1
|
Zhao Y, Ma Q, Gao W, Li Z, Yu G, Li B, Xu Y, Huang Y. Dextran sulfate inhibits proliferation and metastasis of human gastric cancer cells via miR-34c-5p. Heliyon 2024; 10:e34859. [PMID: 39157392 PMCID: PMC11327518 DOI: 10.1016/j.heliyon.2024.e34859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor with a high global mortality rate that is currently difficult to treat. Dextran sulfate (DS), a safe anti-tumor agent, can effectively inhibit the malignant biological behavior of gastric cancer; however, its mechanism of action is not fully understood. Therefore, this study aimed at elucidate the potential mechanisms of action. Methods In this study we used DS to intervene in lentivirus-transfected gastric cancer cells to observe the effect of DS on miR-34c-5p. RT-qPCR, CCK-8, clone formation assay, wound healing assay, transwell assay and western blot were used to examine whether DS affects the proliferation and metastasis of gastric cancer cells via miR-34c-5p. The results were validated using in vivo experiments. Results Our data confirmed that DS up-regulated miR-34c-5p expression in human gastric cancer cells. Moreover, DS intervention enhanced the inhibitory effect of miR-34c-5p over-expression on the proliferation, invasion, and migration of gastric cancer cells, and partially reversed the promotive effect of miR-34c-5p on the proliferation, invasion, and migration of gastric cancer cells. In addition, DS could affect the activation of the MAP2K1/ERK signaling pathway through the up-regulation of miR-34c-5p, thereby inhibiting the malignant biological behavior of gastric cancer. Finally, it was demonstrated that DS could also inhibit the expression of MAP2K1 in vivo, which in turn inhibits the activation of the ERK signaling pathway to exert anti-cancer effects. Conclusion DS may inhibit the proliferation and metastasis of gastric cancer cells by regulating miR-34c-5p, which may be a new option for clinical treatment.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Heze Third People's Hospital, Heze, China
| | - Qian Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- College of Life Sciences, Ningxia University, Yinchuan, China
| | - Wenwei Gao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Zhaojun Li
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Guangfu Yu
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Bing Li
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuanyi Xu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, China
| |
Collapse
|
2
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
3
|
Li M, Bai M, Wu Y, Yang S, Zheng L, Sun L, Yu C, Huang Y. Transcriptome sequencing identifies prognostic genes involved in gastric adenocarcinoma. Mol Cell Biochem 2023; 478:2891-2906. [PMID: 36944795 DOI: 10.1007/s11010-023-04705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Gastric adenocarcinoma (GAC) is one of the world's most lethal malignant tumors. It has been established that the occurrence and progression of GAC are linked to molecular changes. However, the pathogenesis mechanism of GAC remains unclear. In this study, we sequenced 6 pairs of GAC tumor tissues and adjacent normal tissues and collected GAC gene expression profile data from the TCGA database. Analysis of this data revealed 465 differentially expressed genes (DEGs), of which 246 were upregulated and 219 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were observably enriched in ECM-receptor interaction, protein digestion and absorption, and gastric acid secretion pathways. Six key genes (MATN3, COL1A1, COL5A2, P4HA3, SERPINE1 and VCAN) associated with poor GAC prognosis were screened from the protein‒protein interaction (PPI) network by survival analysis, and P4HA3 and MATN3 have rarely been reported to be associated with GAC. We further analyzed the function of P4HA3 in the GAC cell line SGC-7901 by RT‒qPCR, MTT, flow cytometry, colony formation, wound healing, Transwell and western blot assays. We found that P4HA3 was upregulated in the SGC-7901 cell line versus normal control cells. The outcomes of the loss-of-function assay illustrated that P4HA3 significantly enhanced the ability of GAC cells to proliferate and migrate. This study provides a new basis for the selection of prognostic markers and therapeutic targets for GAC.
Collapse
Affiliation(s)
- Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Miao Bai
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, 121013, China
| | - Yulun Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Shuo Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Zhang M, Chen Y, Niu F, Luo X, Li J, Hu W. MicroRNA-30a-3p: a potential noncoding RNA target for the treatment of arteriosclerosis obliterans. Aging (Albany NY) 2023; 15:11875-11890. [PMID: 37899171 PMCID: PMC10683622 DOI: 10.18632/aging.205154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
An increasing number of studies have shown that noncoding RNAs are involved in cardiovascular diseases. Our study shows that the expression of microRNA-30a-3p (miR-30a-3p) in patients with arteriosclerosis obliterans (ASO) of the lower extremities is significantly decreased after endovascular treatment, but its role is unclear. This study aims to explore the role of microRNA-30a-3p in ASO and its related mechanisms. Immunofluorescence and in situ hybridization costaining indicated that microRNA-30a-3p mostly exists in vascular smooth muscle cells (VSMCs). Furthermore, after transfection into VSMCs, microRNA-30a-3p inhibited VSMC proliferation, migration and phenotype switching. In addition, luciferase reporter and western blot analyses indicated that ROCK2 (Rho-related spiral coil 2 containing protein kinase) is a microRNA-30a-3p target gene, and participates in the microRNA-30a-3p mediated cell inhibitory effect. At last, the rat carotid artery was infected by lentivirus after balloon injury, which increased microRNA-30a-3p levels and apparently suppressed the formation of neointima in vivo. Overall, exogenous introduction of microRNA-30a-3p, a noncoding RNA with unlimited potential, may be a new approach to treat ASO.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Vascular Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Chen
- Department of Cardiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Niu
- Department of Vascular Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohui Luo
- Department of Gynaecology and Obstetrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangping Li
- Department of Oncological Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Hu
- Department of Vascular Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
6
|
MicroRNA-34c-5p exhibits anticancer properties in gastric cancer by targeting MAP2K1 to inhibit cell proliferation, migration, and invasion. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7375661. [PMID: 36203485 PMCID: PMC9532111 DOI: 10.1155/2022/7375661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022]
Abstract
Purpose Gastric cancer(GC)is one of the deadliest digestive tract tumors worldwide,existing studies suggest that dysregulated expression of microRNAs (miRNAs) plays an important role in the pathogenesis and progression of GC. This study aimed to investigate the expression, biological function, and downstream mechanism of miR-34c-5p in GC, provide new targets for gastric cancer diagnosis and treatment. Methods The expression of miR-34c-5p in GC tissues and cell lines was examined by RT-qPCR. Cell wound healing, transwell and cell cloning assays were used to detect the effect of miR-34c-5p on the migration and invasion abilities, respectively, of GC cells. Western blot was performed to detect the expression of related proteins. Bioinformatics analysis was used to predict the binding of MAP2K1 to miR-34c-5p and the targeting relationship was confirmed by dual luciferase reporter assay. Results The expression level of miR-34c-5p was significantly decreased in GC tissues and cell lines. miR-34c-5p overexpression inhibited migration, invasion, and colony formation of gastric cancer cells, the related protein E-cadherin expression was significantly increased and N-cadherin, vimentin, and PCNA expression were significantly decreased, while miR-34c-5p knockdown exerted the opposite effects. In addition, the targeting relationship between miR-34c-5p and MAP2K1 was predicted and confirmed, and further confirmed by rescue experiments that MAP2K1 alleviated the inhibitory effect of miR-34c-5p in GC. Conclusion MiR-34c-5p is lowly expressed in GC, and it can target MAP2K1 to exert inhibitory effects on GC proliferation, invasion, and migration. These findings provide a promising biomarker and a potential therapeutic target for gastric cancer.
Collapse
|
7
|
Song Y, Kelava L, Zhang L, Kiss I. Microarray data analysis to identify miRNA biomarkers and construct the lncRNA-miRNA-mRNA network in lung adenocarcinoma. Medicine (Baltimore) 2022; 101:e30393. [PMID: 36086747 PMCID: PMC10980501 DOI: 10.1097/md.0000000000030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/25/2022] [Indexed: 12/09/2022] Open
Abstract
MicroRNAs (miRNAs), regulatory noncoding RNAs, are involved in gene regulation and may play a role in cancer development. The aim of this study was to identify miRNAs involved in lung adenocarcinoma (LUAD) using bioinformatics analysis. MiRNA (GSE135918), mRNA (GSE136043) and lncRNA (GSE130779) microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed miRNAs (DEMis), mRNAs (DEMs), and lncRNA (DELs) in LUAD. We used DEMs for functional enrichment analysis. MiRNA expression quantification from The Cancer Genome Atlas (TCGA) was used to validate DEMis. LncBase Predicted v.2, Targetscan, and MiRBase were used to predict lncRNAs and mRNAs. The LUAD data in TCGA were used for overall survival (OS) analysis. We screened the downregulation of 8 DEMis and upregulation of 6 DEMis, and found that 70 signal pathways changed. We chose 3 relevant signaling pathways in lung cancer development, WNT, PI3K-Akt, and Notch, and scanned for mRNAs involved in them that are potential targets of these miRNAs. Then a lncRNA-miRNA-mRNA network was constructed. We also found 7 miRNAs that were associated with poor OS in LUAD. Low expression level of hsa-miR-30a was highly associated with poor OS in LUAD (P < .001) and the target genes of hsa-miR-30a-3p were abundant in the Wnt and AKT signaling pathways. In addition, our results reported for the first time that hsa-miR-3944 and hsa-miR-3652 were highly expressed in LUAD. And the high expression level of hsa-miR-3944 was associated with poor OS (P < .05). Hsa-miR-30a-3p may suppress the occurrence and progression of lung cancer through Wnt and AKT signaling pathways and become a good biomarker in LUAD. Hsa-miR-3944 and hsa-miR-3652 may serve as new biomarkers in LUAD.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti str 12, Pécs 7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti str 12, Pécs 7624, Hungary
| | - Lu Zhang
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Vasvári Pál utca 4, Pécs 7622, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti str 12, Pécs 7624, Hungary
| |
Collapse
|
8
|
Shu X, Chen XX, Kang XD, Ran M, Wang YL, Zhao ZK, Li CX. Identification of potential key molecules and signaling pathways for psoriasis based on weighted gene co-expression network analysis. World J Clin Cases 2022; 10:5965-5983. [PMID: 35949853 PMCID: PMC9254198 DOI: 10.12998/wjcc.v10.i18.5965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease, the pathogenesis of which is more complicated and often requires long-term treatment. In particular, moderate to severe psoriasis usually requires systemic treatment. Psoriasis is also associated with many diseases, such as cardiometabolic diseases, malignant tumors, infections, and mood disorders. Psoriasis can appear at any age, and lead to a substantial burden for individuals and society. At present, psoriasis is still a treatable, but incurable, disease. Previous studies have found that microRNAs (miRNAs) play an important regulatory role in the progression of various diseases. Currently, miRNAs studies in psoriasis and dermatology are relatively new. Therefore, the identification of key miRNAs in psoriasis is helpful to elucidate the molecular mechanism of psoriasis.
AIM To identify key molecular markers and signaling pathways to provide potential basis for the treatment and management of psoriasis.
METHODS The miRNA and mRNA data were obtained from the Gene Expression Omnibus database. Then, differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs) were screened out by limma R package. Subsequently, DEmRNAs were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomics functional enrichment. The “WGCNA” R package was used to analyze the co-expression network of all miRNAs. In addition, we constructed miRNA-mRNA regulatory networks based on identified hub miRNAs. Finally, in vitro validation was performed. All experimental procedures were approved by the ethics committee of Chinese PLA General Hospital (S2021-012-01).
RESULTS A total of 639 DEmRNAs and 84 DEmiRNAs were identified. DEmRNAs screening criteria were adjusted P (adj. P) value < 0.01 and |logFoldChange| (|logFC|) > 1. DEmiRNAs screening criteria were adj. P value < 0.01 and |logFC| > 1.5. KEGG functional analysis demonstrated that DEmRNAs were significantly enriched in immune-related biological functions, for example, toll-like receptor signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. In weighted gene co-expression network analysis, turquoise module was the hub module. Moreover, 10 hub miRNAs were identified. Among these 10 hub miRNAs, only 8 hub miRNAs predicted the corresponding target mRNAs. 97 negatively regulated miRNA-mRNA pairs were involved in the miRNA-mRNA regulatory network, for example, hsa-miR-21-5p-claudin 8 (CLDN8), hsa-miR-30a-3p-interleukin-1B (IL-1B), and hsa-miR-181a-5p/hsa-miR-30c-2-3p-C-X-C motif chemokine ligand 9 (CXCL9). Real-time polymerase chain reaction results showed that IL-1B and CXCL9 were up-regulated and CLDN8 was down-regulated in psoriasis with statistically significant differences.
CONCLUSION The identification of potential key molecular markers and signaling pathways provides potential research directions for further understanding the molecular mechanisms of psoriasis. This may also provide new research ideas for the prevention and treatment of psoriasis in the future.
Collapse
Affiliation(s)
- Xin Shu
- Department of Dermatology, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Xiao-Xia Chen
- Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xin-Dan Kang
- Department of Comprehensive Surgical, The Second Medical Center of Chinese PLA General Hospital, Beijing 100089, China
| | - Min Ran
- Department of Endocrine, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - You-Lin Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen-Kai Zhao
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Cheng-Xin Li
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
9
|
Yang Y, Huang Y, Lin W, Liu J, Chen X, Chen C, Yu X, Teng L. Host miRNAs-microbiota interactions in gastric cancer. J Transl Med 2022; 20:52. [PMID: 35093110 PMCID: PMC8800214 DOI: 10.1186/s12967-022-03264-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
It is widely acknowledged that gastric cancer seriously affects the quality of life and survival of patients. The correlation between the microbiota and gastric cancer has attracted extensive attention in recent years, nonetheless the specific mechanism of its impact on gastric cancer remain largely unclear. Recent studies have shown that in addition to its role in the host’s inflammatory and immune response, the microbiota can also affect the occurrence and development of gastric cancer by affecting the expression of miRNAs. This paper brings together all currently available data on miRNAs, microbiota and gastric cancer, and preliminarily describes the relationship among them.
Collapse
|