1
|
Wei PL, Huang CY, Chang TC, Lin JC, Lee CC, Prince GMSH, Makondi PT, Chui AWY, Chang YJ. PCTAIRE Protein Kinase 1 (PCTK1) Suppresses Proliferation, Stemness, and Chemoresistance in Colorectal Cancer through the BMPR1B-Smad1/5/8 Signaling Pathway. Int J Mol Sci 2023; 24:10008. [PMID: 37373155 DOI: 10.3390/ijms241210008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality worldwide. Even with advances in therapy, CRC mortality remains high. Therefore, there is an urgent need to develop effective therapeutics for CRC. PCTAIRE protein kinase 1 (PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family, and the function of PCTK1 in CRC is poorly understood. In this study, we found that patients with elevated PCTK1 levels had a better overall survival rate in CRC based on the TCGA dataset. Functional analysis also showed that PCTK1 suppressed cancer stemness and cell proliferation by using PCTK1 knockdown (PCTK1-KD) or knockout (PCTK1-KO) and PCTK1 overexpression (PCTK1-over) CRC cell lines. Furthermore, overexpression of PCTK1 decreased xenograft tumor growth and knockout of PCTK1 significantly increased in vivo tumor growth. Moreover, knockout of PCTK1 was observed to increase the resistance of CRC cells to both irinotecan (CPT-11) alone and in combination with 5-fluorouracil (5-FU). Additionally, the fold change of the anti-apoptotic molecules (Bcl-2 and Bcl-xL) and the proapoptotic molecules (Bax, c-PARP, p53, and c-caspase3) was reflected in the chemoresistance of PCTK1-KO CRC cells. PCTK1 signaling in the regulation of cancer progression and chemoresponse was analyzed using RNA sequencing and gene set enrichment analysis (GSEA). Furthermore, PCTK1 and Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) in CRC tumors were negatively correlated in CRC patients from the Timer2.0 and cBioPortal database. We also found that BMPR1B was negatively correlated with PCTK1 in CRC cells, and BMPR1B expression was upregulated in PCTK1-KO cells and xenograft tumor tissues. Finally, BMPR1B-KD partially reversed cell proliferation, cancer stemness, and chemoresistance in PCTK1-KO cells. Moreover, the nuclear translocation of Smad1/5/8, a downstream molecule of BMPR1B, was increased in PCTK1-KO cells. Pharmacological inhibition of Smad1/5/8 also suppressed the malignant progression of CRC. Taken together, our results indicated that PCTK1 suppresses proliferation and cancer stemness and increases the chemoresponse of CRC through the BMPR1B-Smad1/5/8 signaling pathway.
Collapse
Affiliation(s)
- Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Tung-Cheng Chang
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colon and Rectal, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jang-Chun Lin
- Department of Radiotherapy and Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - G M Shazzad Hossain Prince
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | | | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicines, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
Wang X, Liu R, Li S, Xia W, Guo H, Yao W, Liang X, Lu Y, Zhang H. The roles, molecular interactions, and therapeutic value of CDK16 in human cancers. Biomed Pharmacother 2023; 164:114929. [PMID: 37236028 DOI: 10.1016/j.biopha.2023.114929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinase 16 (CDK16) is an orphan "cyclin-dependent kinase" (CDK) involved in the cell cycle, vesicle trafficking, spindle orientation, skeletal myogenesis, neurite outgrowth, secretory cargo transport, spermatogenesis, glucose transportation, cell apoptosis, cell growth and proliferation, metastasis, and autophagy. Human CDK16 is located on chromosome Xp11.3 and is related to X-linked congenital diseases. CDK16 is commonly expressed in mammalian tissues and may act as an oncoprotein. It is a PCTAIRE kinase in which Cyclin Y or its homologue, Cyclin Y-like 1, regulates activity by binding to the N- and C- terminal regions of CDK16. CDK16 plays a vital role in various cancers, including lung cancer, prostate cancer, breast cancer, malignant melanoma, and hepatocellular carcinoma. CDK16 is a promising biomarker for cancer diagnosis and prognosis. In this review, we summarized and discussed the roles and mechanisms of CDK16 in human cancers.
Collapse
Affiliation(s)
- Xiao Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People' s Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
CDK15 promotes colorectal cancer progression via phosphorylating PAK4 and regulating β-catenin/ MEK-ERK signaling pathway. Cell Death Differ 2022; 29:14-27. [PMID: 34262144 PMCID: PMC8738751 DOI: 10.1038/s41418-021-00828-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related deaths. However, there are few effective therapeutic targets for CRC patients. Here, we found that CDK15 was highly expressed in human CRC and negatively correlated with patient prognosis and overall survival in tissue microarray. Knockdown of CDK15 suppressed cell proliferation and anchorage-independent growth of CRC cells and inhibited tumor growth in cell line-derived xenograft (CDX) model. Importantly, knockout of CDK15 in mice retarded AOM/DSS-induced tumorigenesis and CDK15 silencing by lentivirus significantly suppressed tumor progression in patient-derived xenograft (PDX) model. Mechanistically, CDK15 could bind PAK4 and phosphorylate PAK4 at S291 site. Phosphorylation of PAK4 at the S291 residue promoted cell proliferation and anchorage-independent growth through β-catenin/c-Myc, MEK/ERK signaling pathway in CRC. Moreover, inhibition of PAK4 reversed the tumorigenic function of CDK15 in CRC cells and pharmacological targeting PAK4 suppressed tumor growth in PDX models. Thus, our data reveal the pivotal role of CDK15 in CRC progression and demonstrate CDK15 promotes CRC tumorigenesis by phosphorylating PAK4. Hence, the CDK15-PAK4 axis may serve as a novel therapeutic target for CRC.
Collapse
|
4
|
Chang JWC, Shih CL, Wang CL, Luo JD, Wang CW, Hsieh JJ, Yu CJ, Chiou CC. Transcriptomic Analysis in Liquid Biopsy Identifies Circulating PCTAIRE-1 mRNA as a Biomarker in NSCLC. Cancer Genomics Proteomics 2020; 17:91-100. [PMID: 31882554 DOI: 10.21873/cgp.20170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Circulating mRNA can be a useful source of cancer biomarkers. We took advantage of direct transcriptomic analysis in plasma RNA to identify novel mRNA markers for non-small cell lung cancer (NSCLC). PATIENTS AND METHODS Plasma RNA from NSCLC patients and healthy individuals was profiled with cDNA-mediated annealing, selection, extension and ligation (DASL) microarrays. The microarray results were further validated in plasma RNA. RESULTS Through RNA profiling and online database mining, four gene transcripts were filtered as candidate markers of NSCLC. After validation, the PCTAIRE-1 transcript was identified as a circulating mRNA marker. The diagnostic potential of PCTAIRE-1 was evaluated by receiver operating characteristic curve analysis, which gave a sensitivity and specificity of 60% and 85%, respectively. In addition, high plasma PCTK1 levels were also correlated with poor progression-free survival (p=0.008). CONCLUSION Circulating mRNA can be profiled with the DASL assay. From the profile, PCTAIRE-1 RNA in the plasma we discovered as a novel diagnostic/prognostic biomarker and an indicator of poor survival in NSCLC patients.
Collapse
Affiliation(s)
- John Wen-Cheng Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C.,College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Chun-Liang Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Chih-Liang Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Ji-Dung Luo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C.,Bioinformatics Resource Center, The Rockefeller University, New York, NY, U.S.A
| | - Chih-Wei Wang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Jia-Juan Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Chiuan-Chian Chiou
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C. .,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| |
Collapse
|
5
|
Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M. RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem 2019; 121:898-929. [DOI: 10.1002/jcb.29364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Sherien Bukhat
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Majid Manzoor
- College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| |
Collapse
|
6
|
Yanagi T, Imafuku K, Kitamura S, Hata H, Shimizu H. CDK16/PCTK1/PCTAIRE1 is highly expressed in melanomas but not in melanocytic nevi or sarcomas. J Dermatol 2019; 46:634-636. [PMID: 31106900 DOI: 10.1111/1346-8138.14928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/22/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroo Hata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Differential expression of cyclin-dependent kinases in the adult human retina in relation to CDK inhibitor retinotoxicity. Arch Toxicol 2019; 93:659-671. [PMID: 30617560 DOI: 10.1007/s00204-018-2376-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/10/2018] [Indexed: 01/21/2023]
Abstract
Cyclin-dependent kinases (CDKs) are a family of kinases associated predominantly with cell cycle control, making CDK inhibitors interesting candidates for anti-cancer therapeutics. However, retinal toxicity (loss of photoreceptors) has been associated with CDK inhibitors, including the pan-CDK inhibitor AG-012896. The purpose of this research was to use a novel planar sectioning technique to determine CDK expression profiles in the ex vivo human retina with the aim of identifying isoforms responsible for CDK retinotoxicity. Four CDK isoforms (CDK11, 16, 17 and 18) were selected as a result of IC50 data comparing neurotoxic (AG-012986 and NVP-1) and non-neurotoxic (dinaciclib and NVP-2) CDK inhibitors, with IC50s at CDK11 showing a clear difference between the neurotoxic and non-neurotoxic drugs. CDK11 was maximally expressed in the photoreceptor layer, whereas CDK16, 17 and 18 showed maximal expression in the inner nuclear layer. CDK5 (an isoform associated with retinal homeostasis) was maximally expressed in the retinal ganglion cell layer. Apart from CDK18, each isoform showed expression in the photoreceptor layer. The human Müller cell line MIO-M1 expressed CDK5, 11, 16 and 17 and AG-01298 (0.02-60 µM) caused a dose-dependent increase in MIO-M1 cell death. In conclusion, CDK11 appears the most likely candidate for mediation of photoreceptor toxicity. RNA profiling can be used to determine the distribution of genes of interest in relation to retinal toxicity in the human retina.
Collapse
|
8
|
Wang H, Liu H, Min S, Shen Y, Li W, Chen Y, Wang X. CDK16 overexpressed in non-small cell lung cancer and regulates cancer cell growth and apoptosis via a p27-dependent mechanism. Biomed Pharmacother 2018; 103:399-405. [PMID: 29674275 DOI: 10.1016/j.biopha.2018.04.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase 16 (CDK16, PCTAIRE1) expression is upregulated in a wide variety of human malignancies. However, the function(s) of CDK16 in non-small cell lung cancer (NSCLC) remain unknown. Therefore, here we investigated the role of CDK16 in NSCLC. From 43 NSCLC tumors and matching healthy control lung tissues, immunohistochemistry revealed significantly greater CDK16 and phospho-p27Ser10 staining levels in NSCLC samples relative to healthy controls. The NSCLC cell line EKVX was transfected with a control siRNA, a CDK16-siRNA, or CDK16-siRNA + p27-siRNA. We found significantly decreased proliferation levels and significantly increased apoptosis levels in CDK16-silenced NSCLC cells. However, these effects were abrogated in cells treated with both the CDK16-siRNA and the p27-siRNA. In CDK16-silenced NSCLC cells, we found upregulated p27 and downregulated phospho-p27Ser10 protein expression but downregulated ubiquitinated p27 and ubiquitinated phospho-p27Ser10 protein expression. Cycloheximide-treated CDK16-silenced NSCLC cells displayed a much milder reduction in p27 protein expression over time relative to untreated CDK16-silenced NSCLC cells. In summary, CDK16 is significantly upregulated in human NSCLC tumor tissue and plays an oncogenic role in NSCLC cells via promoting cell proliferation and inhibiting apoptosis in a p27-dependent manner. Moreover, CDK16 negatively regulates expression of the p27 via ubiquination and protein degradation.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Immunology, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Hongli Liu
- Department of Gynecological Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Shengping Min
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233000, Anhui Province, China
| | - Yuanbing Shen
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233000, Anhui Province, China
| | - Wei Li
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233000, Anhui Province, China
| | - Yuqing Chen
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233000, Anhui Province, China.
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233000, Anhui Province, China.
| |
Collapse
|
9
|
Yanagi T, Kitamura S, Hata H. Novel Therapeutic Targets in Cutaneous Squamous Cell Carcinoma. Front Oncol 2018; 8:79. [PMID: 29629337 PMCID: PMC5876309 DOI: 10.3389/fonc.2018.00079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the common cancers in Caucasians, accounting for 20–30% of cutaneous malignancies. The risk of metastasis is low in most patients; however, aggressive SCC is associated with very high mortality and morbidity. Although cutaneous SCC can be treated with surgical removal, radiation and chemotherapy singly or in combination, the prognosis of patients with metastatic SCC is poor. Recently, the usage of immune checkpoint blockades has come under consideration. To develop effective therapies that are less toxic than existing ones, it is crucial to achieve a detailed characterization of the molecular mechanisms that are involved in cutaneous SCC pathogenesis and to identify new drug targets. Recent studies have identified novel molecules that are associated with SCC carcinogenesis and progression. This review focuses on recent advances in molecular studies involving SCC tumor development, as well as in new therapeutics that have become available to clinicians.
Collapse
Affiliation(s)
- Teruki Yanagi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Kitamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroo Hata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
10
|
Phadke M, Remsing Rix LL, Smalley I, Bryant AT, Luo Y, Lawrence HR, Schaible BJ, Chen YA, Rix U, Smalley KSM. Dabrafenib inhibits the growth of BRAF-WT cancers through CDK16 and NEK9 inhibition. Mol Oncol 2017; 12:74-88. [PMID: 29112787 PMCID: PMC5748485 DOI: 10.1002/1878-0261.12152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Although the BRAF inhibitors dabrafenib and vemurafenib have both proven successful against BRAF-mutant melanoma, there seem to be differences in their mechanisms of action. Here, we show that dabrafenib is more effective at inhibiting the growth of NRAS-mutant and KRAS-mutant cancer cell lines than vemurafenib. Using mass spectrometry-based chemical proteomics, we identified NEK9 and CDK16 as unique targets of dabrafenib. Both NEK9 and CDK16 were highly expressed in specimens of advanced melanoma, with high expression of both proteins correlating with a worse overall survival. A role for NEK9 in the growth of NRAS- and KRAS-mutant cell lines was suggested by siRNA studies in which silencing was associated with decreased proliferation, cell cycle arrest associated with increased p21 expression, inhibition of phospho-CHK1, decreased CDK4 expression, and the initiation of a senescence response. Inhibition of CDK4 but not CHK1 recapitulated the effects of NEK9 silencing, indicating this to be the likely mechanism of growth inhibition. We next turned our attention to CDK16 and found that its knockdown inhibited the phosphorylation of the Rb protein at S780 and increased expression of p27. Both of these effects were phenocopied in NRAS- and KRAS-mutant cancer cells by dabrafenib, but not vemurafenib. Combined silencing of NEK9 and CDK16 was associated with enhanced inhibition of melanoma cell proliferation. In summary, we have identified dabrafenib as a potent inhibitor of NEK9 and CDK16, and our studies suggest that inhibition of these kinases may have activity against cancers that do not harbor BRAF mutations.
Collapse
Affiliation(s)
- Manali Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Lily L Remsing Rix
- The Department of Drug Discovery, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Annamarie T Bryant
- The Department of Drug Discovery, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yunting Luo
- The Chemical Biology Core, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Harshani R Lawrence
- The Chemical Biology Core, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Braydon J Schaible
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yian A Chen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Uwe Rix
- The Department of Drug Discovery, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
11
|
Melanoma antigen A12 regulates cell cycle via tumor suppressor p21 expression. Oncotarget 2017; 8:68448-68459. [PMID: 28978129 PMCID: PMC5620269 DOI: 10.18632/oncotarget.19497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 01/06/2023] Open
Abstract
Melanoma-associated antigen family A (MAGE-A) is a family of cancer/testis antigens that are expressed in malignant tumors but not in normal tissues other than the testes. MAGE-A12 is a MAGE-A family gene whose tumorigenic function in cancer cells remains unclear. Searches of the Oncomine and NextBio databases revealed that malignant tumors show up-regulation of MAGE-A12 mRNA relative to corresponding normal tissue. In PPC1 primary prostatic carcinoma cells and in HCT116 colorectal cancer cells (wild type and p53-depleted), MAGE-A12 gene knockdown using siRNA or shRNA diminishes cancer cell proliferation as assessed by cellular ATP levels, cell counting, and clonogenic assays. FACS analyses of annexin V-PI staining and DNA content show that MAGE-A12 knockdown causes G2/M arrest and apoptosis. In tumor xenografts of HCT116 cells, conditional knockdown of MAGE-A12 suppresses tumor growth. The depletion of MAGE-A12 leads to the accumulation of tumor suppressor p21 in PPC1, HCT116, and p53-depleted HCT116 cells. Conversely, CDKN1A knockdown partially rescues the viability of PPC1 cells transfected with siRNA targeting MAGE-A12, while p21 overexpression leads to proliferation arrest in PPC-1 cells. Furthermore, exogenous MAGE-A12 expression promotes the ubiquitination of p21. Our findings reveal that MAGE-A12 plays crucial roles in p21 stability and tumor growth, suggesting that MAGE-A12 could provide a novel target for cancer treatment.
Collapse
|
12
|
Gao L, Li SH, Tian YX, Zhu QQ, Chen G, Pang YY, Hu XH. Role of downregulated miR-133a-3p expression in bladder cancer: a bioinformatics study. Onco Targets Ther 2017; 10:3667-3683. [PMID: 28790856 PMCID: PMC5530854 DOI: 10.2147/ott.s137433] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It has been discovered that miR-133a-3p acts as a tumor suppressor in bladder cancer (BC). Nevertheless, the function of miR-133a-3p in BC remains unclarified. Thus, we carried out this study to validate the expression of miR-133a-3p in BC and provide insights into the molecular mechanism underlying it. To assess the expression of miR-133a-3p in BC, we searched eligible studies from literature and Gene expression Omnibus (GEO) to perform a meta-analysis. We also plotted the summary receiver operating characteristic (SROC) curve to evaluate the diagnostic ability of miR-133a-3p in BC. Additionally, the potential target genes of miR-133a-3p were acquired from 14 online software programs and GEO database. Protein-protein interaction (PPI) network was created to identify the hub genes. Then, Gene Ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to investigate the regulatory network of the target genes. From the meta-analysis, miR-133a-3p was remarkably downregulated in BC tissues compared with that in non-cancer tissues (standard mean difference =−3.84, 95% confidence interval =−6.99–0.29). Moreover, results from SROC suggested that miR-133a-3p exhibited the ability to diagnose BC (area under curve =0.8418). As for the bioinformatics study, 488 genes were chosen as the potential targets of miR-133a-3p in BC, among which 10 genes were defined as hub genes (all degrees >5). Further GO and KEGG pathway analysis indicated that the target genes of miR-133a-3p aggregated in specific biological process and pathways. In conclusion, miR-133a-3p possessed great diagnostic potential with its downregulation in BC, and miR-133a-3p might serve as a novel biomarker for BC.
Collapse
Affiliation(s)
- Li Gao
- Department of Medical Oncology
| | | | | | | | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | | |
Collapse
|
13
|
Wang Y, Qin X, Guo T, Liu P, Wu P, Liu Z. Up-regulation of CDK16 by multiple mechanisms in hepatocellular carcinoma promotes tumor progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:97. [PMID: 28716136 PMCID: PMC5514535 DOI: 10.1186/s13046-017-0569-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
Abstract
Background Hepatocellular carcinoma (HCC) remains difficult to cure due to lack of effective treatment and the molecular mechanisms are complex and not completely understood. In this study, We investigated the role of CDK16 in tumor progression of HCC. Methods We interrogated the expression level of CDK16 by polymerase chain reaction and immunohistochemistry(IHC) and studied its clinical significance. The functional role of CDK16 on HCC was studied via gain and loss of function in vitro and in vivo. Luciferase reporter assay and Chromatin immunoprecipitation(ChIP) assay were performed to investigate the transcriptional and post-transcriptional mechanisms involved in the regulation of CDK16. Results CDK16 expression was significantly up-regulated in HCC and higher expression of CDK16 was positively correlated with aggressive clinicopathological phenotype and poorer survival rates. Functionally, knockdown of CDK16 suppressed proliferation in vitro and in vivo. Inactivation of CDK16 also induced apoptosis and cell cycle arrest. Most importantly, CDK16 promoted epithelial mesenchymal transition and tumor invasion by activating β-catenin signaling. In addition, We identified E2F1 as a positive transcriptional regulator of CDK16. Moreover, down regulation of miR-125b-5p enhanced CDK16 expression at post-transcriptional level. Conclusion We provided the first evidence that CDK16 is an bona fide oncogene in HCC, and multiple activating mechanisms at transcriptional and posttranscriptional levels together contributes to CDK16 up-regulation in HCC. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0569-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yitao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xian Qin
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tao Guo
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pengpeng Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ping Wu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhisu Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Yanagi T, Hata H, Mizuno E, Kitamura S, Imafuku K, Nakazato S, Wang L, Nishihara H, Tanaka S, Shimizu H. PCTAIRE1/CDK16/PCTK1 is overexpressed in cutaneous squamous cell carcinoma and regulates p27 stability and cell cycle. J Dermatol Sci 2017; 86:149-157. [DOI: 10.1016/j.jdermsci.2017.02.281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
|
15
|
Edalati Fathabad M, Karimipoor M, Alizadeh S, Abdoli A, Atashi A, Sayadi M. miR-155 effectively induces apoptosis in K562 Philadelphia positive cell line through upregulation of p27kip1. ACTA ACUST UNITED AC 2017; 7:109-114. [PMID: 28752075 PMCID: PMC5524985 DOI: 10.15171/bi.2017.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/29/2017] [Accepted: 04/08/2017] [Indexed: 01/06/2023]
Abstract
![]()
Introduction: Chronic myelogenous leukemia (CML) is a myeloproliferative disorder caused by the Philadelphia chromosome translocation, at (9; 22), which results in BCR-ABL fusion tyrosine kinase oncoprotein. This fusion induces down-regulation of miR-155. Upregulation of miR-155 can influence cell fate via the effect on p27kip1 and apoptosis. The aim of this study was to induce apoptosis in K562 CML cell line by overexpression of miR-155.
Methods: The K562 cell line was transfected with pLenti-III-pre mir155-GFP constructs through electroporation. Then, overexpression of miR-155 as well as the expression level of p27kip1 and c-Myc was analyzed by quantitative PCR (qPCR). The level of p27 (Kip1) protein expression was measured by Western blot and the Annexin V method was carried out to investigate apoptosis.
Results: Flow cytometric analysis results of K562 cells transfected with pLenti-III-pre mir155-GFP construct showed a significant increase in cell apoptosis. Gene expression and protein level of p27kip1 were upregulated. However, there was no change in c-Myc expression profile.
Conclusion: miR-155 could be a promising approach to aid in the treatment of CML. However, further studies are required in this respect.
Collapse
Affiliation(s)
- Mahdi Edalati Fathabad
- Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shaban Alizadeh
- Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Atashi
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahtab Sayadi
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
16
|
Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16. Biochem J 2017; 474:699-713. [PMID: 28057719 PMCID: PMC5317395 DOI: 10.1042/bcj20160941] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that has emerged as a key regulator of neurite outgrowth, vesicle trafficking and cancer cell proliferation. CDK16 is activated through binding to cyclin Y via a phosphorylation-dependent 14-3-3 interaction and has a unique consensus substrate phosphorylation motif compared with conventional CDKs. To elucidate the structure and inhibitor-binding properties of this atypical CDK, we screened the CDK16 kinase domain against different inhibitor libraries and determined the co-structures of identified hits. We discovered that the ATP-binding pocket of CDK16 can accommodate both type I and type II kinase inhibitors. The most potent CDK16 inhibitors revealed by cell-free and cell-based assays were the multitargeted cancer drugs dabrafenib and rebastinib. An inactive DFG-out binding conformation was confirmed by the first crystal structures of CDK16 in separate complexes with the inhibitors indirubin E804 and rebastinib, respectively. The structures revealed considerable conformational plasticity, suggesting that the isolated CDK16 kinase domain was relatively unstable in the absence of a cyclin partner. The unusual structural features and chemical scaffolds identified here hold promise for the development of more selective CDK16 inhibitors and provide opportunity to better characterise the role of CDK16 and its related CDK family members in various physiological and pathological contexts.
Collapse
|
17
|
Yanagi T, Tachikawa K, Wilkie-Grantham R, Hishiki A, Nagai K, Toyonaga E, Chivukula P, Matsuzawa SI. Lipid Nanoparticle-mediated siRNA Transfer Against PCTAIRE1/PCTK1/Cdk16 Inhibits In Vivo Cancer Growth. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e327. [PMID: 27351680 PMCID: PMC5022131 DOI: 10.1038/mtna.2016.40] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/05/2016] [Indexed: 12/29/2022]
Abstract
PCTAIRE1/CDK16/PCTK1 plays critical roles in cancer cell proliferation and antiapoptosis. To advance our previously published in vitro results with PCTAIRE1 silencing, we examined the in vivo therapeutic potential of this approach by using small interfering RNA (siRNA) encapsulated by lipid nanoparticles. Therapy experiments of PCTAIRE1 siRNA were performed using human HCT116 colorectal cancer cells and human A2058 melanoma cells. A single dose of PCTAIRE1 siRNA-lipid nanoparticles was found to be highly effective in reducing in vivo PCTAIRE1 expression for up to 4 days as assayed by immunoblotting. Therapy experiments were started 4 days after subcutaneous injection of cancer cells. Treatment with PCTAIRE1 siRNA-lipid nanoparticles (0.5 mg/kg RNA, twice a week) reduced tumor volume and weight significantly compared with the scramble-control group. Histopathological analysis (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) showed increased apoptosis of tumor cells treated with PCTAIRE1-siRNA. Overall, our results demonstrate that siRNA treatment targeting PCTAIRE1 is effective in vivo, suggesting that PCTAIRE1 siRNA-lipid nanoparticles might be a novel therapeutic approach against cancer cells.
Collapse
Affiliation(s)
- Teruki Yanagi
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA.,Current address: Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Rachel Wilkie-Grantham
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA.,Arcturus Therapeutics Inc., San Diego, California, USA
| | - Asami Hishiki
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ko Nagai
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ellen Toyonaga
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pad Chivukula
- Arcturus Therapeutics Inc., San Diego, California, USA
| | - Shu-Ichi Matsuzawa
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA.,Current address: Department of Neurology, Kyoto University Graduate School of Medicine Kyoto, Japan
| |
Collapse
|
18
|
Song Y, Wu Y, Su X, Zhu Y, Liu L, Pan Y, Zhu B, Yang L, Gao L, Li M. Activation of AMPK inhibits PDGF-induced pulmonary arterial smooth muscle cells proliferation and its potential mechanisms. Pharmacol Res 2016; 107:117-124. [PMID: 26993101 DOI: 10.1016/j.phrs.2016.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
The aims of the present study were to examine signaling mechanisms for PDGF-induced pulmonary arterial smooth muscle cells (PASMC) proliferation and to determine the effect of AMPK activation on PDGF-induced PASMC proliferation and its underlying mechanisms. PDGF activated PI3K/Akt/mTOR signaling pathway, and this in turn up-regulated Skp2 and consequently reduced p27 leading to PASMC proliferation. Prior incubation of PASMC with metformin induced a dramatic AMPK activation and significantly blocked PDGF-induced cell proliferation. PASMC lacking AMPKα2 were resistant to the inhibitory effect of metformin on PDGF-induced cell proliferation. Metformin did not affect Akt activation but blocked mTOR phosphorylation in response to PDGF; these were accompanied by the reversion of Skp2 up-regulation and p27 reduction. Our study suggests that the activation of AMPK negatively regulates mTOR activity to suppress PASMC proliferation and therefore has a potential value in the prevention and treatment of pulmonary hypertension by negatively modulating pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Yang Song
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China
| | - Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China
| | - Bo Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xian Jiaotong University, Xian, Shaanxi 710061, PR China.
| |
Collapse
|
19
|
Affiliation(s)
- Teruki Yanagi
- a Sanford-Burnham Medical Research Institute ; La Jolla , CA USA
| | | |
Collapse
|
20
|
Yanagi T, Shi R, Aza-Blanc P, Reed JC, Matsuzawa SI. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLoS One 2015; 10:e0119404. [PMID: 25790448 PMCID: PMC4366397 DOI: 10.1371/journal.pone.0119404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
While PCTAIRE1/PCTK1/Cdk16 is overexpressed in malignant cells and is crucial in tumorigenesis, its function in apoptosis remains unclear. Here we investigated the role of PCTAIRE1 in apoptosis, especially in the extrinsic cell death pathway. Gene-knockdown of PCTAIRE1 sensitized prostate cancer PPC1 and Du145 cells, and breast cancer MDA-MB-468 cells to TNF-family cytokines, including TNF-related apoptosis-inducing ligand (TRAIL). Meanwhile, PCTAIRE1-knockdown did not sensitize non-malignant cells, including diploid fibroblasts IMR-90 and the immortalized prostate epithelial cell line 267B1. PCTAIRE1-knockdown did not up-regulate death receptor expression on the cell surface or affect caspase-8, FADD and FLIP expression levels. PCTAIRE1-knockdown did promote caspase-8 cleavage and RIPK1 degradation, while RIPK1 mRNA knockdown sensitized PPC1 cells to TNF-family cytokines. Furthermore, the kinase inhibitor SNS-032, which inhibits PCTAIRE1 kinase activity, sensitized PPC1 cells to TRAIL-induced apoptosis. Together these results suggest that PCTAIRE1 contributes to the resistance of cancer cell lines to apoptosis induced by TNF-family cytokines, which implies that PCTAIRE1 inhibitors could have synergistic effects with TNF-family cytokines for cytodestruction of cancer cells.
Collapse
Affiliation(s)
- Teruki Yanagi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - Ranxin Shi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - Pedro Aza-Blanc
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - John C. Reed
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
- * E-mail: (JR); (SM)
| | - Shu-ichi Matsuzawa
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
- * E-mail: (JR); (SM)
| |
Collapse
|