1
|
Mechanisms of chronic alcohol exposure-induced aggressiveness in cellular model of HCC and recovery after alcohol withdrawal. Cell Mol Life Sci 2022; 79:366. [PMID: 35713728 PMCID: PMC9205837 DOI: 10.1007/s00018-022-04387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
Alcohol-related liver disease is the most prevalent chronic liver disease worldwide, accounting for 30% of hepatocellular carcinoma (HCC) cases and HCC-specific deaths. However, the knowledge on mechanisms by which alcohol consumption leads to cancer progression and its aggressiveness is limited. Better understanding of the clinical features and the mechanisms of alcohol-induced HCC are of critical importance for prevention and the development of novel treatments. Early stage Huh-7 and advanced SNU449 liver cancer cell lines were subjected to chronic alcohol exposure (CAE), at different doses for 6 months followed by 1-month alcohol withdrawal period. ADH activity and ALDH expression were much lower in SNU449 compared with Huh-7 cells and at the 270 mM dose, CAE decreased cell viability by about 50% and 80%, respectively, in Huh-7 and SNU449 cells but induced mortality only in Huh-7 cells. Thus, Huh-7 may be more vulnerable to ethanol toxicity because of the higher levels of acetaldehyde. CAE induced a dose-dependent increase in cell migration and invasion and also in the expression of cancer stem cells markers (CD133, CD44, CD90). CAE in Huh-7 cells selectively activated ERK1/2 and inhibited GSK3β signaling pathways. Most of the changes induced by CAE were reversed after alcohol withdrawal. Interestingly, we confirmed the increase in CD133 mRNA levels in the tumoral tissue of patients with ethanol-related HCC compared to other HCC etiologies. Our results may explain the benefits observed in epidemiological studies showing a significant increase of overall survival in abstinent compared with non-abstinent patients.
Collapse
|
2
|
HLA-DQB1-AS1 Promotes Cell Proliferation, Inhibits Apoptosis, and Binds with ZRANB2 Protein in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7130634. [PMID: 35602293 PMCID: PMC9117035 DOI: 10.1155/2022/7130634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Major histocompatibility complex, class II, DQ beta 1 antisense RNA 1 (HLA-DQB1-AS1) conferred the susceptibility to hepatocellular carcinoma. Sustaining cell growth and resisting apoptosis are two hallmarks of hepatocellular carcinoma. The present study explored the role of HLA-DQB1-AS1 in the proliferation and apoptosis of hepatocellular carcinoma cells and investigated its downstream pathway. Colony formation assay was performed to assess cell proliferation. Cell apoptosis was assessed with the TdT-mediated dUTP nick end labeling method. HLA-DQB1-AS1 deficiency exerts antiproliferative and proapoptotic effects on hepatocellular carcinoma cells. Moreover, based on bioinformatic analysis combined with the results of RNA immunoprecipitation assay, HLA-DQB1-AS1 was revealed to bind with zinc finger RANBP2-type containing 2 (ZRANB2) protein. ZRANB2 was upregulated in hepatocellular carcinoma at a clinical and cellular level. HLA-DQB1-AS1 caused no significant effects on ZRANB2 mRNA and protein expression. ZRANB2 knockdown suppressed cell proliferation and enhanced cell apoptosis of hepatocellular carcinoma. Moreover, ZRANB2 overexpression rescued the anticancer effect of silenced HLA-DQB1-AS1 in hepatocellular carcinoma cells. In conclusion, HLA-DQB1-AS1 promotes cell proliferation and inhibits apoptosis in hepatocellular carcinoma by the interaction with ZRANB2 protein.
Collapse
|
3
|
Liu CC, Wu CL, Lin MX, Sze CI, Gean PW. Disulfiram Sensitizes a Therapeutic-Resistant Glioblastoma to the TGF-β Receptor Inhibitor. Int J Mol Sci 2021; 22:ijms221910496. [PMID: 34638842 PMCID: PMC8508702 DOI: 10.3390/ijms221910496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
Despite neurosurgery following radiation and chemotherapy, residual glioblastoma (GBM) cells develop therapeutic resistance (TR) leading to recurrence. The GBM heterogeneity confers TR. Therefore, an effective strategy must target cancer stem cells (CSCs) and other malignant cancer cells. TGF-β and mesenchymal transition are the indicators for poor prognoses. The activity of aldehyde dehydrogenases (ALDHs) is a functional CSC marker. However, the interplay between TGF-β and ALDHs remains unclear. We developed radiation-resistant and radiation-temozolomide-resistant GBM models to investigate the underlying mechanisms conferring TR. Galunisertib is a drug targeting TGF-β receptors. Disulfiram (DSF) is an anti-alcoholism drug which functions by inhibiting ALDHs. The anti-tumor effects of combining DSF and Galunisertib were evaluated by in vitro cell grow, wound healing, Transwell assays, and in vivo orthotopic GBM model. Mesenchymal-like phenotype was facilitated by TGF-β in TR GBM. Additionally, TR activated ALDHs. DSF inhibited TR-induced cell migration and tumor sphere formation. However, DSF did not affect the tumor growth in vivo. Spectacularly, DSF sensitized TR GBM to Galunisertib both in vitro and in vivo. ALDH activity positively correlated with TGF-β-induced mesenchymal properties in TR GBM. CSCs and mesenchymal-like GBM cells targeted together by combining DSF and Galunisertib may be a good therapeutic strategy for recurrent GBM patients.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
| | - Cheng-Lin Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan
| | - Meng-Xuan Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
| | - Chun-I Sze
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Correspondence: (C.-I.S.); (P.-W.G.)
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan 701, Taiwan
- Correspondence: (C.-I.S.); (P.-W.G.)
| |
Collapse
|
4
|
Rodriguez FD, Coveñas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13:cancers13143548. [PMID: 34298760 PMCID: PMC8306032 DOI: 10.3390/cancers13143548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Of all yearly deaths attributable to alcohol consumption globally, approximately 12% are due to cancers, representing approximately 0.4 million deceased individuals. Ethanol metabolism disturbs cell biochemistry by targeting the structure and function of essential biomolecules (proteins, nucleic acids, and lipids) and by provoking alterations in cell programming that lead to cancer development and cancer malignancy. A better understanding of the metabolic and cell signaling realm affected by ethanol is paramount to designing effective treatments and preventive actions tailored to specific neoplasias. Abstract The World Health Organization identifies alcohol as a cause of several neoplasias of the oropharynx cavity, esophagus, gastrointestinal tract, larynx, liver, or female breast. We review ethanol’s nonoxidative and oxidative metabolism and one-carbon metabolism that encompasses both redox and transfer reactions that influence crucial cell proliferation machinery. Ethanol favors the uncontrolled production and action of free radicals, which interfere with the maintenance of essential cellular functions. We focus on the generation of protein, DNA, and lipid adducts that interfere with the cellular processes related to growth and differentiation. Ethanol’s effects on stem cells, which are responsible for building and repairing tissues, are reviewed. Cancer stem cells (CSCs) of different origins suffer disturbances related to the expression of cell surface markers, enzymes, and transcription factors after ethanol exposure with the consequent dysregulation of mechanisms related to cancer metastasis or resistance to treatments. Our analysis aims to underline and discuss potential targets that show more sensitivity to ethanol’s action and identify specific metabolic routes and metabolic realms that may be corrected to recover metabolic homeostasis after pharmacological intervention. Specifically, research should pay attention to re-establishing metabolic fluxes by fine-tuning the functioning of specific pathways related to one-carbon metabolism and antioxidant processes.
Collapse
Affiliation(s)
- Francisco D. Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-677-510-030
| | - Rafael Coveñas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Feng X, Zhang M, Meng J, Wang Y, Liu Y, Liang C, Fan S. Correlating Transcriptional Networks to Papillary Renal Cell Carcinoma Survival: A Large-Scale Coexpression Analysis and Clinical Validation. Oncol Res 2020; 28:285-297. [PMID: 31948514 PMCID: PMC7851515 DOI: 10.3727/096504020x15791676105394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We aimed to investigate the potential mechanisms of progression and identify novel prognosis-related biomarkers for papillary renal cell carcinoma (PRCC) patients. The related data were derived from The Cancer Genome Atlas (TCGA) and then analyzed by weighted gene coexpression network analysis (WGCNA). The correlation between each module and the clinical traits were analyzed by Pearson's correlation analysis. Pathway analysis was conducted to reveal potential mechanisms. Hub genes within each module were screened by intramodule analysis, and visualized by Cytoscape software. Furthermore, important hub genes were validated in an external dataset and clinical samples. A total of 5,839 differentially expressed genes were identified. By using WGCNA, we identified 21 coregulatory gene clusters based on 289 PRCC samples. We found many modules were significantly associated with clinicopathological characteristics. The gray, pink, light yellow, and salmon modules served as prognosis indicators for PRCC patients. Pathway enrichment analyses found that the hub genes were significantly enriched in the cancer-related pathways. With the external Gene Expression Omnibus (GEO) validation dataset, we found that PCDH12, GPR4, and KIF18A in the pink and yellow modules were continually associated with the survival status of PRCC, and their expressions were positively correlated with pathological grade. Notably, we randomly chose PCDH12 for validation, and the results suggested that the PRCC patients with higher pathological grades (II + III) mostly had higher PCDH12 protein expression levels compared with those patients in grade I. These validated hub genes play critical roles in the prognosis prediction of PRCC and serve as potential biomarkers for future personalized treatment.
Collapse
Affiliation(s)
- Xingliang Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Yongqiang Wang
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen UniversityShenzhenChina
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Di Rocco G, Baldari S, Pani G, Toietta G. Stem cells under the influence of alcohol: effects of ethanol consumption on stem/progenitor cells. Cell Mol Life Sci 2019; 76:231-244. [PMID: 30306211 PMCID: PMC6339663 DOI: 10.1007/s00018-018-2931-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Stem cells drive embryonic and fetal development. In several adult tissues, they retain the ability to self-renew and differentiate into a variety of specialized cells, thus contributing to tissue homeostasis and repair throughout life span. Alcohol consumption is associated with an increased risk for several diseases and conditions. Growing and developing tissues are particularly vulnerable to alcohol's influence, suggesting that stem- and progenitor-cell function could be affected. Accordingly, recent studies have revealed the possible relevance of alcohol exposure in impairing stem-cell properties, consequently affecting organ development and injury response in different tissues. Here, we review the main studies describing the effects of alcohol on different types of progenitor/stem cells including neuronal, hepatic, intestinal and adventitial progenitor cells, bone-marrow-derived stromal cell, dental pulp, embryonic and hematopoietic stem cells, and tumor-initiating cells. A better understanding of the nature of the cellular damage induced by chronic and episodic heavy (binge) drinking is critical for the improvement of current therapeutic strategies designed to treat patients suffering from alcohol-related disorders.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University Medical School, Largo F. Vito 1, 00168, Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
7
|
Xu M, Fang S, Song J, Chen M, Zhang Q, Weng Q, Fan X, Chen W, Wu X, Wu F, Tu J, Zhao Z, Ji J. CPEB1 mediates hepatocellular carcinoma cancer stemness and chemoresistance. Cell Death Dis 2018; 9:957. [PMID: 30237545 PMCID: PMC6148052 DOI: 10.1038/s41419-018-0974-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells within tumors that are believed to possess pluripotent properties and thought to be responsible for tumor initiation, progression, relapse and metastasis. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1), a sequence-specific RNA-binding protein that regulates mRNA polyadenylation and translation, has been linked to cancer progression and metastasis. However, the involvement of CPEB1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we have demonstrated that CPEB1 directly regulates sirtuin 1 (SIRT1) mRNA to mediate cancer stemness in HCC. Cancer stemness was analyzed by self-renewal ability, chemoresistance, metastasis, expression of stemness-related genes and CSC marker-positive cell populations. The results indicate that CPEB1 is downregulated in HCC. Overexpression of CPEB1 dramatically reduced HCC cell stemness, whereas silencing CPEB1 enhances it. Using site-directed mutagenesis, a luciferase reporter assay, and immunoprecipitation, we found that CPEB1 could directly target the 3′-UTR of SIRT1, control poly(A) tail length and suppress its translation to mediate cancer stemness in vitro and in vivo. Overall, our findings suggest that the negative regulation between CPEB1 and SIRT1 contributes to the suppression of cancer stemness in HCC. CPEB1 may have potential as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Qianqian Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Xiaoxi Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Xulu Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China.
| |
Collapse
|
8
|
Jabri MA, Marzouki L, Sebai H. Myrtle berries seeds aqueous extract abrogates chronic alcohol consumption-induced erythrocytes osmotic stability disturbance, haematological and biochemical toxicity. Lipids Health Dis 2018; 17:94. [PMID: 29685140 PMCID: PMC5913868 DOI: 10.1186/s12944-018-0746-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study examined the effects of chronic alcohol consumption in the rat erythrocytes membrane as well as the involvement of reactive oxygen species and proinflammatory cytokines in its pathogenicity in rats and evaluated the ameliorating effects of myrtle berries seeds aqueous extract (MBSAE). METHODS Fifty adult male Wistar rats were equally divided into five groups and treated daily for two months as follows: control, ethanol (3 g kg- 1 b.w., p.o.), and ethanol + MBSAE (25, 50 and 100 mg kg- 1, b.w., p.o.). RESULTS Exposure of rats to alcohol caused significant changes of some haematological parameters, enhanced erythrocytes hemolysis as well as an overproduction of reactive oxygen species such as H2O2, OH• radical and superoxide anion, hence the increase of lipoperoxidation and the depletion of antioxidant enzymes activity as well as non-enzymatic antioxidant (-SH groups and GSH) levels. On the other hand, ethanol intoxication caused the increase of serum TNFα, IL-8, IL-6 and 1Lβ, markers of tissue inflammation. However, treatment with MBSAE alleviated all the deleterious effects of alcohol consumption. CONCLUSIONS MBSAE possess active compounds, which exert marked protective effects in chronic alcohol intoxication, possibly by regulating the erythrocytes osmotic stability as well as antioxidant and inflammatory mediators.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Avenue Habib Bourguiba, B.P. 382 -9000, Béja, Tunisia.
| | - Lamjed Marzouki
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Avenue Habib Bourguiba, B.P. 382 -9000, Béja, Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Avenue Habib Bourguiba, B.P. 382 -9000, Béja, Tunisia
| |
Collapse
|