1
|
Zhao Q, Ye Y, Zhang Q, Wu Y, Wang G, Gui Z, Zhang M. PANoptosis-related long non-coding RNA signature to predict the prognosis and immune landscapes of pancreatic adenocarcinoma. Biochem Biophys Rep 2024; 37:101600. [PMID: 38371527 PMCID: PMC10873882 DOI: 10.1016/j.bbrep.2023.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024] Open
Abstract
Background Cancer growth is significantly influenced by processes such as pyroptosis, apoptosis, and necroptosis that underlie PANoptosis, a proinflammatory programmed cell death. Several studies have examined the long non-coding RNAs (lncRNAs) associated with pancreatic adenocarcinoma (PAAD). However, the predictive value of lncRNAs related to PANoptosis for PAAD has not been established. Methods The Clinical Genome Atlas database was used to obtain the transcriptome 、clinical data and the corresponding mutation data of the patients with PAAD in this study. The least absolute shrinkage and selection operator regression analysis was employed to obtain prognosis-related lncRNAs for constructing a risk signature. According to the median risk score of the signature, patients with PAAD were grouped into low- and high-risk groups to further compare the survival prognosis of different risk groups. Time-dependent receiver operating characteristic curves, c-index analysis, nomograms, principal component analysis and univariate Cox and multivariate Cox regression were performed for the internal validation of the signature. In addition, enrichment analysis of different genes was performed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Lastly, differences in tumor mutation burden (TMB), immune function, tumor immune dysfunction and rejection (TIDE), and drug response were determined for the two risk groups. Results The signature was constructed with six PANoptosis-related lncRNAs (AC067817.2、LINC02004、AC243829.1、AC092171.5、AP005233.2、AC004687.1) that predicted the prognosis of the patients with PAAD. Survival curves showed that patients in the two risk groups had statistically significant differences in prognosis (P < 0.05), and multi-cox regression analysis identified risk score as an independent risk factor for PAAD prognosis, and internal validation of nomograms showed high confidence in the signature. GO and KEGG enrichment analysis showed functional and pathway differences between the high- and low-risk groups. TMB evaluation demonstrated that patients in the high-risk group had a higher frequency of mutations. The TIDE score indicated that the high-risk group had a lower risk of immunotherapy escape and better immunotherapy outcomes. Additionally, the two risk groups revealed significantly different responses to 11 anticancer drugs. Conclusion We identified a novel risk signature for PANoptosis-related lncRNAs, which is a standalone prognostic indicator for PAAD. The PANoptosis-related lncRNA risk signature may be relevant for immunotherapy and a therapeutic target for PAAD.
Collapse
Affiliation(s)
- Qinying Zhao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Quan Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yue Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Gaoxiang Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Yadav G, Kulshreshtha R. Pan-cancer analyses identify MIR210HG overexpression, epigenetic regulation and oncogenic role in human tumors and its interaction with the tumor microenvironment. Life Sci 2024; 339:122438. [PMID: 38242493 DOI: 10.1016/j.lfs.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Molecular entities showing dysregulation in multiple cancers may hold great biomarker or therapeutic potential. There is accumulating evidence that highlights the dysregulation of a long non-coding RNA, MIR210HG, in various cancers and its oncogenic role. However, a comprehensive analysis of MIR210HG expression pattern, molecular mechanisms, diagnostic or prognostic significance or evaluation of its interaction with tumor microenvironment across various cancers remains unstudied. METHODS A systematic pan-cancer analysis was done using multiple public databases and bioinformatic tools to study the molecular role and clinical significance of MIR210HG. We have analyzed expression patterns, genome alteration, transcriptional and epigenetic regulation, correlation with patient survival, immune infiltrates, co-expressed genes, interacting proteins, and pathways associated with MIR210HG. RESULTS The Pan cancer expression analysis of MIR210HG through various tumor datasets demonstrated that MIR210HG is significantly upregulated in most cancers and increased with the tumor stage in a subset of them. Furthermore, prognostic analysis revealed high MIR210HG expression is associated with poor overall and disease-free survival in specific cancer types. Genetic alteration analysis showed minimal alterations in the MIR210HG locus, indicating that overexpression in cancers is not due to gene amplification. The exploration of SNPs on MIR210HG suggested possible structural changes that may affect its interactions with the miRNAs. The correlation of MIR210HG with promoter methylation was found to be significantly negative in nature in majority of cancers depicting the possible epigenetic regulation of expression of MIR210HG. Additionally, MIR210HG showed negative correlations with immune cells and thus may have strong impact on the tumor microenvironment. Functional analysis indicates its association with hypoxia, angiogenesis, metastasis, and DNA damage repair processes. MIR210HG was found to interact with several proteins and potentially regulate chromatin modifications and transcriptional regulation. CONCLUSIONS A first pan-can cancer analysis of MIR210HG highlights its transcriptional and epigenetic deregulation and oncogenic role in the majority of cancers, its correlation with tumor microenvironment factors such as hypoxia and immune infiltration, and its potential as a prognostic biomarker and therapeutic target in several cancers.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
3
|
Xiong Y, Kong X, Fang K, Sun G, Tu S, Wei Y, Ouyang Y, Wan R, Xiao W. Establishment of a novel signature to predict prognosis and immune characteristics of pancreatic cancer based on necroptosis-related long non-coding RNA. Mol Biol Rep 2023; 50:7405-7419. [PMID: 37452900 DOI: 10.1007/s11033-023-08663-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Necroptosis plays an important role in tumorigenesis and tumour progression. Long noncoding RNAs (lncRNAs) have been proven to be regulatory factors of necroptosis in various tumours. However, the real role of necroptosis-related lncRNAs (NRLs) and their potential to predict the prognosis of pancreatic cancer (PC) remain largely unclear. The goal of this study was to identify NRLs and create a predictive risk signature in PC, explore its prognostic predictive performance, and further assess immunotherapy and chemotherapy responses. METHODS RNA sequencing data, tumour mutation burden (TMB) data, and clinical profiles of 178 PC patients were downloaded from The Cancer Genome Atlas (TCGA) database. NRLs were identified using Pearson correlation analysis. Then, patients were divided into the training set and the validation set at a 1:1 ratio. Subsequently, Cox and LASSO regression analyses were conducted to establish a prognostic NRL signature in the training set and validation set. The predictive efficacy of the 5-NRL signature was assessed by survival analysis, nomogram, Cox regression, clinicopathological feature correlation analysis, and receiver operating characteristic (ROC) curve analysis. Furthermore, correlations between the risk score (RS) and immune cell infiltration, immune checkpoint molecules, somatic gene mutations, and anticancer drug sensitivity were analysed. Finally, we used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to validate the 5-NRLs. RESULTS A 5-NRL signature was established to predict the prognosis of PC, including LINC00857, AL672291.1, PTPRN2-AS1, AC141930.2, and MEG9. The 5-NRL signature demonstrated a high degree of predictive power according to ROC and Kaplan‒Meier curves and was revealed to be an independent prognostic risk factor via stratified survival analysis. Nomogram and calibration curves indicated the clinical adaptability of the signature. Immune-related pathways were linked to the 5-NRL signature according to enrichment analysis. Additionally, immune cell infiltration, immune checkpoint molecules, somatic gene mutations and the half-maximal inhibitory concentration (IC50) of chemotherapeutic agents were significantly different between the two risk subgroups. These results suggested that our model can be used to evaluate the effectiveness of immunotherapy and chemotherapy, providing a potential new strategy for treating PC. CONCLUSIONS The novel 5-NRL signature is helpful for assessing the prognosis of PC patients and improving therapy options, so it can be further applied clinically.
Collapse
Affiliation(s)
- Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaoyu Kong
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Gen Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yongyang Wei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yonghao Ouyang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
5
|
Wang J, Chen H, Deng Q, Chen Y, Wang Z, Yan Z, Wang Y, Tang H, Liang H, Jiang Y. High expression of RNF169 is associated with poor prognosis in pancreatic adenocarcinoma by regulating tumour immune infiltration. Front Genet 2023; 13:1022626. [PMID: 36685833 PMCID: PMC9849556 DOI: 10.3389/fgene.2022.1022626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is a highly deadly and aggressive tumour with a poor prognosis. However, the prognostic value of RNF169 and its related mechanisms in PAAD have not been elucidated. In this study, we aimed to explore prognosis-related genes, especially RNF169 in PAAD and to identify novel potential prognostic predictors of PAAD. Methods: The GEPIA and UALCAN databases were used to investigate the expression and prognostic value of RNF169 in PAAD. The correlation between RNF169 expression and immune infiltration was determined by using TIMER and TISIDB. Correlation analysis with starBase was performed to identify a potential regulatory axis of lncRNA-miRNA-RNF169. Results: The data showed that the level of RNF169 mRNA expression in PAAD tissues was higher than that in normal tissues. High RNF169 expression was correlated with poor prognosis in PAAD. In addition, analysis with the TISIDB and TIMER databases revealed that RNF169 expression was positively correlated with tumour immune infiltration in PAAD. Correlation analysis suggested that the long non-coding RNA (lncRNA) AL049555.1 and the microRNA (miRNA) hsa-miR-324-5p were involved in the expression of RNF169, composing a potential regulatory axis to control the progression of PAAD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that RNF169 plays a role in PAAD through pathways such as TNF, Hippo, JAK-STAT and Toll-like receptor signaling. Conclusion: In summary, the upregulation of RNF169 expression mediated by ncRNAs might influence immune cell infiltration in the microenvironment; thus, it can be used as a prognostic biomarker and a potential therapeutic target in PAAD.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Hanghang Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiong Deng
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yeda Chen
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Zhu Wang
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Zhengzheng Yan
- Dongguan Key Laboratory of Respiratory and Critical Care Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yinglin Wang
- Department of Pediatrics, The Second Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Haoxuan Tang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Liang
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China,*Correspondence: Hui Liang, ; Yong Jiang,
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Dongguan Key Laboratory of Respiratory and Critical Care Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China,*Correspondence: Hui Liang, ; Yong Jiang,
| |
Collapse
|
6
|
DSCR9/miR-21-5p axis inhibits pancreatic cancer proliferation and resistance to gemcitabine via BTG2 signaling. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1775-1788. [PMID: 36789695 PMCID: PMC10157615 DOI: 10.3724/abbs.2022194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The outcome of pancreatic adenocarcinoma (PAAD) patients is poor, given resistance to gemcitabine. Long noncoding RNA (lncRNA) has been implicated in the carcinogenesis of pancreatic cancer; however, its function and mechanism in PAAD resistance to gemcitabine (GEM) are yet unknown. Herein, we demonstrate that lncRNA DSCR9 is significantly reduced in PAAD in vitro and in vivo. CCK-8, BrdU and flow cytometry assays show that overexpression of DSCR9 markedly suppresses pancreatic cancer cell proliferation and invasion, and promotes apoptosis under gemcitabine treatment. BTG2 acts as a tumor suppressor by reducing the proliferation and invasion of pancreatic cancer cells and increasing gemcitabine-induced apoptosis. Immunofluorescence (IF) staining combined with fluorescence in situ hybridization (FISH) of pancreatic cancer tissues shows that DSCR9 and BTG2 are both increased in pancreatic cancer tissues. Luciferase assay shows that miR-21-5p simultaneously binds to DSCR9 and 3'UTR of BTG2; DSCR9 relieves miR-21-5p-induced inhibition of BTG2 by competing with BTG2 for miR-21-5p binding. Overexpression of miR-21-5p enhances the invasiveness of pancreatic cancer cells by promoting cancer cell proliferation and invasion and attenuating gemcitabine-induced apoptosis. Overexpression of miR-21-5p attenuates the effect of DSCR9 overexpression on BTG2 expression and invasiveness of pancreatic cancer cells. Finally, miR-21-5p expression is increased, while BTG2 expression is decreased in pancreatic cancer tissues. miR-21-5p is negatively correlated with DSCR9 and BTG2. In conclusion, the DSCR9/miR-21-5p/BTG2 axis modulates pancreatic cancer proliferation, invasion, and gemcitabine resistance.
Collapse
|
7
|
Mao F, Li Z, Li Y, Huang H, Shi Z, Li X, Wu D, Liu H, Chen J. Necroptosis-related lncRNA in lung adenocarcinoma: A comprehensive analysis based on a prognosis model and a competing endogenous RNA network. Front Genet 2022; 13:940167. [PMID: 36159965 PMCID: PMC9493131 DOI: 10.3389/fgene.2022.940167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Necroptosis, an innovative type of programmed cell death, involves the formation of necrosomes and eventually mediates necrosis. Multiple lines of evidence suggest that necroptosis plays a major role in the development of human cancer. However, the role of necroptosis in lung adenocarcinoma (LUAD) remains unclear. In this study, we aimed to construct an NRL-related prognostic model and comprehensively analyze the role of NRL in LUAD.Methods: A necroptosis-related lncRNA (NRL) signature was constructed in the training cohort and verified in the validation and all cohorts based on The Cancer Genome Atlas database. In addition, a nomogram was developed. The tumor microenvironment (TME), checkpoint, human leukocyte antigen, and m6A methylation levels were compared between low-risk and high-risk groups. Then, we identified five truly prognostic lncRNAs (AC107021.2, AC027117.1, FAM30A, FAM83A-AS1, and MED4-AS1) and constructed a ceRNA network, and four hub genes of downstream genes were identified and analyzed using immune, pan-cancer, and survival analyses.Results: The NRL signature could accurately predict the prognosis of patients with LUAD, and patients with low risk scores were identified with an obvious “hot” immune infiltration level, which was strongly associated with better prognosis. Based on the ceRNA network, we postulated that NRLs regulated the TME of patients with LUAD via cyclin-dependent kinase (CDK) family proteins.Conclusion: We constructed an NRL signature and a ceRNA network in LUAD and found that NRLs may modulate the immune microenvironment of LUAD via CDK family proteins.
Collapse
Affiliation(s)
- Fuling Mao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihao Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zijian Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Di Wu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Jun Chen, ; Hongyu Liu,
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Jun Chen, ; Hongyu Liu,
| |
Collapse
|
8
|
Dai L, Mugaanyi J, Cai X, Lu C, Lu C. Pancreatic adenocarcinoma associated immune-gene signature as a novo risk factor for clinical prognosis prediction in hepatocellular carcinoma. Sci Rep 2022; 12:11944. [PMID: 35831362 PMCID: PMC9279485 DOI: 10.1038/s41598-022-16155-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) has high mortality and a very poor prognosis. Both surgery and chemotherapy have a suboptimal therapeutic effect, and this caused a need to find new approaches such as immunotherapy. Therefore, it is essential to develop a new model to predict patient prognosis and facilitate early intervention. Our study screened out and validated the target molecules based on the TCGA-PAAD dataset. We established the risk signature using univariate and multivariate Cox regression analysis and used GSE62452 and GSE28735 to verify the accuracy and reliability of the model. Expanded application of PAAD-immune-related genes signature (-IRGS) on other datasets was conducted, and the corresponding nomograms were constructed. We also analyzed the correlation between immune-related cells/genes and potential treatments. Our research demonstrated that a high riskscore of PAAD-IRGS in patients with PAAD was correlated with poor overall survival, disease-specific survival and progression free interval. The same results were observed in patients with LIHC. The models constructed were confirmed to be accurate and reliable. We found various correlations between PAAD-IRGS and immune-related cells/genes, and the potential therapeutic agents. These findings indicate that PAAD-IRGS may be a promising indicator for prognosis and of the tumor-immune microenvironment status in PAAD.
Collapse
Affiliation(s)
- Lei Dai
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China
| | - Joseph Mugaanyi
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China
| | - Xingchen Cai
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China
| | - Caide Lu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China.
| | - Changjiang Lu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
9
|
Li J, Zhang J, Tao S, Hong J, Zhang Y, Chen W. Prognostication of Pancreatic Cancer Using The Cancer Genome Atlas Based Ferroptosis-Related Long Non-Coding RNAs. Front Genet 2022; 13:838021. [PMID: 35237306 PMCID: PMC8883032 DOI: 10.3389/fgene.2022.838021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) are key regulators of pancreatic cancer development and are involved in ferroptosis regulation. LncRNA transcript levels serve as a prognostic factor for pancreatic cancer. Therefore, identifying ferroptosis-related lncRNAs (FRLs) with prognostic value in pancreatic cancer is critical. Methods: In this study, FRLs were identified by combining The Cancer Genome Atlas (TCGA) and FerrDb databases. For training cohort, univariate Cox, Lasso, and multivariate Cox regression analyses were applied to identify prognosis FRLs and then construct a prognostic FRLs signature. Testing cohort and entire cohort were applied to validate the prognostic signature. Moreover, the nomogram was performed to predict prognosis at different clinicopathological stages and risk scores. A co-expression network with 76 lncRNA-mRNA targets was constructed. Results: Univariate Cox analysis was performed to analyze the prognostic value of 193 lncRNAs. Furthermore, the least absolute shrinkage and selection operator and the multivariate Cox analysis were used to assess the prognostic value of these ferroptosis-related lncRNAs. A prognostic risk model, of six lncRNAs, including LINC01705, AC068620.2, TRAF3IP2-AS1, AC092171.2, AC099850.3, and MIR193BHG was constructed. The Kaplan Meier (KM) and time-related receiver operating characteristic (ROC) curve analysis were performed to calculate overall survival and compare high- and low-risk groups. There was also a significant difference in survival time between the high-risk and low-risk groups for the testing cohort and the entire cohort, with AUCs of .723, .753, respectively. Combined with clinicopathological characteristics, the risk model was validated as a new independent prognostic factor for pancreatic adenocarcinoma through univariate and multivariate Cox regression. Moreover, a nomogram showed good prediction. Conclusion: The signature of six FRLs had significant prognostic value for pancreatic adenocarcinoma. They may be a promising therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Jiayu Li
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiliang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaze Hong
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yuyan Zhang, ; Weiyan Chen,
| | - Weiyan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yuyan Zhang, ; Weiyan Chen,
| |
Collapse
|
10
|
Wang X, Chen K, Wang Z, Xu Y, Dai L, Bai T, Chen B, Yang W, Chen W. Using Immune-Related Long Non-coding Ribonucleic Acids to Develop a Novel Prognosis Signature and Predict the Immune Landscape of Colon Cancer. Front Cell Dev Biol 2021; 9:750709. [PMID: 34660608 PMCID: PMC8514752 DOI: 10.3389/fcell.2021.750709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: This study aimed to construct a novel signature to predict the survival of patients with colon cancer and the associated immune landscape, based on immune-related long noncoding ribonucleic acids (irlncRNAs). Methods: Expression profiles of irlncRNAs in 457 patients with colon cancer were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed (DE) irlncRNAs were identified and irlncRNA pairs were recognized using Lasso regression and Cox regression analyses. Akaike information criterion (AIC) values of receiver operating characteristic (ROC) curve were calculated to identify the ideal cut-off point for dividing patients into two groups and constructing the prognosis signature. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the expression of LINC02195 and SCARNA9 in colon cancer. Results: We identified 22 irlncRNA pairs and patients were divided into high-risk and low-risk groups based on the calculated risk score using these 22 irlncRNA pairs. The irlncRNA pairs were significantly related to patient survival. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). The area under the curve of the signature to predict 5-year survival was 0.951. The risk score correlated with tumor stage, infiltration depth, lymph node metastasis, and distant metastasis. The risk score remained significant after univariate and multivariate Cox regression analyses. A nomogram model to predict patient survival was developed based on the results of Cox regression analysis. Immune cell infiltration status, expression of some immune checkpoint genes, and sensitivity to chemotherapeutics were also related to the risk score. The results of qRT-PCR revealed that LINC02195 and SCARNA9 were significantly upregulated in colon cancer tissues. Conclusion: The constructed prognosis signature showed remarkable efficiency in predicting patient survival, immune cell infiltration status, expression of immune checkpoint genes, and sensitivity to chemotherapeutics.
Collapse
Affiliation(s)
- Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenglin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanmin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Longfei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Bai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenqi Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|