1
|
Habibipour L, Sadeghi M, Raghibi A, Sanadgol N, Mohajeri Khorasani A, Mousavi P. The NLRP1 Emerges as a Promising Therapeutic Target and Prognostic Biomarker Across Multiple Cancer Types: A Comprehensive Pan-Cancer Analysis. Cancer Med 2025; 14:e70836. [PMID: 40237399 PMCID: PMC12001265 DOI: 10.1002/cam4.70836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION Nod-like receptor family pyrin domain containing 1 (NLRP1) serves as the central component of the inflammasome complex and has emerged as a potential contributor to cancer development. Despite accumulating evidence, a comprehensive assessment of NLRP1 across various cancer types has yet to be undertaken. METHODS Several databases have evaluated NLRP1 expression across various cancer types in The Cancer Genome Atlas (TCGA). Additionally, studies have investigated the correlation between NLRP1 and various survival metrics, infiltration of cancer-associated fibroblasts, genetic alterations, drug sensitivity, and promoter methylation. Furthermore, research has explored the potential roles of NLRP1 and its interactions with other proteins. RESULTS Our analysis revealed decreased expression of NLRP1 in BLCA, BRCA, KICH, LUAD, LUSC, PRAD, and UCEC tumor tissues compared to normal tissues. We identified a significant correlation between NLRP1 expression and various cancer survival parameters, genetic mutations, and immune infiltration of cancer-associated fibroblasts. Furthermore, we observed that NLRP1 expression is regulated by promoter DNA methylation in ESCA. Abnormal expression of NLRP1 was associated with decreased sensitivity to multiple anti-tumor drugs and small compounds. NLRP1 was found to be involved in pathways associated with T cell receptors and chemokines. CONCLUSIONS Reduced NLRP1 expression contributes to cancer progression and holds potential as a crucial biomolecular marker for diagnostic, prognostic, and personalized therapeutic interventions across different malignancies.
Collapse
Affiliation(s)
- Leila Habibipour
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Mahboubeh Sadeghi
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
- Student Research CommitteeHormozgan University of Medical SciencesBandar AbbasIran
| | - Alireza Raghibi
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Nima Sanadgol
- Institute of NeuroanatomyRWTH University Hospital AachenAachenGermany
| | - Amirhossein Mohajeri Khorasani
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
2
|
Liu G, Huang K, Lin B, Zhang R, Zhu Y, Dong X, Wu C, Zhu H, Lin J, Bao M, Li S, Zheng R, Jing F. IKZF1 promotes pyroptosis and prevents M2 macrophage polarization by inhibiting JAK2/STAT5 pathway in colon cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167690. [PMID: 39862997 DOI: 10.1016/j.bbadis.2025.167690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Pyroptosis and macrophage pro-inflammatory activation play an important role in hepatocellular carcinoma (HCC) progression. However, the specific regulatory mechanisms remain unclear. We identified pyroptosis-related differentially expressed genes (DEGs) based on the GSE4183 and GSE44861 datasets as well as EVenn database. Expression levels of key genes were detected by qRT-PCR. IKZF1 was overexpressed in colon cancer cells and tumor-bearing mice, and its functions were assessed by various cell biology assays in vitro and in vivo. To investigate the interactions between IKZF1 and macrophages, a co-culture system was constructed. The activator RO8191 or inhibitor ruxolitinib of the JAK/STAT pathway was employed to confirm whether IKZF1 inhibited colon cancer development by regulating JAK2/STAT5 pathway. Pyroptosis-related hub genes RBBP7, HSP90AB1, and RBBP4 were highly expressed, while IKZF1, NLRP1, and PYCARD were lowly expressed. These hub genes had good performance in distinguishing colon cancer from controls. Furthermore, overexpression of IKZF1 inhibited tumor growth and promoted pyroptosis. Overexpression of IKZF1 suppressed cell proliferation, metastasis, and inactivated JAK2/STAT5 signaling pathway in colon cancer cells. Furthermore, upregulation of IKZF1 promoted M1 macrophage polarization while inhibiting M2 macrophage polarization in vivo and in vitro by inhibiting the JAK2/STAT5 signaling pathway. This study identifies IKZF1 as a potential biomarker inactivating JAK2/STAT5 pathway for colon cancer.
Collapse
Affiliation(s)
- Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, China
| | - Kaihua Huang
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Bingheng Lin
- The First School of Clinical Medicine, Southern Medical University, China
| | - Renyi Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Yu Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Xiaoyu Dong
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Chaosong Wu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Huacong Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Jiabao Lin
- Department of Health Management, Nanfang Hospital, Southern Medical University, China
| | - Ming Bao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Shenglong Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), China
| | - Fangyan Jing
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
3
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
4
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
5
|
Zhou X, Tao Y, Shi Y. Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy. Cancer Lett 2024; 605:217283. [PMID: 39366544 DOI: 10.1016/j.canlet.2024.217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xueqing Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
6
|
Zhou Q, Guo Y, Tian Z, Qiu Y, Liu Y, Liu Q, Liu Y, Yang Y, Shi L, Li X, Gao G, Fan S, Zeng Z, Xiong W, Tan M, Li G, Zhang W. PLUNC inhibits invasion and metastasis in nasopharyngeal carcinoma by inhibiting NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167352. [PMID: 39004379 DOI: 10.1016/j.bbadis.2024.167352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharynx. Palate, lung, and nasal epithelium clone (PLUNC) has been identified as an early secreted protein that is specifically expressed in the nasopharynx. The aim of this study was to determine the role and mechanism of PLUNC in NPC. We used mRNA sequencing (seq) combined with ribosome-nascent chain complex (RNC)-seq to determine the biological role of PLUNC. The expression of epithelial-to-mesenchymal transition (EMT)-related molecules was detected by western blotting. Then, cell migration and invasion were detected by wound healing and Transwell chamber assays. NPC cells were injected into the tail vein of nude mice to explore the biological role of PLUNC in vivo. The sequencing results showed that PLUNC inhibited the progression of NPC and its expression was correlated with that of NOD-like receptors. Experiments confirmed that PLUNC inhibited the invasion and metastasis of NPC cells by promoting the ubiquitination degradation of NLRP3. PLUNC overexpression in combination with the treatment by MCC950, an inhibitor of NLRP3 inflammasome activation, was most effective in inhibiting NPC invasion and metastasis. In vivo experiments also confirmed that the combination of PLUNC overexpression and MCC950 treatment effectively inhibited the lung metastasis of NPC cells. In summary, our research suggested that PLUNC inhibited the invasion and metastasis of NPC by inhibiting NLRP3 inflammasome activation, and targeting the PLUNC-NLRP3 inflammasome axis could provide a new strategy for the diagnosis and treatment of NPC patients.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Yilin Guo
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Yanbing Qiu
- Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Liu
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan, China
| | - Qingluan Liu
- Changsha Hospital for Maternal and Child Health Care, Changsha, Hunan, China
| | - Yijun Liu
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqin Yang
- Shenzhen Maternity & Child Healthcare Hospital Clinical Laboratory, Shenzhen, Guangdong, China
| | - Lei Shi
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Ge Gao
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taiwan; Research Center for Cancer Biology, China Medical University, Taiwan
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Liao Y, Yang P, Yang C, Zhuang K, Fahira A, Wang J, Liu Z, Yan L, Huang Z. Clinical signature and associated immune metabolism of NLRP1 in pan-cancer. J Cell Mol Med 2024; 28:e70100. [PMID: 39318060 PMCID: PMC11422451 DOI: 10.1111/jcmm.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/07/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammations have been linked to tumours, suggesting a potential association between NLRP1 and cancer. Nevertheless, a systematic assessment of NLRP1's role across various cancer types currently absent. A comprehensive bioinformatic analysis was conducted to determine whether NLRP1 exhibits prognostic relevance linked to immune metabolism across various cancers. The study leveraged data from the TCGA and GTEx databases to explore the clinical significance, metabolic features, and immunological characteristics of NLRP1, employing various tools such as R, GEPIA, STRING and TISIDB. NLRP1 exhibited differential expression patterns across various cancers, with elevated expression correlating with a more favourable prognosis in lung adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD). Downregulation of NLRP1 reduced tumour metabolic activity in LUAD. Moreover, the mutational signature of NLRP1 was linked to a favourable prognosis. Interestingly, high NLRP1 expression inversely correlated with tumour stemness while positively correlating with tumour immune infiltration in various cancers including LUAD and PAAD. Through extensive big data analysis, we delved into the role of NLRP1 across various tumour types, constructing a comprehensive role map of its involvement in pan-cancer scenarios. Our findings highlight the potential of NLRP1 as a promising therapeutic target specifically in LUAD and PAAD.
Collapse
Affiliation(s)
- Yong Liao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Pinglian Yang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Cui Yang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Kai Zhuang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Lin Yan
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
8
|
Si Y, Liu L, Fan Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov 2024; 10:10. [PMID: 38182564 PMCID: PMC10770122 DOI: 10.1038/s41420-023-01783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Inflammasomes are thought to be important mediators of host defense against microbial pathogens and maintenance of gastrointestinal tract homeostasis. They can modulate caspase-1 to promote IL-18 and IL-1β secretion and promote phagocytosis induced by bacterial pathogens. NLRP3 is an inflammasome comprising a multiprotein complex assembled by pattern recognition receptors in the cell cytoplasm. It is a crucial component of the innate immune system. Dysregulation of NLRP3 may contribute to inflammatory diseases and intestinal cancers. Recent research suggests that NLRP3 plays an essential role in tumor development; therefore, intensive study of its mechanism is warranted as it could play a key role in the treatment of digestive system tumors. In this review, we discuss the mechanism and role of NLRP3 in tumors of the digestive system and response strategies to modulate NLRP3 for potential use in tumor treatment.
Collapse
Affiliation(s)
- Yuxin Si
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Liu
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Zhou F, Wang M, Wang Z, Li W, Lu X. Screening of novel tumor-associated antigens for lung adenocarcinoma mRNA vaccine development based on pyroptosis phenotype genes. BMC Cancer 2024; 24:28. [PMID: 38166691 PMCID: PMC10763439 DOI: 10.1186/s12885-023-11757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to identify new pyroptosis-associated tumor antigens for use in mRNA vaccines and the screening of sensitive LUAD populations suitable for vaccination. The association between tumor immune infiltrating cell abundance and potential tumor antigens was investigated and visualized using the analysis modules of gene expression, clinical outcomes, and somatic copy number variation. In addition, the pyroptosis-related genes (PRGs) were clustered, the relative pyroptosis subtypes (PSs) and gene modules were identified, and the prognostic value of the PSs was examined. The expression of key PRGs in two lung adenocarcinoma cell lines was verified by RT-qPCR. Four tumor pyroptosis-associated antigens, CARD8, NAIP, NLRP1, and NLRP3, were screened as potential candidates for LUAD mRNA vaccine development. In the construction of consensus clusters for PRGs, two PSs, PS1 and PS2, were classified, in which patients with PS1 LUAD had a better prognosis. In contrast, patients with PS2 LUAD may have better responsiveness to mRNA vaccine treatment. The key PRGs can be regarded as biomarkers to predict the LUAD prognosis and identify patients suitable for mRNA vaccines. The RT-qPCR results showed that the expression levels of CSMD3, LRP1B, MUC16 and TTN were significantly increased in the two lung adenocarcinoma cell lines, while the expression levels of CARD8, TP53 and ZFHX4 were significantly reduced. The antigens CARD8, NAIP, NLRP1, and NLRP3, which are associated with tumor pyroptosis, could be candidate molecules for LUAD mRNA vaccine development. Patients with PS2 LUAD may be suitable candidates for mRNA vaccine treatment.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Meng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Xike Lu
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China.
| |
Collapse
|
10
|
Chen PH, Yeh WB, Kao CL, Kuo CE, Li CJ, Pan LF. Identification of a common therapeutic objective in both rheumatoid arthritis and the microenvironment of gastric tumors. Int J Rheum Dis 2024; 27:e14932. [PMID: 37803821 DOI: 10.1111/1756-185x.14932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 10/08/2023]
Affiliation(s)
- Po-Hung Chen
- Department of Emergency Medicine, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung, Taiwan
| | - Wen-Bin Yeh
- Department of Emergency Medicine, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung, Taiwan
| | - Chiu-Li Kao
- Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Cham-En Kuo
- Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Fei Pan
- Department of General Affair Office, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- College of Finance and Banking, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Li L, Liao A. Application of pyroptosis score in the treatment and prognosis evaluation of gastric cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1882-1889. [PMID: 38448382 PMCID: PMC10930744 DOI: 10.11817/j.issn.1672-7347.2023.230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 03/08/2024]
Abstract
Pyroptosis is a kind of proinflammatory programmed cell death mediated by inflammasome. It affects the occurrence and development of gastric cancer through different ways, showing dual effects. On the one hand, inflammasome-mediated inflammatory response is highly likely to participate in the formation and development of early tumors; on the other hand, drugs can inhibit the deterioration process of tumor proliferation, invasion and metastasis through activating the pathways of inflammasome and pyroptosis. Recently, many agents based on pyroptosis have been found to inhibit gastric cancer by promoting the secondary pyroptosis pathway, regulating NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and inhibiting caspase-1. The establishment of cell pyrodeath models can predict the prognosis of gastric cancer patients. Most of the models show that gastric cancer patients with high pyroptosis level have better prognosis and longer overall survival. Pyroptosis scores can also be used to predict the response of gastric cancer patients to immunotherapy and to screen potential anti-gastric cancer drugs. Therefore, in-depth understanding of the potential mechanism of pyroptosis affecting the progression of gastric cancer and the role of pyroptosis score in the treatment and prognosis assessment of gastric cancer will be helpful to find a new and effective method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Luyun Li
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| | - Aijun Liao
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| |
Collapse
|