1
|
Amiri Souri E, Chenoweth A, Karagiannis SN, Tsoka S. Drug repurposing and prediction of multiple interaction types via graph embedding. BMC Bioinformatics 2023; 24:202. [PMID: 37193964 DOI: 10.1186/s12859-023-05317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug-target links, as well as delineating the type of drug interaction, are important in drug repurposing studies. RESULTS A computational drug repurposing approach was proposed to predict novel drug-target interactions (DTIs), as well as to predict the type of interaction induced. The methodology is based on mining a heterogeneous graph that integrates drug-drug and protein-protein similarity networks, together with verified drug-disease and protein-disease associations. In order to extract appropriate features, the three-layer heterogeneous graph was mapped to low dimensional vectors using node embedding principles. The DTI prediction problem was formulated as a multi-label, multi-class classification task, aiming to determine drug modes of action. DTIs were defined by concatenating pairs of drug and target vectors extracted from graph embedding, which were used as input to classification via gradient boosted trees, where a model is trained to predict the type of interaction. After validating the prediction ability of DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the degree and type of interaction. Finally, the model was applied to propose potential approved drugs to target cancer-specific biomarkers. CONCLUSION DT2Vec+ showed promising results in predicting type of DTI, which was achieved via integrating and mapping triplet drug-target-disease association graphs into low-dimensional dense vectors. To our knowledge, this is the first approach that addresses prediction between drugs and targets across six interaction types.
Collapse
Affiliation(s)
- E Amiri Souri
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - A Chenoweth
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK.
| |
Collapse
|
2
|
Roda N, Blandano G, Pelicci PG. Blood Vessels and Peripheral Nerves as Key Players in Cancer Progression and Therapy Resistance. Cancers (Basel) 2021; 13:cancers13174471. [PMID: 34503281 PMCID: PMC8431382 DOI: 10.3390/cancers13174471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The interactions between cancer cells and the surrounding blood vessels and peripheral nerves are critical in all the phases of tumor development. Accordingly, therapies that specifically target vessels and nerves represent promising anticancer approaches. The first aim of this review is to document the importance of blood vessels and peripheral nerves in both cancer onset and local or distant growth of tumoral cells. We then focus on the state-of-the-art therapies that limit cancer progression through the impairment of blood vessels and peripheral nerves. The mentioned literature is helpful for the scientific community to appreciate the recent advances in these two fundamental components of tumors. Abstract Cancer cells continuously interact with the tumor microenvironment (TME), a heterogeneous milieu that surrounds the tumor mass and impinges on its phenotype. Among the components of the TME, blood vessels and peripheral nerves have been extensively studied in recent years for their prominent role in tumor development from tumor initiation. Cancer cells were shown to actively promote their own vascularization and innervation through the processes of angiogenesis and axonogenesis. Indeed, sprouting vessels and axons deliver several factors needed by cancer cells to survive and proliferate, including nutrients, oxygen, and growth signals, to the expanding tumor mass. Nerves and vessels are also fundamental for the process of metastatic spreading, as they provide both the pro-metastatic signals to the tumor and the scaffold through which cancer cells can reach distant organs. Not surprisingly, continuously growing attention is devoted to the development of therapies specifically targeting these structures, with promising initial results. In this review, we summarize the latest evidence that supports the importance of blood vessels and peripheral nerves in cancer pathogenesis, therapy resistance, and innovative treatments.
Collapse
Affiliation(s)
- Niccolò Roda
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
| | - Giada Blandano
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
3
|
Karaca B, Bakır E, Yerer MB, Cumaoğlu A, Hamurcu Z, Eken A. Doxazosin and erlotinib have anticancer effects in the endometrial cancer cell and important roles in ERα and Wnt/β-catenin signaling pathways. J Biochem Mol Toxicol 2021; 35:e22905. [PMID: 34463000 DOI: 10.1002/jbt.22905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
ERα and Wnt/β-catenin pathways are critical for the progression of most endometrial cancers. We aimed to investigate the cytotoxic and apoptotic effects of tamoxifen and quinazoline derivative drugs of doxazosin and erlotinib, and their roles in ERα and Wnt/β-catenin signaling pathways in human endometrial cancer RL 95-2 cell. 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay and xCELLigence systems were performed to evaluate cytotoxicity. Furthermore, apoptotic induction was tested by Annexin V analysis. Caspase-3 and -9 activity and changes in the mitochondrial membrane potential were evaluated. The level of reactive oxygen species was measured by incubating with dichlorofluorescein diacetate. Protein ratios of p-ERα/ERα, GSK3β/p-GSK3β, and p-β-catenin/β-catenin and expression levels of ESR1, EGFR, c-Myc genes were evaluated to elucidate mechanisms in signaling pathways. We found that the tested drugs showed cytotoxic and apoptotic effects in the cells. Doxazosin significantly reduced ESR1 expression, slightly reduced the p-β-catenin/β-catenin ratio and c-Myc expression. Erlotinib significantly increased c-Myc expression while significantly decreasing the p-β-catenin/β-catenin and p-ERα/ERα ratio, and ESR1 expression. However, we observed that the cells develop resistance to erlotinib over a certain concentration, suggesting that ERα, ESR1, EGFR, and c-Myc may be a new target for overcoming drug resistance in the treatment of endometrial cancer. We also observed that erlotinib and doxazosin play an important role in the ERα signaling pathway and can act as potent inhibitors of PKA and/or tyrosine kinase in the Wnt/β-catenin signaling pathway in RL 95-2 cell. In conclusion, doxazosin and erlotinib may have a possible therapeutic potential in human endometrial cancer.
Collapse
Affiliation(s)
- Büşra Karaca
- Hakan Çetinsaya Good Clinical Practice and Research Center, Erciyes University, Kayseri, Turkey
| | - Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ahmet Cumaoğlu
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
King L, Christie D, Dare W, Bernaitis N, Chess-Williams R, McDermott C, Forbes A, Anoopkumar-Dukie S. Quinazoline alpha-adrenoreceptor blockers as an adjunct cancer treatment: From bench to bedside. Eur J Pharmacol 2020; 893:173831. [PMID: 33359146 DOI: 10.1016/j.ejphar.2020.173831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Drug repurposing has been increasingly used by both researchers and clinicians to identify new cancer treatments. The alpha-1 adrenoreceptor blockers are a class of drugs that have been used for many years in the treatment of hypertension and benign prostatic hyperplasia. Some of the drugs in this class, notably the quinazoline derivatives, have been found to display cytotoxic properties, identifying them as potential options in the treatment of cancer. This review will examine the currently available evidence that investigates the cytotoxic and anti-cancer properties of these agents, the mechanisms behind these properties and how the alpha-1 blockers fit within current cancer therapies. It aims to answer the question of whether these agents can go from the laboratory bench top into cancer clinics.
Collapse
Affiliation(s)
- Liam King
- School of Pharmacy and Pharmacology, Griffith University, Queensland, Australia; Ramsay Pharmacy, John Flynn Private Hospital, Queensland, Australia
| | | | - Wendy Dare
- Ramsay Pharmacy, John Flynn Private Hospital, Queensland, Australia
| | - Nijole Bernaitis
- Ramsay Pharmacy, John Flynn Private Hospital, Queensland, Australia
| | | | | | - Amanda Forbes
- Faculty of Health Sciences, Bond University, Queensland, Australia
| | | |
Collapse
|
5
|
Suzuki S, Yamamoto M, Sanomachi T, Togashi K, Sugai A, Seino S, Okada M, Yoshioka T, Kitanaka C. Doxazosin, a Classic Alpha 1-Adrenoceptor Antagonist, Overcomes Osimertinib Resistance in Cancer Cells via the Upregulation of Autophagy as Drug Repurposing. Biomedicines 2020; 8:biomedicines8080273. [PMID: 32764319 PMCID: PMC7460424 DOI: 10.3390/biomedicines8080273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Osimertinib, which is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, is an important anticancer drug because of its high efficacy and excellent safety profile. However, resistance against osimertinib is inevitable; therefore, therapeutic strategies to overcome the resistance are needed. Doxazosin, a classic quinazoline-based alpha 1-adrenoceptor antagonist is used to treat hypertension and benign prostatic hyperplasia with a known safety profile. The anticancer effects of doxazosin have been examined in various types of malignancies from the viewpoint of drug repositioning or repurposing. However, it currently remains unclear whether doxazosin sensitizes cancer cells to osimertinib. Herein, we demonstrated that doxazosin induced autophagy and enhanced the anticancer effects of osimertinib on the cancer cells and cancer stem cells of non-small cell lung cancer, pancreatic cancer, and glioblastoma at a concentration at which the growth of non-tumor cells was not affected. The osimertinib-sensitizing effects of doxazosin were suppressed by 3-methyladenine, an inhibitor of autophagy, which suggested that the effects of doxazosin were mediated by autophagy. The present study provides evidence for the efficacy of doxazosin as a combination therapy with osimertinib to overcome resistance against osimertinib.
Collapse
Affiliation(s)
- Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan;
- Correspondence: (S.S.); (M.Y.); Tel.: +81-23-628-5224 (S.S.); +81-23-628-5214 (M.Y.)
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Correspondence: (S.S.); (M.Y.); Tel.: +81-23-628-5224 (S.S.); +81-23-628-5214 (M.Y.)
| | - Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan;
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Department of Ophthalmology and Visual Sciences, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
| | - Takashi Yoshioka
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan;
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| |
Collapse
|
6
|
Essential role of HCMV deubiquitinase in promoting oncogenesis by targeting anti-viral innate immune signaling pathways. Cell Death Dis 2017; 8:e3078. [PMID: 28981114 PMCID: PMC5680583 DOI: 10.1038/cddis.2017.461] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
Cancer is a multifactorial disease and virus-mediated carcinogenesis is one of the crucial factors, which is poorly understood. Human cytomegalovirus (HCMV) is a herpesvirus and its components have been evidenced to be associated with cancer of different tissue origin. However, its role in cancer remains unknown. Here, we identified a conserved herpesviral tegument protein known as pUL48 of HCMV, encoding deubiquitinase enzyme, as having a key role in carcinogenesis. We show using deubiquitinase sufficient- and deficient-HCMV that HCMV deubiquitinase is a key in inducing enhanced cellular metabolic activity through upregulation of several anti-apoptotic genes and downregulation of several pro-apoptotic genes expression. Furthermore, HCMV deubiquitinase acquires pro-tumor functions by inhibiting PRR-mediated type I interferon via deubiquitination of TRAF6, TRAF3, IRAK1, IRF7 and STING. Taken together, our results suggest that HCMV infection may promote oncogenesis by inhibiting innate immunity of the host.
Collapse
|
7
|
Guo J, Luo X, Liang J, Xiao M, Sun X. Antiangiogenic Effects of Doxazosin on Experimental Choroidal Neovascularization in Mice. J Ocul Pharmacol Ther 2017; 33:50-56. [PMID: 27992238 DOI: 10.1089/jop.2016.0153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jiaxian Guo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Meichun Xiao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| |
Collapse
|
8
|
The Role of α1-Adrenoceptor Antagonists in the Treatment of Prostate and Other Cancers. Int J Mol Sci 2016; 17:ijms17081339. [PMID: 27537875 PMCID: PMC5000736 DOI: 10.3390/ijms17081339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
This review evaluates the role of α-adrenoceptor antagonists as a potential treatment of prostate cancer (PCa). Cochrane, Google Scholar and Pubmed were accessed to retrieve sixty-two articles for analysis. In vitro studies demonstrate that doxazosin, prazosin and terazosin (quinazoline α-antagonists) induce apoptosis, decrease cell growth, and proliferation in PC-3, LNCaP and DU-145 cell lines. Similarly, the piperazine based naftopidil induced cell cycle arrest and death in LNCaP-E9 cell lines. In contrast, sulphonamide based tamsulosin did not exhibit these effects. In vivo data was consistent with in vitro findings as the quinazoline based α-antagonists prevented angiogenesis and decreased tumour mass in mice models of PCa. Mechanistically the cytotoxic and antitumor effects of the α-antagonists appear largely independent of α 1-blockade. The proposed targets include: VEGF, EGFR, HER2/Neu, caspase 8/3, topoisomerase 1 and other mitochondrial apoptotic inducing factors. These cytotoxic effects could not be evaluated in human studies as prospective trial data is lacking. However, retrospective studies show a decreased incidence of PCa in males exposed to α-antagonists. As human data evaluating the use of α-antagonists as treatments are lacking; well designed, prospective clinical trials are needed to conclusively demonstrate the anticancer properties of quinazoline based α-antagonists in PCa and other cancers.
Collapse
|
9
|
Li J, Chen K, Li S, Liu T, Wang F, Xia Y, Lu J, Zhou Y, Guo C. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS One 2016; 11:e0152570. [PMID: 27035150 PMCID: PMC4818100 DOI: 10.1371/journal.pone.0152570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
This study aimed to explore the effects of fucoidan from Fucus vesiculosus on concanavalin A (ConA)-induced acute liver injury in mice. Pretreatment with fucoidan protected liver function indicated by ALT, AST and histopathological changes by suppressing inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In addition, intrinsic and extrinsic apoptosis mediated by Bax, Bid, Bcl-2, Bcl-xL and Caspase 3, 8, and 9 were inhibited by fucoidan and the action was associated with the TRADD/TRAF2 and JAK2/STAT1 signal pathways. Our results demonstrated that fucoidan from Fucus vesiculosus alleviated ConA-induced acute liver injury via the inhibition of intrinsic and extrinsic apoptosis mediated by the TRADD/TRAF2 and JAK2/STAT1 pathways which were activated by TNF-α and IFN-γ. These findings could provide a potential powerful therapy for T cell-related hepatitis.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|