1
|
Nganya C, Bryant S, Alnakhalah A, Allen-Boswell T, Cunningham S, Kanu S, Williams A, Philio D, Dang K, Butler E, Player A. Analyses of the MYBL1 Gene in Triple Negative Breast Cancer: Evidence of Regulation of the VCPIP1 Gene and Identification of a Specific Exon Overexpressed in Tumor Cell Lines. Int J Mol Sci 2024; 26:279. [PMID: 39796135 PMCID: PMC11719811 DOI: 10.3390/ijms26010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Previous data show that the knockdown of the MYBL1 gene in the MDA-MB-231 cell line leads to the downregulation of VCPIP1 gene expression. In addition, MYBL1 and VCPIP1 genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the VCPIP1 gene. We identify the MYBL1 transcription factor binding site upstream of the VCPIP1 start site and show that the MYBL1 protein can bind to the sequence identified in the VCPIP1 promoter region. Combined with the results from the knockdown study, these data support the ability of MYBL1 to regulate the VCPIP1 gene. The VCPIP1 gene functions as a deubiquitinating enzyme involved in DNA repair, protein positioning, and the assembly of the Golgi apparatus during mitotic signaling. The transcriptional regulation of VCPIP1 by the MYBL1 gene could implicate MYBL1 in these processes, which might contribute to tumor processes in TNBC. Although both genes are involved in cell cycle regulatory mechanisms, converging signaling mechanisms have not been identified. In a separate study, we performed sequence alignment of the MYBL1 transcript variants and identified an exon unique to the canonical variant. Probes that specifically target the unique MYBL1 exon show that the exon is overexpressed in tumor cell lines compared to non-tumor breast cells. We are classifying this unique MYBL1 exon as a tumor-associated exon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (C.N.); (S.B.); (A.A.); (T.A.-B.); (S.C.); (S.K.); (A.W.); (D.P.); (K.D.); (E.B.)
| |
Collapse
|
2
|
Zhu X, Liu T, Yin X. TMEM158, as plasma cfRNA marker, promotes proliferation and doxorubicin resistance in ovarian cancer. THE PHARMACOGENOMICS JOURNAL 2024; 24:34. [PMID: 39543089 DOI: 10.1038/s41397-024-00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
The current study aimed to identify the potential biomarker for the diagnosis of ovarian cancer within plasma cell-free RNA (cfRNA) species and to characterize their oncogenic properties. cfRNAs were isolated from the peripheral blood of ovarian cancer patients and sequenced using an NGS platform. Principal component analysis (PCA) was performed using Salmon software. Gene ontology (GO) analysis was conducted with clusterProfiler. The relative abundance of TMEM158 transcripts was determined by real-time PCR. Cell viability and proliferation was monitored using the MTT and cell counting assays, respectively. The protein levels of TMEM158 and ABCG2 were quantified by immunoblotting. We observed a clear separation of cfRNAs between ovarian cancer patients and healthy individuals. Additionally, we identified TMEM158 as the most significantly differential gene in both peripheral blood and tumor tissues. Overexpression of TMEM158 stimulated cell viability and promoted cell proliferation in ovarian cancer cells. Notably, the aberrant upregulation of TMEM158 was closely associated with doxorubicin resistance in ovarian cancer. Mechanistically, we demonstrated that TMEM158 positively regulates ABCG2 expression, which consequently contributes to drug resistance. In summary, we identified cfRNA TMEM158 as a potential diagnostic biomarker for ovarian cancer and elucidated the critical involvement of TMEM158-ABCG2 signaling axis in the development of doxorubicin resistance.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Center for Reproductive Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Tongchao Liu
- Department of Gynecology, Zhucheng People's Hospital, Zhucheng, 262200, Shandong, China
| | - Xuexue Yin
- Department of Gynecology, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| |
Collapse
|
3
|
Kohler R, Engeland K. A-MYB substitutes for B-MYB in activating cell cycle genes and in stimulating proliferation. Nucleic Acids Res 2024; 52:6830-6849. [PMID: 38747345 PMCID: PMC11229319 DOI: 10.1093/nar/gkae370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 07/09/2024] Open
Abstract
A-MYB (MYBL1) is a transcription factor with a role in meiosis in spermatocytes. The related B-MYB protein is a key oncogene and a master regulator activating late cell cycle genes. To activate genes, B-MYB forms a complex with MuvB and is recruited indirectly to cell cycle genes homology region (CHR) promoter sites of target genes. Activation through the B-MYB-MuvB (MMB) complex is essential for successful mitosis. Here, we discover that A-MYB has a function in transcriptional regulation of the mitotic cell cycle and can substitute for B-MYB. Knockdown experiments in cells not related to spermatogenesis show that B-MYB loss alone merely delays cell cycle progression. Only dual knockdown of B-MYB and A-MYB causes G2/M cell cycle arrest, endoreduplication, and apoptosis. A-MYB can substitute for B-MYB in binding to MuvB. The resulting A-MYB-MuvB complex activates genes through CHR sites. We find that A-MYB activates the same target genes as B-MYB. Many of the corresponding proteins are central regulators of the cell division cycle. In summary, we demonstrate that A-MYB is an activator of the mitotic cell cycle by activating late cell cycle genes.
Collapse
Affiliation(s)
- Robin Kohler
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Player A, Cunningham S, Philio D, Roy R, Haynes C, Dixon C, Thirston L, Ibikunle F, Boswell TA, Alnakhalah A, Contreras J, Bell M, McGuffery T, Bryant S, Nganya C, Kanu S. Characterization of MYBL1 Gene in Triple-Negative Breast Cancers and the Genes' Relationship to Alterations Identified at the Chromosome 8q Loci. Int J Mol Sci 2024; 25:2539. [PMID: 38473786 DOI: 10.3390/ijms25052539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The MYBL1 gene is a strong transcriptional activator involved in events associated with cancer progression. Previous data show MYBL1 overexpressed in triple-negative breast cancer (TNBC). There are two parts to this study related to further characterizing the MYBL1 gene. We start by characterizing MYBL1 reference sequence variants and isoforms. The results of this study will help in future experiments in the event there is a need to characterize functional variants and isoforms of the gene. In part two, we identify and validate expression and gene-related alterations of MYBL1, VCIP1, MYC and BOP1 genes in TNBC cell lines and patient samples selected from the Breast Invasive Carcinoma TCGA 2015 dataset available at cBioPortal.org. The four genes are located at chromosomal regions 8q13.1 to 8q.24.3 loci, regions previously identified as demonstrating a high percentage of alterations in breast cancer. We identify alterations, including changes in expression, deletions, amplifications and fusions in MYBL1, VCPIP1, BOP1 and MYC genes in many of the same patients, suggesting the panel of genes is involved in coordinated activity in patients. We propose that MYBL1, VCPIP1, MYC and BOP1 collectively be considered as genes associated with the chromosome 8q loci that potentially play a role in TNBC pathogenesis.
Collapse
Affiliation(s)
- Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Sierra Cunningham
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Deshai Philio
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Renata Roy
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Cydney Haynes
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Christopher Dixon
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Lataja Thirston
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Fawaz Ibikunle
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | | | - Ayah Alnakhalah
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Juan Contreras
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Myra Bell
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Treveon McGuffery
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Sahia Bryant
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Chidinma Nganya
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Samuel Kanu
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| |
Collapse
|
5
|
Yin J, Ding N, Yu J, Wang Z, Fu L, Li Y, Li X, Xu J. Systematic analysis of DNA methylation-mediated TF dysregulation on lncRNAs reveals critical roles in tumor immunity. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102058. [PMID: 38028194 PMCID: PMC10630662 DOI: 10.1016/j.omtn.2023.102058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Emerging evidence suggests that DNA methylation affects transcriptional regulation and expression perturbations of long non-coding RNAs (lncRNAs) in cancer. However, a comprehensive investigation into the transcriptional control of DNA methylation-mediated dysregulation of transcription factors (TFs) on lncRNAs has been lacking. Here, we integrated the transcriptome, methylome, and regulatome across 21 human cancers and systematically identified the transcriptional regulation of DNA methylation-mediated TF dysregulations (DMTDs) on lncRNAs. Our findings reveal that TF regulation of lncRNAs is significantly impacted by DNA methylation. Comparative analysis of DMTDs on mRNAs revealed a conserved pattern of TFs involvement. Pan-cancer Methylation TFs (MethTFs) and Methylation LncRNAs (MethLncRNAs) were identified, and were found to be closely associated with cancer hallmarks and clinical features. In-depth analysis of co-expressed mRNAs with pan-cancer MethLncRNAs unveiled frequent disruptions in cancer immunity, particularly in the context of inflammatory response. Furthermore, we identified five immune-related network modules that contribute to immune cell infiltration in cancer. Immune-related subtypes were subsequently classified, characterized by high levels of immune cell infiltration, expression of immunomodulatory genes, and relevant immune cytolytic activity score, major histocompatibility complex score, response to chemotherapy, and prognosis. Our findings provide valuable insights into cancer immunity from the epigenetic and transcriptional regulation perspective.
Collapse
Affiliation(s)
- Jiaqi Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jiaxin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zishan Wang
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Limei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
6
|
Kuschman HP, Palczewski MB, Hoffman B, Menhart M, Wang X, Glynn S, Islam ABMMK, Benevolenskaya EV, Thomas DD. Nitric oxide inhibits FTO demethylase activity to regulate N 6-methyladenosine mRNA methylation. Redox Biol 2023; 67:102928. [PMID: 37866163 PMCID: PMC10623363 DOI: 10.1016/j.redox.2023.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNAs. Demethylation of m6A on mRNA is catalyzed by the enzyme fat mass and obesity-associated protein (FTO), a member of the nonheme Fe(II) and 2-oxoglutarate (2-OG)-dependent family of dioxygenases. FTO activity and m6A-mRNA are dysregulated in multiple diseases including cancers, yet endogenous signaling molecules that modulate FTO activity have not been identified. Here we show that nitric oxide (NO) is a potent inhibitor of FTO demethylase activity by directly binding to the catalytic iron center, which causes global m6A hypermethylation of mRNA in cells and results in gene-specific enrichment of m6A on mRNA of NO-regulated transcripts. Both cell culture and tumor xenograft models demonstrated that endogenous NO synthesis can regulate m6A-mRNA levels and transcriptional changes of m6A-associated genes. These results build a direct link between NO and m6A-mRNA regulation and reveal a novel signaling mechanism of NO as an endogenous regulator of the epitranscriptome.
Collapse
Affiliation(s)
| | - Marianne B Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Brian Hoffman
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry, USA
| | - Mary Menhart
- College of Medicine, Departments of Pharmacology and Bioengineering, USA
| | - Xiaowei Wang
- College of Medicine, Departments of Pharmacology and Bioengineering, USA
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology, USA
| | | | | | - Douglas D Thomas
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, USA.
| |
Collapse
|
7
|
Bogdan M, Meca AD, Turcu-Stiolica A, Oancea CN, Kostici R, Surlin MV, Florescu C. Insights into the Relationship between Pentraxin-3 and Cancer. Int J Mol Sci 2022; 23:15302. [PMID: 36499628 PMCID: PMC9739619 DOI: 10.3390/ijms232315302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Although cancer can be cured if detected early and treated effectively, it is still a leading cause of death worldwide. Tumor development can be limited by an appropiate immune response, but it can be promoted by chronic extensive inflammation through metabolic dysregulation and angiogenesis. In the past decade, numerous efforts have been made in order to identify novel candidates with predictive values in cancer diagnostics. In line with this, researchers have investigated the involvement of pentraxin-3 (PTX-3) in cellular proliferation and immune escape in various types of cancers, although it has not been clearly elucidated. PTX-3 is a member of the long pentraxin subfamily which plays an important role in regulating inflammation, innate immunity response, angiogenesis, and tissue remodeling. Increased synthesis of inflammatory biomarkers and activation of different cellular mechanisms can induce PTX-3 expression in various types of cells (neutrophils, monocytes, lymphocytes, myeloid dendritic cells, fibroblasts, and epithelial cells). PTX-3 has both pro- and anti-tumor functions, thus dual functions in oncogenesis. This review elucidates the potential usefulness of PTX-3 as a serum biomarker in cancer. While future investigations are needed, PTX-3 is emerging as a promising tool for cancer's diagnosis and prognosis, and also treatment monitoring.
Collapse
Affiliation(s)
- Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Roxana Kostici
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marin Valeriu Surlin
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristina Florescu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
8
|
Huang J, Liu W, Zhang D, Lin B, Li B. TMEM158 expression is negatively regulated by AR signaling and associated with favorite survival outcomes in prostate cancers. Front Oncol 2022; 12:1023455. [PMID: 36387246 PMCID: PMC9663988 DOI: 10.3389/fonc.2022.1023455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/18/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Membrane protein TMEM158 was initially reported as a Ras-induced gene during senescence and has been implicated as either an oncogenic factor or tumor suppressor, depending on tumor types. It is unknown if TMEM158 expression is altered in prostate cancers. METHODS Multiple public gene expression datasets from RNA-seq and cDNA microarray assays were utilized to analyze candidate gene expression profiles. TMEM158 protein expression was assessed using an immunohistochemistry approach on a tissue section array from benign and malignant prostate tissues. Comparisons of gene expression profiles were conducted using the bioinformatics software R package. RESULTS COX regression-based screening identified the membrane protein TMEM158 gene as negatively associated with disease-specific and progression-free survival in prostate cancer patients. Gene expression at the mRNA and protein levels revealed that TMEM158 expression was significantly reduced in malignant tissues compared to benign compartments. Meanwhile, TMEM158 downregulation was strongly correlated with advanced clinicopathological features, including late-stage diseases, lymph node invasion, higher PSA levels, residual tumors after surgery, and adverse Gleason scores. In castration-resistant prostate cancers, TMEM158 expression was negatively correlated with AR signaling activity but positively correlated with neuroendocrinal progression index. Consistently, in cell culture models, androgen treatment reduced TMEM158 expression, while androgen deprivation led to upregulation of TMEM158 expression. Correlation analysis showed a tight correlation of TMEM158 expression with the level of R-Ras gene expression, which was also significantly downregulated in prostate cancers. Tumor immune infiltration profiling analysis discovered a strong association of TMEM158 expression with NK cell and Mast cell enrichment. CONCLUSION The membrane protein TMEM158 is significantly downregulated in prostate cancer and is tightly associated with disease progression, anti-tumor immune infiltration, and patient survival outcome.
Collapse
Affiliation(s)
- Jian Huang
- Center for Pathological Diagnosis and Research, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Da Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Biyun Lin
- Center for Pathological Diagnosis and Research, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
9
|
Steiner C, Lescuyer P, Cutler P, Tille JC, Ducret A. Relative Quantification of Proteins in Formalin-Fixed Paraffin-Embedded Breast Cancer Tissue Using Multiplexed Mass Spectrometry Assays. Mol Cell Proteomics 2022; 21:100416. [PMID: 36152753 PMCID: PMC9638817 DOI: 10.1016/j.mcpro.2022.100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 01/18/2023] Open
Abstract
The identification of clinically relevant biomarkers represents an important challenge in oncology. This problem can be addressed with biomarker discovery and verification studies performed directly in tumor samples using formalin-fixed paraffin-embedded (FFPE) tissues. However, reliably measuring proteins in FFPE samples remains challenging. Here, we demonstrate the use of liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM/MS) as an effective technique for such applications. An LC-MRM/MS method was developed to simultaneously quantify hundreds of peptides extracted from FFPE samples and was applied to the targeted measurement of 200 proteins in 48 triple-negative, 19 HER2-overexpressing, and 20 luminal A breast tumors. Quantitative information was obtained for 185 proteins, including known markers of breast cancer such as HER2, hormone receptors, Ki-67, or inflammation-related proteins. LC-MRM/MS results for these proteins matched immunohistochemistry or chromogenic in situ hybridization data. In addition, comparison of our results with data from the literature showed that several proteins representing potential biomarkers were identified as differentially expressed in triple-negative breast cancer samples. These results indicate that LC-MRM/MS assays can reliably measure large sets of proteins using the analysis of surrogate peptides extracted from FFPE samples. This approach allows to simultaneously quantify the expression of target proteins from various pathways in tumor samples. LC-MRM/MS is thus a powerful tool for the relative quantification of proteins in FFPE tissues and for biomarker discovery.
Collapse
Affiliation(s)
- Carine Steiner
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland,BiOmics and Pathology, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland,For correspondence: Carine Steiner
| | - Pierre Lescuyer
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland,Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul Cutler
- BiOmics and Pathology, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland
| | - Jean-Christophe Tille
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Axel Ducret
- BiOmics and Pathology, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland
| |
Collapse
|
10
|
MYBL1 induces transcriptional activation of ANGPT2 to promote tumor angiogenesis and confer sorafenib resistance in human hepatocellular carcinoma. Cell Death Dis 2022; 13:727. [PMID: 35987690 PMCID: PMC9392790 DOI: 10.1038/s41419-022-05180-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
Angiogenesis is considered as an important process in tumor growth, metastasis of hepatocellular carcinoma (HCC) and associated with cancer progression, suggesting that an important research and development field of clinical molecular targeted drugs for HCC. However, the molecular mechanisms underlying tumor angiogenesis in HCC remains elusive. In the current study, we demonstrate that upregulation of AMYB proto-oncogene-like 1 (MYBL1) was associated with high endothelial vessel (EV) density and contributed to poor prognosis of HCC patient. Functionally, MYBL1 overexpressing enhanced the capacity of HCC cells to induce tube formation, migration of HUVECs, neovascularization in CAMs, finally, enhanced HCC cells metastasis, while silencing MYBL1 had the converse effect. Furthermore, HCC cells with high MYBL1 expression were more resistance to sorafenib treatment. We observed that CD31 staining was significantly increased in tumors formed by MYBL1-overexpressing cells but decreased in MYBL1-silenced tumors. Mechanistically, MYBL1 binds to the ANGPT2 promoter and transcriptionally upregulate ANGPT2 mRNA expression. Strikingly, treatment with monoclonal antibody against ANGPT2 significantly inhibited the growth of MYBL1-overexpressing tumors and efficiently impaired angiogenesis. Furthermore, the histone post-translational factors: protein arginine methyltransferase 5 (PRMT5), MEP50, and WDR5 were required for MYBL1-mediated ANGPT2 upregulation. Importantly, we confirmed the correlation between MYBL1 and ANGPT2 expression in a large cohort of clinical HCC samples and several published datasets in pancreatic cancer, esophageal carcinoma, stomach adenocarcinoma, and colon cancer. Our results demonstrate that MYBL1 upregulated the ANGPT2 expression, then induced angiogenesis and confer sorafenib resistance to HCC cells, and MYBL1 may represent a novel prognostic biomarker and therapeutic target for patients with HCC.
Collapse
|
11
|
Papila KB, Sozer V, Cigdem KP, Durmus S, Kurtulus D, Papila C, Gelisgen R, Uzun H. Circulating nuclear factor-kappa B mediates cancer-associated inflammation in human breast and colon cancer. J Med Biochem 2021; 40:150-159. [PMID: 33776564 PMCID: PMC7982282 DOI: 10.5937/jomb0-27128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Inflammation is recognized as a hallmark feature of cancer development and progression. The aim of our study was to investigate the significance of serum nuclear factor kappa-B (NF-κB) levels as a circulating marker in the monitoring of inflammation in breast and colon cancer; to show the relationship between NF-κB with inflammatory parameters as tumour necrosis factor-α (TNF-α), soluble TNF-related apoptosis-inducing ligand (sTRAIL), interleukin-6 (IL-6), pentraxin-3 (PTX-3), procalcitonin (PCT), and C-reactive protein (CRP) levels. METHODS Serum NF-κB, TNF-α, sTRAIL, IL-6, PTX-3, PCT, and serum CRP levels were measured using enzyme-linked immunosorbent assay (ELISA) in 40 patients with breast cancer, 40 patients with colon cancer and 30 healthy controls. RESULTS The serum NF-κB, TNF-α, IL-6, PTX-3, PCT, and serum CRP concentration was significantly higher, and the serum sTRAIL concentration was significantly lower in the patients with breast and colon cancer than in healthy controls. NF-κB was positively correlated with CRP and negatively correlated with sTRAIL. CONCLUSIONS These results suggest that increased NF-κB may decrease the clinical efficacy of sTRAIL in solid tumour cells. There is a relationship between inflammation and carcinogenesis so that the development of cancer occurs with chronic inflammation in breast and colon. The study results have shown that colon and breast cancer patients have increased systemic inflammation, as measured by increased circulating cytokines, and acute-phase proteins, or by abnormalities in circulating cells. NF-κB may combine with other markers of the systemic inflammatory response in prognostic scores in cancer. In addition to surgical resection of the tumour, and conventional radio and chemotherapy for cancer treatment, the use of sTRAIL or other agonists for cancer therapy appeared a new potential therapy.
Collapse
Affiliation(s)
- Kundaktepe Berrin Papila
- Istanbul University-Cerrahpasa, Faculty of Cerrahpasa Medicine, Department of General Surgery, Istanbul, Turkey
| | - Volkan Sozer
- Yildiz Technical University, Department of Biochemistry, Istanbul, Turkey
| | - Kocael Pinar Cigdem
- Istanbul University-Cerrahpasa, Faculty of Cerrahpasa Medicine, Department of General Surgery, Istanbul, Turkey
| | - Sinem Durmus
- Istanbul University-Cerrahpasa, Faculty of Cerrahpasa Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Dilara Kurtulus
- Istanbul University-Cerrahpasa, Faculty of Cerrahpasa Medicine, Istanbul, Turkey
| | - Cigdem Papila
- Istanbul University-Cerrahpasa, Faculty of Cerrahpasa Medicine, Department of Internal Medicine, Division of Oncology, Istanbul, Turkey
| | - Remise Gelisgen
- Istanbul University-Cerrahpasa, Faculty of Cerrahpasa Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Hafize Uzun
- Istanbul University-Cerrahpasa, Faculty of Cerrahpasa Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
12
|
Wang L, Wang W, Zeng S, Zheng H, Lu Q. Construction and validation of a 6-gene nomogram discriminating lung metastasis risk of breast cancer patients. PLoS One 2020; 15:e0244693. [PMID: 33378415 PMCID: PMC7773205 DOI: 10.1371/journal.pone.0244693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignant disease in women. Metastasis is the foremost cause of death. Breast tumor cells have a proclivity to metastasize to specific organs. The lung is one of the most common sites of breast cancer metastasis. Therefore, we aimed to build a useful and convenient prediction tool based on several genes that may affect lung metastasis-free survival (LMFS). We preliminarily identified 319 genes associated with lung metastasis in the training set GSE5327 (n = 58). Enrichment analysis of GO functions and KEGG pathways was conducted based on these genes. The best genes for modeling were selected using a robust likelihood-based survival modeling approach: GOLGB1, TMEM158, CXCL8, MCM5, HIF1AN, and TSPAN31. A prognostic nomogram for predicting lung metastasis in breast cancer was developed based on these six genes. The effectiveness of the nomogram was evaluated in the training set GSE5327 and the validation set GSE2603. Both the internal validation and the external validation manifested the effectiveness of our 6-gene prognostic nomogram in predicting the lung metastasis risk of breast cancer patients. On the other hand, in the validation set GSE2603, we found that neither the six genes in the nomogram nor the risk predicted by the nomogram were associated with bone metastasis of breast cancer, preliminarily suggesting that these genes and nomogram were specifically associated with lung metastasis of breast cancer. What's more, five genes in the nomogram were significantly differentially expressed between breast cancer and normal breast tissues in the TIMER database. In conclusion, we constructed a new and convenient prediction model based on 6 genes that showed practical value in predicting the lung metastasis risk for clinical breast cancer patients. In addition, some of these genes could be treated as potential metastasis biomarkers for antimetastatic therapy in breast cancer. The evolution of this nomogram will provide a good reference for the prediction of tumor metastasis to other specific organs.
Collapse
Affiliation(s)
- Lingchen Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Wenhua Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huilie Zheng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Quqin Lu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
- * E-mail:
| |
Collapse
|
13
|
MYBL2 amplification in breast cancer: Molecular mechanisms and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1874:188407. [DOI: 10.1016/j.bbcan.2020.188407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
|
14
|
Xie B, Liu Y, Zhao Z, Liu Q, Wang X, Xie Y, Liu Y, Liu Y, Yang Y, Long J, Dai Q, Li H. MYB Proto-oncogene-like 1-TWIST1 Axis Promotes Growth and Metastasis of Hepatocellular Carcinoma Cells. Mol Ther Oncolytics 2020; 18:58-69. [PMID: 32637581 PMCID: PMC7327431 DOI: 10.1016/j.omto.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
MYB proto-oncogene-like 1 (MYBL1) has been reported to be a strong activator of transcription and plays an important role in the development of cancer. However, the precise biological function and molecular mechanism of MYBL1 in hepatocellular carcinoma (HCC) cells remain unclear. In the present study, we found that the expression of MYBL1 was markedly overexpressed in HCC cell lines and HCC samples, respectively. Moreover, MYBL1 expression positively correlated with tumor progression and inversely correlated with patient survival in 368 human HCC tissue samples. Overexpression of MYBL1 induced, whereas knockdown of MYBL1 reduced, HCC proliferation and metastasis both in vitro and in vivo. Furthermore, we demonstrated that HCC patients with high MYBL1 expression had significantly shorter overall and poorer disease-free survival than those with low MYBL1 expression. MYBL1 transcriptionally upregulated TWIST1 expression by directly targeting the TWIST1 promoter. More importantly, the in vitro analysis was consistent with the significant correlation between MYBL1 and TWIST1 expression observed in a large cohort of human HCC specimens. Taken together, our results demonstrate that MYBL1 plays an important role in HCC growth and metastasis and reveal a plausible mechanism for upregulation of TWIST1 in HCC.
Collapse
Affiliation(s)
- Binhui Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Yao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, P.R. China
| | - Zhenxian Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Yanhong Liu
- Department of Chinese Medicine Rehabilitation Physiotherapy, PLA 74th Group Army Hospital, Guangzhou 510318, P.R. China
| | - Yuwen Liu
- Gannan Medical University, Ganzhou 341000, P.R. China
| | - Yan Yang
- Gannan Medical University, Ganzhou 341000, P.R. China
| | - Jianting Long
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Qiangsheng Dai
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| |
Collapse
|
15
|
Netti GS, Lucarelli G, Spadaccino F, Castellano G, Gigante M, Divella C, Rocchetti MT, Rascio F, Mancini V, Stallone G, Carrieri G, Gesualdo L, Battaglia M, Ranieri E. PTX3 modulates the immunoflogosis in tumor microenvironment and is a prognostic factor for patients with clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:7585-7602. [PMID: 32345771 PMCID: PMC7202504 DOI: 10.18632/aging.103169] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 01/05/2023]
Abstract
Pentraxin-3 (PTX3) belongs to the pentraxine family, innate immune regulators involved in angiogenesis, proliferation and immune escape in cancer. Here, we evaluated PTX3 tissue expression and serum levels as biomarkers of clear cell renal cell carcinoma (ccRCC) and analyzed the possible role of complement system activation on tumor site. A 10-year retrospective cohort study including patients undergoing nephrectomy for ccRCC was also performed. PTX3 expression was elevated in both neoplastic renal cell lines and tissues, while it was absent in both normal renal proximal tubular cells (HK2) and normal renal tissues. Analysis of complement system activation on tumor tissues showed the co-expression of PTX3 with C1q, C3aR, C5R1 and CD59, but not with C5b-9 terminal complex. RCC patients showed higher serum PTX3 levels as compared to non-neoplastic patients (p<0.0001). Higher PTX3 serum levels were observed in patients with higher Fuhrman grade (p<0.01), lymph node (p<0.0001), and visceral metastases (p<0.001). Patients with higher PTX3 levels also showed significantly lower survival rates (p=0.002). Our results suggest that expression of PTX3 can affect the immunoflogosis in the ccRCC microenvironment, by activating the classical pathway of CS (C1q) and releasing pro-angiogenic factors (C3a, C5a). The up-regulation of CD59 also inhibits the complement-mediated cellular lysis.
Collapse
Affiliation(s)
- Giuseppe Stefano Netti
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| | - Giuseppe Lucarelli
- Urology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Federica Spadaccino
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Margherita Gigante
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| | - Chiara Divella
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Maria Teresa Rocchetti
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| | - Federica Rascio
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| | - Vito Mancini
- Urology and Renal Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| | - Giuseppe Carrieri
- Urology and Renal Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Michele Battaglia
- Urology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Elena Ranieri
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 71122, Foggia, Italy
| |
Collapse
|
16
|
Fu Y, Yao N, Ding D, Zhang X, Liu H, Ma L, Shi W, Zhu C, Tang L. TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway. J Cell Physiol 2019; 235:2761-2775. [PMID: 31531884 DOI: 10.1002/jcp.29181] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer (PC) is one of the most deadly digestive cancers world-wide, with a dismal five-year survival rate of <8%. Upregulation of transmembrane protein 158 (TMEM158) is known to facilitate the progression of several carcinomas. However, little is known concerning the potential roles of TMEM158 in PC. Herein, we first found that TMEM158 was significantly upregulated in PC samples as well as PC cell lines. The overexpression of TMEM158 was significantly correlated with advanced clinicopathologic features (including tumor size, TNM stage, and blood vessel invasion) and poorer prognosis of patients with PC in clinic. Evidenced based on a series of loss- and gain-of-function assays uncovered that TMEM158 enhanced PC cell proliferation, migration, and invasion by stimulating the progression of cell cycle, epithelial-mesenchymal transition, and MMP-2/9 production. Furthermore, mechanism-related investigations disclosed that activation of TGFβ1 and PI3K/AKT signal might be responsible for TMEM158-triggered PC aggressiveness. Collectively, TMEM158 was upregulated in PC and promoted PC cell proliferation, migration, and invasion through the activation of TGFβ1 and PI3K/AKT signaling pathways, highlighting its potential as a tumor promoter and a therapeutic target for PC.
Collapse
Affiliation(s)
- Yue Fu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Na Yao
- Department of Thyroid & Breast Surgery, Wuxi City Hospital of TCM, The Affiliated Hospital of Nanjing University of TCM, Wuxi, Jiangsu, China
| | - Dong Ding
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xudong Zhang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hanyang Liu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Le Ma
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Weihai Shi
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Liming Tang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
17
|
Liu L, Zhang J, Li S, Yin L, Tai J. Silencing of TMEM158 Inhibits Tumorigenesis and Multidrug Resistance in Colorectal Cancer. Nutr Cancer 2019; 72:662-671. [PMID: 31389251 DOI: 10.1080/01635581.2019.1650192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transmembrane protein 158 (TMEM158) plays pivotal roles in many cancers, including colorectal cancer (CRC). It has been reported that it is a recently identified upregulated gene during Ras-induced senescence. However, the clinical significance and biological functions of TMEM158 in CRC remain largely unknown. In this study, we found that TMEM158 was highly expressed in CRC tissues and cell lines compared with the corresponding noncancerous samples and normal colon epithelial cells. In vitro studies showed that TMEM158 silencing inhibited proliferation, and migration and increased apoptosis of CRC cells, whereas overexpression of TMEM158 increased proliferation, migration, and apoptosis escape of CRC cells. Mechanically, the levels of drug resistance-associated molecules, including multidrug resistance 1 and multidrug resistance protein 1, as well as the expression of antiapoptotic Bcl-2 were significantly upregulated. In addition, TMEM158 knockdown significantly inhibited tumor growth in vivo. Collectively, these results demonstrated that TMEM158 is a significant regulator of tumorigenesis and drug resistance in CRC and provided evidence that TMEM158 may be a promising target for CRC therapy.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Libin Yin
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Doni A, Stravalaci M, Inforzato A, Magrini E, Mantovani A, Garlanda C, Bottazzi B. The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer. Front Immunol 2019; 10:712. [PMID: 31019517 PMCID: PMC6459138 DOI: 10.3389/fimmu.2019.00712] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
The innate immune system comprises a cellular and a humoral arm. Humoral pattern recognition molecules include complement components, collectins, ficolins, and pentraxins. These molecules are involved in innate immune responses by recognizing microbial moieties and damaged tissues, activating complement, exerting opsonic activity and facilitating phagocytosis, and regulating inflammation. The long pentraxin PTX3 is a prototypic humoral pattern recognition molecule that, in addition to providing defense against infectious agents, plays several functions in tissue repair and regulation of cancer-related inflammation. Characterization of the PTX3 molecular structure and biochemical properties, and insights into its interactome and multiple roles in tissue damage and remodeling support the view that microbial and matrix recognition are evolutionarily conserved functions of humoral innate immunity molecules.
Collapse
Affiliation(s)
- Andrea Doni
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy
| | - Matteo Stravalaci
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Inforzato
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Magrini
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | |
Collapse
|
19
|
Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, Al Moustafa AE. Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers (Basel) 2019; 11:cancers11030363. [PMID: 30871273 PMCID: PMC6468678 DOI: 10.3390/cancers11030363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Israa Al-Hashimi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Halema Al Farsi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Semir Vranic
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
- Biomedical Research Centre, Qatar University, Doha P.O Box: 2713, Qatar.
| |
Collapse
|