1
|
Romo B, Fuentes Z, Randolph L, Mahajan M, Aller EJ, Ebrahimi B, Santhamma B, Pratap UP, Subbarayalu P, Nagandla H, Thomas C, Nair HB, Vadlamudi RK, Viswanadhapalli S. Targeting the Leukemia Inhibitory Factor/Leukemia Inhibitory Factor Receptor Axis Reduces the Growth of Inflammatory Breast Cancer by Promoting Ferroptosis. Cancers (Basel) 2025; 17:790. [PMID: 40075639 PMCID: PMC11898489 DOI: 10.3390/cancers17050790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Inflammatory breast cancer (IBC) is a rare subtype of breast cancer accounting for 7% of breast cancer-related fatalities. There is an urgent need to develop new targeted treatments for IBC. The progression of IBC has been associated with alterations in growth factor and cytokine signaling; however, the function of the LIF (leukemia inhibitory factor)/LIFR (leukemia inhibitory factor receptor) cytokine pathway in the progression of IBC remains unknown. This study evaluated the role of LIFR signaling and tested the efficacy of the LIFR inhibitor EC359 in treating IBC. Methods: The utility of using LIFR inhibition as a treatment strategy in IBC was tested using cell survival, apoptosis, colony formation, invasion, and pre-clinical KPL4 xenografts. Western blotting, siRNA, RT-qPCR, and lipid peroxidation assays were used to establish the mechanism of EC359 therapy. Results: The reduction in LIFR levels using siRNA markedly decreased growth in colony formation assays and reduced the invasion of IBC cells. Pharmacological inhibition of LIFR with EC359 effectively reduced cell survival and the clonogenic capacity of IBC cells. RT-qPCR assays revealed that EC359 markedly decreased the expression of the LIFR target genes. Western blot analyses confirmed that EC359 treatment suppressed downstream LIF/LIFR signaling pathways and promoted apoptosis. Treatment of cells with the ferroptosis inhibitor Fer-1 negated the capacity of EC359 to induce apoptosis. Mechanistic investigations demonstrated that EC359 predominantly triggered ferroptosis by inhibiting the glutathione antioxidant defense system through the downregulation of Glutathione peroxidase 4 (GPX4) levels. EC359 (5 mg/kg/day) was effective in reducing the growth of the IBC KPL4 xenograft tumors. Conclusion: These findings demonstrates that LIFR inhibition promote ferroptosis-mediated cell death in IBC and that EC359 represent novel therapeutic for IBC treatment.
Collapse
Affiliation(s)
- Bianca Romo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
| | - Zenaida Fuentes
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
| | - Lois Randolph
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
| | - Megharani Mahajan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
| | - Emily J. Aller
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
| | - Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
| | | | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Panneerdoss Subbarayalu
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
- Greehey Children Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.N.); (C.T.)
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.N.); (C.T.)
| | - Hareesh B. Nair
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
- Evestra, Inc., San Antonio, TX 78245, USA;
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (B.R.); (Z.F.); (L.R.); (M.M.); (E.J.A.); (B.E.); (U.P.P.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| |
Collapse
|
2
|
Ma W, Yan H, Ma H, Xu Z, Dai W, Wu Y, Zhang H, Li Y. Roles of leukemia inhibitory factor receptor in cancer. Int J Cancer 2025; 156:262-273. [PMID: 39279155 DOI: 10.1002/ijc.35157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Leukemia inhibitory factor receptor (LIFR), in complex with glycoprotein 130 (gp130) as the receptor for leukemia inhibitory factor (LIF), can bind to a variety of cytokines and subsequently activate a variety of signaling pathways, including Janus kinase/signal transducer and activator of transcription 3. LIF, the most multifunctional cytokines of the interleukin-6 family acts as both a growth factor and a growth inhibitor in different types of tumors. LIF/LIFR signaling regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, invasion. However, due to the activation of different signaling pathways, opposite regulatory effects are observed in certain tumor cells. Therefore, the role of LIFR in human cancers varies across different tumor and tissue, despite their recognized value in tumor treatment and prognosis observation is affirmed. Given its aberrant expression in numerous tumor cells and crucial regulatory function in tumorigenesis and progression, LIFR is considered as a promising targeted therapeutic agent. This review provides an overview of LIFR's initiating signaling pathway function as a cytokine receptor and summarize the current literature on the role of LIFR in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Wei Ma
- School of Stomatology, China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Haoyuan Ma
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Zengyan Xu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei Dai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yudan Wu
- School of Nursing, China Medical University, Shenyang, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Randolph L, Joshi J, Rodriguez Sanchez AL, Pratap UP, Gopalam R, Chen Y, Lai Z, Santhamma B, Kost ER, Nair HB, Vadlamudi RK, Subbarayalu P, Viswanadhapalli S. Significance of LIF/LIFR Signaling in the Progression of Obesity-Driven Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3630. [PMID: 39518071 PMCID: PMC11545110 DOI: 10.3390/cancers16213630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
American women with obesity have an increased incidence of triple-negative breast cancer (TNBC). The impact of obesity conditions on the tumor microenvironment is suspected to accelerate TNBC progression; however, the specific mechanism(s) remains elusive. This study explores the hypothesis that obesity upregulates leukemia inhibitory factor receptor (LIFR) oncogenic signaling in TNBC and assesses the efficacy of LIFR inhibition with EC359 in blocking TNBC progression. TNBC cell lines were co-cultured with human primary adipocytes, or adipocyte-conditioned medium, and treated with EC359. The effects of adiposity were measured using cell viability, colony formation, and invasion assays. Mechanistic studies utilized RNA-Seq, Western blotting, RT-qPCR, and reporter gene assays. The therapeutic potential of EC359 was tested using xenograft and patient-derived organoid (PDO) models. The results showed that adipose conditions increased TNBC cell proliferation and invasion, and these effects correlated with enhanced LIFR signaling. Accordingly, EC359 treatment reduced cell viability, colony formation, and invasion under adipose conditions and blocked adipose-mediated organoid growth and TNBC xenograft tumor growth. RNA-Seq analysis identified critical pathways modulated by LIF/LIFR signaling in diet-induced obesity mouse models. These findings suggest that adiposity contributes to TNBC progression via the activation of the LIF/LIFR pathway, and LIFR inhibition with EC359 represents a promising therapeutic approach for obesity-associated TNBC.
Collapse
Affiliation(s)
- Lois Randolph
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Jaitri Joshi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Alondra Lee Rodriguez Sanchez
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Rahul Gopalam
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Edward R. Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | | | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Panneerdoss Subbarayalu
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Ebrahimi B, Viswanadhapalli S, Pratap UP, Rahul G, Yang X, Pitta Venkata P, Drel V, Santhamma B, Konda S, Li X, Sanchez ALR, Yan H, Sareddy GR, Xu Z, Singh BB, Valente PT, Chen Y, Lai Z, Rao M, Kost ER, Curiel T, Tekmal RR, Nair HB, Vadlamudi RK. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis Oncol 2024; 8:118. [PMID: 38789520 PMCID: PMC11126619 DOI: 10.1038/s41698-024-00612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gopalam Rahul
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Prabhakar Pitta Venkata
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Viktor Drel
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | | | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Hui Yan
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhenming Xu
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Philip T Valente
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Department of Population Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Tyler Curiel
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, NH, 03755, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Rios SA, Oyervides S, Uribe D, Reyes AM, Fanniel V, Vazquez J, Keniry M. Emerging Therapies for Glioblastoma. Cancers (Basel) 2024; 16:1485. [PMID: 38672566 PMCID: PMC11048459 DOI: 10.3390/cancers16081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is most commonly a primary brain tumor and the utmost malignant one, with a survival rate of approximately 12-18 months. Glioblastoma is highly heterogeneous, demonstrating that different types of cells from the same tumor can manifest distinct gene expression patterns and biological behaviors. Conventional therapies such as temozolomide, radiation, and surgery have limitations. As of now, there is no cure for glioblastoma. Alternative treatment methods to eradicate glioblastoma are discussed in this review, including targeted therapies to PI3K, NFKβ, JAK-STAT, CK2, WNT, NOTCH, Hedgehog, and TGFβ pathways. The highly novel application of oncolytic viruses and nanomaterials in combating glioblastoma are also discussed. Despite scores of clinical trials for glioblastoma, the prognosis remains poor. Progress in breaching the blood-brain barrier with nanomaterials and novel avenues for targeted and combination treatments hold promise for the future development of efficacious glioblastoma therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megan Keniry
- School of Integrative Biological and Chemical Sciences, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (S.A.R.); (D.U.); (A.M.R.)
| |
Collapse
|
6
|
Spencer N, Rodriguez Sanchez AL, Gopalam R, Subbarayalu P, Medina DM, Yang X, Ramirez P, Randolph L, Aller EJ, Santhamma B, Rao MK, Tekmal RR, Nair HB, Kost ER, Vadlamudi RK, Viswanadhapalli S. The LIFR Inhibitor EC359 Effectively Targets Type II Endometrial Cancer by Blocking LIF/LIFR Oncogenic Signaling. Int J Mol Sci 2023; 24:17426. [PMID: 38139260 PMCID: PMC10744027 DOI: 10.3390/ijms242417426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.
Collapse
Affiliation(s)
- Nicole Spencer
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Alondra Lee Rodriguez Sanchez
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Rahul Gopalam
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Panneerdoss Subbarayalu
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Daisy M. Medina
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Xue Yang
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Paulina Ramirez
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Lois Randolph
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Emily Jean Aller
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | | | - Manjeet K. Rao
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Rajeshwar Rao Tekmal
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | | | - Edward R. Kost
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Ratna K. Vadlamudi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Suryavathi Viswanadhapalli
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Londoño-Berrio M, Castro C, Cañas A, Ortiz I, Osorio M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022; 14:pharmaceutics14122709. [PMID: 36559203 PMCID: PMC9784359 DOI: 10.3390/pharmaceutics14122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.
Collapse
Affiliation(s)
- Maritza Londoño-Berrio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Cristina Castro
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
| | - Ana Cañas
- Corporation for Biological Research, Medical, and Experimental Research Group, Carrera 72A # 78b-141, Medellin 050034, Colombia
| | - Isabel Ortiz
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Marlon Osorio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
- Correspondence:
| |
Collapse
|
8
|
Jorgensen MM, de la Puente P. Leukemia Inhibitory Factor: An Important Cytokine in Pathologies and Cancer. Biomolecules 2022; 12:biom12020217. [PMID: 35204717 PMCID: PMC8961628 DOI: 10.3390/biom12020217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Leukemia Inhibitory Factor (LIF) is a member of the IL-6 cytokine family and is expressed in almost every tissue type within the body. Although LIF was named for its ability to induce differentiation of myeloid leukemia cells, studies of LIF in additional diseases and solid tumor types have shown that it has the potential to contribute to many other pathologies. Exploring the roles of LIF in normal physiology and non-cancer pathologies can give important insights into how it may be dysregulated within cancers, and the possible effects of this dysregulation. Within various cancer types, LIF expression has been linked to hallmarks of cancer, such as proliferation, metastasis, and chemoresistance, as well as overall patient survival. The mechanisms behind these effects of LIF are not well understood and can differ between different tissue types. In fact, research has shown that while LIF may promote malignancy progression in some solid tumors, it can have anti-neoplastic effects in others. This review will summarize current knowledge of how LIF expression impacts cellular function and dysfunction to help reveal new adjuvant treatment options for cancer patients, while also revealing potential adverse effects of treatments targeting LIF signaling.
Collapse
Affiliation(s)
- Megan M Jorgensen
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
- MD/PhD Program, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Pilar de la Puente
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| |
Collapse
|
9
|
Hu C, Xia R, Zhang X, Li T, Ye Y, Li G, He R, Li Z, Lin Q, Zheng S, Chen R. circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer 2022; 21:24. [PMID: 35045883 PMCID: PMC8767726 DOI: 10.1186/s12943-022-01501-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are critically involved in gemcitabine (GEM) resistance in pancreatic ductal adenocarcinoma (PDAC). However, the underlying mechanism by which CAFs promote chemotherapy resistance remains unexplored. Here, we explored the role of circRNAs in CAF-induced GEM resistance in PDAC. Methods circRNA sequencing and quantitative real-time PCR (qRT–PCR) were utilized to screen CAF-specific circRNAs. The effects of CAF circFARP1 expression on GEM resistance in tumor cells were assessed in vitro and in vivo. RNA-seq, RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays were used to screen the downstream target and underlying mechanism of circFARP1. Results circFARP1 (hsa_circ_0002557), a CAF-specific circRNA, was positively correlated with GEM chemoresistance and poor survival in an advanced PDAC cohort. Silencing or overexpressing circFARP1 in CAFs altered the ability of CAFs to induce tumor cell stemness and GEM resistance via leukemia inhibitory factor (LIF). Mechanistically, we found that circFARP1 directly binds with caveolin 1 (CAV1) and blocks the interaction of CAV1 and the E3 ubiquitin-protein ligase zinc and ring finger 1 (ZNRF1) to inhibit CAV1 degradation, which enhances LIF secretion. In addition, circFARP1 upregulated LIF expression by sponging miR-660-3p. Moreover, high circFARP1 levels were positively correlated with elevated serum LIF levels in PDAC and poor patient survival. Decreasing circFARP1 levels and neutralizing LIF significantly suppressed PDAC growth and GEM resistance in patient-derived xenograft models. Conclusions The circFARP1/CAV1/miR-660-3p/LIF axis is critical for CAF-induced GEM resistance in PDAC. Hence, circFARP1 may be a potential therapeutic target for PDAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01501-3.
Collapse
Affiliation(s)
- Chonghui Hu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Renpeng Xia
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,Department of Neonatal/General Surgery, Hunan Children's Hospital, Changsha, Hunan, 410007, People's Republic of China
| | - Xiang Zhang
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Tingting Li
- School of medicine, South China University of Technology, Guangzhou, Guangdong Province, 510006, People's Republic of China
| | - Yuancheng Ye
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Guolin Li
- Department of Hepatobiliary, Pancreatic and Splenic surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Rihua He
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhihua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Qing Lin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Shangyou Zheng
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China. .,School of medicine, South China University of Technology, Guangzhou, Guangdong Province, 510006, People's Republic of China.
| |
Collapse
|
10
|
Qin J, Guo LR, Li JL, Zhang FH, Zhao DP, Du R. RNA-sequencing reveals the metabolism regulation mechanism of sheep skeletal muscle under nutrition deprivation stress. Animal 2021; 15:100254. [PMID: 34090092 DOI: 10.1016/j.animal.2021.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Although the skeletal muscle is one of the main sites of metabolism, little is known about the molecular mechanisms involving its response to nutrition stress. The aim of the study was to screen the transcriptome of sheep muscle to identify the metabolism-related genes under nutrition deprivation stress. Ten healthy adult female Small-tailed Han sheep with similar age and weight were randomly divided into a normal group and fasted group. After 3 days, three sheep were randomly selected from each group and the semitendinosus samples were subjected to RNA-sequencing (RNA-seq) and a series of analyses and function annotations. Compared with the normal group, 391 differentially expressed genes (DEGs) were identified in the fasted group that had obvious weight loss, including 278 down-regulated and 113 up-regulated genes. Gene Ontology enrichment annotation classified 228 DEGs in the metabolic process, 11 of which were new genes and only Sheep_newGene_4578 had been annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The results of Clusters of Orthologous Groups annotation indicated that 11, 9, and 4 DEGs were respectively classified in lipid transport and metabolism, amino acid transport and metabolism, and carbohydrate transport and metabolism. In addition, KEGG enrichment analysis showed that there were not only pathways which were directly related to metabolisms such as protein digestion and absorption pathway, fatty acid metabolism pathway, and biosynthesis pathway of unsaturated fatty acids, but also PI3K-AKT pathway, AMPK pathway, MAPK pathway, and FoxO pathway which were important to metabolism among the top 20 pathways with the lowest significant Q value. The MCODE analysis of protein-protein interaction revealed that two identified subnetworks with top score were closely associated with metabolism. The correlation analysis showed that the mRNA levels of most of DEGs that might be related in the two subnetworks were significantly correlated respectively, and the mRNA levels of most of 10 metabolism-related DEGs including Sheep_newGene_4578 were significantly correlated. Finally, 16 random and 10 metabolism-related DEGs were chosen for confirmation by quantitative real-time PCR, demonstrating the same expression change as determined by RNA-seq. In conclusion, multiple interrelated metabolism-related DEGs in skeletal muscle contributed to the response of sheep to nutritional deprivation stress.
Collapse
Affiliation(s)
- J Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Center of Experiment Teaching, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - L R Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - J L Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - F H Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - D P Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - R Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
11
|
Chen S, Gao C, Yu T, Qu Y, Xiao GG, Huang Z. Bioinformatics Analysis of a Prognostic miRNA Signature and Potential Key Genes in Pancreatic Cancer. Front Oncol 2021; 11:641289. [PMID: 34094925 PMCID: PMC8174116 DOI: 10.3389/fonc.2021.641289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background In this study, miRNAs and their critical target genes related to the prognosis of pancreatic cancer were screened based on bioinformatics analysis to provide targets for the prognosis and treatment of pancreatic cancer. Methods R software was used to screen differentially expressed miRNAs (DEMs) and genes (DEGs) downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively. A miRNA Cox proportional hazards regression model was constructed based on the miRNAs, and a miRNA prognostic model was generated. The target genes of the prognostic miRNAs were predicted using TargetScan and miRDB and then intersected with the DEGs to obtain common genes. The functions of the common genes were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. A protein-protein interaction (PPI) network of the common genes was constructed with the STRING database and visualized with Cytoscape software. Key genes were also screened with the MCODE and cytoHubba plug-ins of Cytoscape. Finally, a prognostic model formed by the key gene was also established to help evaluate the reliability of this screening process. Results A prognostic model containing four downregulated miRNAs (hsa-mir-424, hsa-mir-3613, hsa-mir-4772 and hsa-mir-126) related to the prognosis of pancreatic cancer was constructed. A total of 118 common genes were enriched in two KEGG pathways and 33 GO functional annotations, including extracellular matrix (ECM)-receptor interaction and cell adhesion. Nine key genes related to pancreatic cancer were also obtained: MMP14, ITGA2, THBS2, COL1A1, COL3A1, COL11A1, COL6A3, COL12A1 and COL5A2. The prognostic model formed by nine key genes also possessed good prognostic ability. Conclusions The prognostic model consisting of four miRNAs can reliably predict the prognosis of patients with pancreatic cancer. In addition, the screened nine key genes, which can also form a reliable prognostic model, are significantly related to the occurrence and development of pancreatic cancer. Among them, one novel miRNA (hsa-mir-4772) and two novel genes (COL12A1 and COL5A2) associated with pancreatic cancer have great potential to be used as prognostic factors and therapeutic targets for this tumor.
Collapse
Affiliation(s)
- Shuoling Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Chang Gao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Tianyang Yu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yueyang Qu
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
12
|
He X, Zhu Y, Yang L, Wang Z, Wang Z, Feng J, Wen X, Cheng L, Zhu R. MgFe-LDH Nanoparticles: A Promising Leukemia Inhibitory Factor Replacement for Self-Renewal and Pluripotency Maintenance in Cultured Mouse Embryonic Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003535. [PMID: 33977050 PMCID: PMC8097378 DOI: 10.1002/advs.202003535] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Indexed: 05/20/2023]
Abstract
Leukemia inhibitory factor (LIF), an indispensable bioactive protein that sustains self-renewal and pluripotency in stem cells, is vital for mouse embryonic stem cell (mESC) culture. Extensive research is conducted on reliable alternatives for LIF as its clinical application in stable culture and large-scale expansion of ESCs is limited by its instability and high cost. However, few studies have sought to replace LIF with nanoparticles to provide a xeno-free culture condition. MgAl-LDH (layered double hydroxide) nanoparticles can partially replace LIF in maintaining pluripotency of mESCs; however, the requirement and tolerance for aluminum ions in mice are far lesser than those of iron ions. Hence, MgFe-LDH nanoparticles are selected for this study. MgFe-LDH is superior to MgAl-LDH in maintaining self-renewal and pluripotency of mESCs, in the absence of LIF and mouse embryonic fibroblast. Furthermore, combined transcriptomic and proteomic analysis confirms that MgFe-LDH can activate the LIF receptor (LIFR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B(AKT), LIFR/JAK/janus kinase (JAK)/signal transducer and activator of transcription 3(STAT3), and phospho-signal transducer and activator of transcription 3(p-STAT3)/ten-eleven translocation (TET) signaling pathways, while the extra Fe2+ provided by MgFe-LDH would also enhance TET1/2 abundance thus affecting the TET1/2 regulated pluripotency related marker expression and TET1/2 meditated DNA demethylation. These results suggest that MgFe-LDH nanoparticles can thus be used as an affordable and efficient replacement for LIF in mESC cultivation.
Collapse
Affiliation(s)
- Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
| | - Zekun Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
| | - Jianhao Feng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
| | - Xuejun Wen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
- Department of Chemical and Life Science EngineeringSchool of EngineeringVirginia Commonwealth UniversityRichmondVA23284USA
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of Life Science and TechnologyTongji University389 Xincun RoadShanghai200065P. R. China
| |
Collapse
|
13
|
Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021; 221:107754. [PMID: 33259884 PMCID: PMC8084904 DOI: 10.1016/j.pharmthera.2020.107754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Leukemia inhibitory factor (LIF) is a multi-functional cytokine of the interleukin-6 (IL-6) superfamily. Initially identified as a factor that inhibits the proliferation of murine myeloid leukemia cells, LIF displays a wide variety of important functions in a cell-, tissue- and context-dependent manner in many physiological and pathological processes, including regulating cell proliferation, pluripotent stem cell self-renewal, tissue/organ development and regeneration, neurogenesis and neural regeneration, maternal reproduction, inflammation, infection, immune response, and metabolism. Emerging evidence has shown that LIF plays an important but complex role in human cancers; while LIF displays a tumor suppressive function in some types of cancers, including leukemia, LIF is overexpressed and exerts an oncogenic function in many more types of cancers. Further, targeting LIF has been actively investigated as a novel strategy for cancer therapy. This review summarizes the recent advances in the studies on LIF in human cancers and its potential application in cancer therapy. A better understanding of the role of LIF in different types of cancers and its underlying mechanisms will help to develop more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
14
|
Ding J, Liu Y, Lai Y. Identifying MMP14 and COL12A1 as a potential combination of prognostic biomarkers in pancreatic ductal adenocarcinoma using integrated bioinformatics analysis. PeerJ 2020; 8:e10419. [PMID: 33282565 PMCID: PMC7690310 DOI: 10.7717/peerj.10419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant neoplasm. It is necessary to improve the understanding of the underlying molecular mechanisms and identify the key genes and signaling pathways involved in PDAC. Methods The microarray datasets GSE28735, GSE62165, and GSE91035 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified by integrated bioinformatics analysis, including protein-protein interaction (PPI) network, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The PPI network was established using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. GO functional annotation and KEGG pathway analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery. Hub genes were validated via the Gene Expression Profiling Interactive Analysis tool (GEPIA) and the Human Protein Atlas (HPA) website. Results A total of 263 DEGs (167 upregulated and 96 downregulated) were common to the three datasets. We used STRING and Cytoscape software to establish the PPI network and then identified key modules. From the PPI network, 225 nodes and 803 edges were selected. The most significant module, which comprised 11 DEGs, was identified using the Molecular Complex Detection plugin. The top 20 hub genes, which were filtered by the CytoHubba plugin, comprised FN1, COL1A1, COL3A1, BGN, POSTN, FBN1, COL5A2, COL12A1, THBS2, COL6A3, VCAN, CDH11, MMP14, LTBP1, IGFBP5, ALB, CXCL12, FAP, MATN3, and COL8A1. These genes were validated using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, and the encoded proteins were subsequently validated using the HPA website. The GO analysis results showed that the most significantly enriched biological process, cellular component, and molecular function terms among the 20 hub genes were cell adhesion, proteinaceous extracellular matrix, and calcium ion binding, respectively. The KEGG pathway analysis showed that the 20 hub genes were mainly enriched in ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and protein digestion and absorption. These findings indicated that FBN1 and COL8A1 appear to be involved in the progression of PDAC. Moreover, patient survival analysis performed via the GEPIA using TCGA and GTEx databases demonstrated that the expression levels of COL12A1 and MMP14 were correlated with a poor prognosis in PDAC patients (p < 0.05). Conclusions The results demonstrated that upregulation of MMP14 and COL12A1 is associated with poor overall survival, and these might be a combination of prognostic biomarkers in PDAC.
Collapse
Affiliation(s)
- Jingyi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanxi Liu
- University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Lin M, Gao M, Pandalai PK, Cavnar MJ, Kim J. An Organotypic Microcosm for the Pancreatic Tumor Microenvironment. Cancers (Basel) 2020; 12:E811. [PMID: 32231028 PMCID: PMC7225919 DOI: 10.3390/cancers12040811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic duct adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related deaths in the next few years. Unfortunately, the development of novel therapies for PDAC has been challenged by a uniquely complex tumor microenvironment. The development of in vitro cancer organoids in recent years has demonstrated potential to increase therapies for patients with PDAC. Organoids have been established from PDAC murine and human tissues and they are representative of the primary tumor. Further, organoids have been shown beneficial in studies of molecular mechanisms and drug sensitivity testing. This review will cover the use of organoids to study PDAC development, invasiveness, and therapeutic resistance in the context of the tumor microenvironment, which is characterized by a dense desmoplastic reaction, hindered immune activity, and pro-tumor metabolic signaling. We describe investigations utilizing organoids to characterize the tumor microenvironment and also describe their limitations. Overall, organoids have great potential to serve as a versatile model of drug response and may be used to increase available therapies and improve survival for patients with PDAC.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Kim
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA; (M.L.); (M.G.); (P.K.P.); (M.J.C.)
| |
Collapse
|
16
|
Kenny PA. InferAMP, a python web app for copy number inference from discrete gene-level amplification signals noted in clinical tumor profiling reports. F1000Res 2019; 8:807. [PMID: 31608148 PMCID: PMC6777010 DOI: 10.12688/f1000research.19541.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 10/15/2023] Open
Abstract
As somatic next-generation sequencing gene panel analysis in advanced cancer patients is becoming more routine, oncologists are frequently presented with reports containing lists of genes with increased copy number. Distinguishing which of these amplified genes, if any, might be driving tumor growth and might thus be worth considering targeting can be challenging. One particular issue is the frequent absence of genomic contextual information in clinical reports, making it very challenging to determine which reported genes might be co-amplified and how large any such amplicons might be. We describe a straightforward Python web app, InferAMP, into which healthcare professionals may enter lists of amplified genes from clinical reports. The tool reports (1) the likely size of amplified genomic regions, (2) which reported genes are co-amplified and (3) which other cancer-relevant genes that were not evaluated in the assay may also be co-amplified in the specimen. The tool is accessible for web queries at http://inferamp.org.
Collapse
Affiliation(s)
- Paraic A. Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, 54601, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
17
|
Kenny PA. InferCNV, a python web app for copy number inference from discrete gene-level amplification signals noted in clinical tumor profiling reports. F1000Res 2019; 8:807. [PMID: 31608148 PMCID: PMC6777010 DOI: 10.12688/f1000research.19541.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2019] [Indexed: 10/15/2023] Open
Abstract
As somatic next-generation sequencing gene panel analysis in advanced cancer patients is becoming more routine, oncologists are frequently presented with reports containing lists of genes with increased copy number. Distinguishing which of these amplified genes, if any, might be driving tumor growth and might thus be worth considering targeting can be challenging. One particular issue is the frequent absence of genomic contextual information in clinical reports, making it very challenging to determine which reported genes might be co-amplified and how large any such amplicons might be. We describe a straightforward Python web app, InferCNV, into which healthcare professionals may enter lists of amplified genes from clinical reports. The tool reports (1) the likely size of amplified genomic regions, (2) which reported genes are co-amplified and (3) which other cancer-relevant genes that were not evaluated in the assay may also be co-amplified in the specimen. The tool is accessible for web queries at http://infercnv.org.
Collapse
Affiliation(s)
- Paraic A. Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, 54601, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
18
|
Kenny PA. InferAMP, a python web app for copy number inference from discrete gene-level amplification signals noted in clinical tumor profiling reports. F1000Res 2019; 8:807. [PMID: 31608148 PMCID: PMC6777010 DOI: 10.12688/f1000research.19541.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2019] [Indexed: 01/15/2023] Open
Abstract
As somatic next-generation sequencing gene panel analysis in advanced cancer patients is becoming more routine, oncologists are frequently presented with reports containing lists of genes with increased copy number. Distinguishing which of these amplified genes, if any, might be driving tumor growth and might thus be worth considering targeting can be challenging. One particular issue is the frequent absence of genomic contextual information in clinical reports, making it very challenging to determine which reported genes might be co-amplified and how large any such amplicons might be. We describe a straightforward Python web app, InferAMP, into which healthcare professionals may enter lists of amplified genes from clinical reports. The tool reports (1) the likely size of amplified genomic regions, (2) which reported genes are co-amplified and (3) which other cancer-relevant genes that were not evaluated in the assay may also be co-amplified in the specimen. The tool is accessible for web queries at http://inferamp.org.
Collapse
Affiliation(s)
- Paraic A. Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, 54601, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|