1
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
2
|
A Review of RRx-001: A Late-Stage Multi-Indication Inhibitor of NLRP3 Activation and Chronic Inflammation. Drugs 2023; 83:389-402. [PMID: 36920652 PMCID: PMC10015535 DOI: 10.1007/s40265-023-01838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 03/16/2023]
Abstract
Chronic unresolving inflammation is emerging as a key underlying pathological feature of many if not most diseases ranging from autoimmune conditions to cardiometabolic and neurological disorders. Dysregulated immune and inflammasome activation is thought to be the central driver of unresolving inflammation, which in some ways provides a unified theory of disease pathology and progression. Inflammasomes are a group of large cytosolic protein complexes that, in response to infection- or stress-associated stimuli, oligomerize and assemble to generate a platform for driving inflammation. This occurs through proteolytic activation of caspase-1-mediated inflammatory responses, including cleavage and secretion of the proinflammatory cytokines interleukin (IL)-1β and IL-18, and initiation of pyroptosis, an inflammatory form of cell death. Several inflammasomes have been characterized. The most well-studied is the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, so named because the NLRP3 protein in the complex, which is primarily present in immune and inflammatory cells following activation by inflammatory stimuli, belongs to the family of nucleotide-binding and oligomerization domain (Nod) receptor proteins. Several NLRP3 inflammasome inhibitors are in development, all with multi-indication activity. This review discusses the current status, known mechanisms of action, and disease-modifying therapeutic potential of RRx-001, a direct NLRP3 inflammasome inhibitor under investigation in several late-stage anticancer clinical trials, including a phase 3 trial for the treatment of third-line and beyond small cell lung cancer (SCLC), an indication with no treatment, in which RRx-001 is combined with reintroduced chemotherapy from the first line, carboplatin/cisplatin and etoposide (ClinicalTrials.gov Identifier: NCT03699956). Studies from multiple independent groups have now confirmed that RRx-001 is safe and well tolerated in humans. Additionally, emerging evidence in preclinical animal models suggests that RRx-001 could be effective in a wide range of diseases where immune and inflammasome activation drives disease pathology.
Collapse
|
3
|
Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100078. [PMID: 34841367 PMCID: PMC8610348 DOI: 10.1016/j.crmicr.2021.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 02/09/2023] Open
Abstract
Understanding various responses of cells towards change in their external environment, presence of other species and is important in identifying and correlating the mechanisms leading to malignant transformations and cancer development. Although uncovering and comprehending the association between bacteria and cancer is highly challenging, it promises excellent perspectives and approaches for successful cancer therapy. This review introduces various bacterial species, their virulence factors, and their role in cell transformations leading to cancer (particularly gastric, oral, colon, and breast cancer). Bacterial dysbiosis permutates host cells, causes inflammation, and results in tumorigenesis. This review explored bacterial-mediated host cell transformation causing chronic inflammation, immune receptor hyperactivation/absconding immune recognition, and genomic instability. Bacterial infections downregulate E-cadherin, leading to loosening of epithelial tight junction polarity and triggers metastasis. In addition to understanding the role of bacterial infections in cancer development, we have also reviewed the application of bacteria for cancer therapy. The emergence of bacteriotherapy combined with conventional therapies led to new and effective ways of overcoming challenges associated with available treatments. This review discusses the application of bacterial minicells, microswimmers, and outer cell membrane vesicles (OMV) for drug delivery applications.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Tejaswini Appidi
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
4
|
Pu Y, Song Y, Zhang M, Long C, Li J, Wang Y, Xu Y, Pan F, Zhao N, Zhang X, Xu Y, Cui J, Wang H, Li Y, Zhao Y, Jin D, Zhang H. GOLM1 restricts colitis and colon tumorigenesis by ensuring Notch signaling equilibrium in intestinal homeostasis. Signal Transduct Target Ther 2021; 6:148. [PMID: 33850109 PMCID: PMC8044123 DOI: 10.1038/s41392-021-00535-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 02/02/2023] Open
Abstract
Intestinal epithelium serves as the first barrier against the infections and injuries that mediate colonic inflammation. Colorectal cancer is often accompanied with chronic inflammation. Differed from its well-known oncogenic role in many malignancies, we present here that Golgi membrane protein 1 (GOLM1, also referred to as GP73) suppresses colorectal tumorigenesis via maintenance of intestinal epithelial barrier. GOLM1 deficiency in mice conferred susceptibility to mucosal inflammation and colitis-induced epithelial damage, which consequently promoted colon cancer. Mechanistically, depletion of GOLM1 in intestinal epithelial cells (IECs) led to aberrant Notch activation that interfered with IEC differentiation, maturation, and lineage commitment in mice. Pharmacological inhibition of Notch pathway alleviated epithelial lesions and restrained pro-tumorigenic inflammation in GOLM1-deficient mice. Therefore, GOLM1 maintains IEC homeostasis and protects against colitis and colon tumorigenesis by modulating the equilibrium of Notch signaling pathway.
Collapse
Affiliation(s)
- Yang Pu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ya Song
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning China
| | - Mengdi Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Caifeng Long
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Li
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yinzhe Xu
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Na Zhao
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Xu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianxin Cui
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Hongying Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- grid.16821.3c0000 0004 0368 8293Department of Anatomy and Physiology, College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhao
- grid.458458.00000 0004 1792 6416State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Di Jin
- grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning China
| | - Hongbing Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Characterization of dysregulated glutamine metabolism in human glioma tissue with 1H NMR. Sci Rep 2020; 10:20435. [PMID: 33235296 PMCID: PMC7686482 DOI: 10.1038/s41598-020-76982-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas are one of the most common types of brain tumors. Given low survival and high treatment resistance rates, particularly for high grade gliomas, there is a need for specific biomarkers that can be used to stratify patients for therapy and monitor treatment response. Recent work has demonstrated that metabolic reprogramming, often mediated by inflammation, can lead to an upregulation of glutamine as an energy source for cancer cells. As a result, glutamine pathways are an emerging pharmacologic target. The goal of this pilot study was to characterize changes in glutamine metabolism and inflammation in human glioma samples and explore the use of glutamine as a potential biomarker. 1H high-resolution magic angle spinning nuclear magnetic resonance spectra were acquired from ex vivo glioma tissue (n = 16, grades II–IV) to quantify metabolite concentrations. Tumor inflammatory markers were quantified using electrochemiluminescence assays. Glutamate, glutathione, lactate, and alanine, as well as interleukin (IL)-1β and IL-8, increased significantly in samples from grade IV gliomas compared to grades II and III (p ≤ .05). Following dimension reduction of the inflammatory markers using probabilistic principal component analysis, we observed that glutamine, alanine, glutathione, and lactate were positively associated with the first inflammatory marker principal component. Our findings support the hypothesis that glutamine may be a key marker for glioma progression and indicate that inflammation is associated with changes in glutamine metabolism. These results motivate further in vivo investigation of glutamine as a biomarker for tumor progression and treatment response.
Collapse
|
6
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
7
|
Immunomodulation and cancer: Using mechanistic paradigms to inform risk assessment. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Chatterjee S, Chaubal R, Maitra A, Gardi N, Dutt A, Gupta S, Badwe RA, Majumder PP, Pandey P. Pre-operative progesterone benefits operable breast cancer patients by modulating surgical stress. Breast Cancer Res Treat 2018; 170:431-438. [PMID: 29564740 DOI: 10.1007/s10549-018-4749-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/08/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE We have reported a survival benefit of single injection of hydroxyprogesterone prior to surgery for primary tumour in patients with node-positive operable breast cancer. Hydroxyprogesterone was meant to recapitulate the luteal phase of menstrual cycle in these women. We wanted to understand the molecular basis of action of hydroxyprogesterone on primary breast tumours in a peri-operative setting. METHODS We performed whole transcriptome sequencing (RNA-Seq) of primary breast tumour samples collected from patients before and after hydroxyprogesterone exposure and controls. Paired breast cancer samples were obtained from patients who were given hydroxyprogesterone before surgery and a group of patients who were subjected to only surgery. RESULTS A test of significance between the two groups revealed 207 significantly altered genes, after correction for multiple hypothesis testing. We found significantly contrasting gene expression patterns in exposed versus unexposed groups; 142 genes were up-regulated post-surgery among exposed patients, and down-regulated post-surgery among unexposed patients. Significantly enriched pathways included genes that respond to progesterone, cellular stress, nonsense-mediated decay of proteins and negative regulation of inflammatory response. These results suggest that cellular stress is modulated by hydroxyprogesterone. Network analysis revealed that UBC, a mediator of stress response, to be a major node to which many of the significantly altered genes connect. CONCLUSIONS Our study suggests that pre-operative exposure to progesterone favourably modulates the effect of surgical stress, and this might underlie its beneficial effect when administered prior to surgery.
Collapse
Affiliation(s)
- Shatakshee Chatterjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Rohan Chaubal
- Tata Memorial Centre/Hospital, Parel, Mumbai, 400012, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Nilesh Gardi
- Tata Memorial Centre/Hospital, Parel, Mumbai, 400012, India
| | - Amit Dutt
- Tata Memorial Centre/Hospital, Parel, Mumbai, 400012, India
| | - Sudeep Gupta
- Tata Memorial Centre/Hospital, Parel, Mumbai, 400012, India.
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, 400012, India.
| | - Rajendra A Badwe
- Tata Memorial Centre/Hospital, Parel, Mumbai, 400012, India.
- Department of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India.
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India.
| | - Priyanka Pandey
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India.
| |
Collapse
|