1
|
Parashar D, Geethadevi A, Mittal S, McAlarnen LA, George J, Kadamberi IP, Gupta P, Uyar DS, Hopp EE, Drendel H, Bishop EA, Bradley WH, Bone KM, Rader JS, Pradeep S, Chaluvally-Raghavan P. Patient-Derived Ovarian Cancer Spheroids Rely on PI3K-AKT Signaling Addiction for Cancer Stemness and Chemoresistance. Cancers (Basel) 2022; 14:cancers14040958. [PMID: 35205706 PMCID: PMC8870411 DOI: 10.3390/cancers14040958] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Epithelial ovarian cancer (EOC) is the most fatal gynecological cancer with poor survival rates and high mortality. EOC patients respond to standard platinum-based chemotherapy in the beginning, but relapse often due to chemoresistance. Ovarian cancer cells disseminate from the ovarian tumors and spread within the abdomen, where ascites fluid supports the growth and transition. Malignant ascites is present in a third of patients at diagnosis and is considered as a major source of chemoresistance, recurrence, poor survival, and mortality. Malignant ascites is a complex fluid that contains a pro-tumorigenic environment with disseminated cancer cells in 3D spheroids form. In this study, we established an ovarian cancer cell line and identified that 3D spheroids develop from the 2D monolayer, and the platinum-resistant phenotype develops due to the aberrant PI3K-AKT signaling in tumor cells. Furthermore, when we used a combinatorial approach of cisplatin with LY-294002 (a PI3K-AKT dual kinase inhibitor) to treat the cisplatin version of both MCW-OV-SL-3 and A-2780 cell lines, it prevented the 3D spheroid formation ability and also sensitized the cells for cisplatin. In brief, our results provided evidence to advance therapeutic approaches to treat cisplatin resistance in ovarian cancer patients. Abstract Ovarian cancer is the most lethal gynecological malignancy among women worldwide and is characterized by aggressiveness, cancer stemness, and frequent relapse due to resistance to platinum-based therapy. Ovarian cancer cells metastasize through ascites fluid as 3D spheroids which are more resistant to apoptosis and chemotherapeutic agents. However, the precise mechanism as an oncogenic addiction that makes 3D spheroids resistant to apoptosis and chemotherapeutic agents is not understood. To study the signaling addiction mechanism that occurs during cancer progression in patients, we developed an endometrioid subtype ovarian cancer cell line named ‘MCW-OV-SL-3’ from the ovary of a 70-year-old patient with stage 1A endometrioid adenocarcinoma of the ovary. We found that the cell line MCW-OV-SL-3 exhibits interstitial duplication of 1q (q21–q42), where this duplication resulted in high expression of the PIK3C2B gene and aberrant activation of PI3K-AKT-ERK signaling. Using short tandem repeat (STR) analysis, we demonstrated that the cell line exhibits a unique genetic identity compared to existing ovarian cancer cell lines. Notably, the MCW-OV-SL-3 cell line was able to form 3D spheroids spontaneously, which is an inherent property of tumor cells when plated on cell culture dishes. Importantly, the tumor spheroids derived from the MCW-OV-SL-3 cell line expressed high levels of c-Kit, PROM1, ZEB1, SNAI, VIM, and Twist1 compared to 2D monolayer cells. We also observed that the hyperactivation of ERK and PI3K/AKT signaling in these cancer cells resulted in resistance to cisplatin. In summary, the MCW-OV-SL3 endometrioid cell line is an excellent model to study the mechanism of cancer stemness and chemoresistance in endometrioid ovarian cancer.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Sonam Mittal
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Lindsey A. McAlarnen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Jasmine George
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Ishaque P. Kadamberi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Prachi Gupta
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Denise S. Uyar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Elizabeth E. Hopp
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Holli Drendel
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (H.D.); (K.M.B.)
| | - Erin A. Bishop
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - William H. Bradley
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Kathleen M. Bone
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (H.D.); (K.M.B.)
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
3
|
The second annual conference of International ovarian cancer consortium and the symposium on tumor microenvironment and therapeutic resistance. Genes Cancer 2016. [PMCID: PMC4773701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] Open
Abstract
The second Annual Meeting of the International Ovarian Cancer Consortium (IOCC) was held in conjunction with the Symposium on Tumor Microenvironment and Therapeutic Resistance at the Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, and USA. A brief welcoming event along with the banquet on Aug 16th was followed by the eight thematic scientific sessions from August 16 to 18, 2015. Forty-three lectures, organized in eight sessions, were discussed in front of an audience of more than hundred attendees. Emphasis was put on oncogene signaling in cancer genesis and progression, new approaches in Precision Medicine and therapy of ovarian cancer, the role of tumor microenvironment in carcinogenesis, and preventive/curative potential of natural products. In this meeting-report, we highlight the findings and the perspectives in cancer biology and therapeutic strategies that emerged during the conference.
Collapse
|