes of tendon healing and regeneration. A wide range of miRNAs in tendon injury have been shown to play vital roles in maintaining and regulating its physiological function, as well as regulating the tenogenic differentiation potential of stem cells. In this review, we show the summary of the latest information on the role of miRNAs in tendon healing and regeneration, and also discuss potentials for miRNA-directed diagnosis and therapy in tendon injuries and tendinopathy, which may provide new theoretical foundation for tenogenesis and tendon healing.
Collapse
Affiliation(s)
- Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- Department of Orthopaedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|