1
|
Bonanomi M, Salmistraro N, Porro D, Pinsino A, Colangelo AM, Gaglio D. Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. CHEMOSPHERE 2022; 303:134947. [PMID: 35580641 DOI: 10.1016/j.chemosphere.2022.134947] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Polystyrene is a thermoplastic polymer widely used in commercial products. Like all plastics, polystyrene can be degraded into microplastic and nanoplastic particles and ingested via food chain contamination. Although the ecological impact due to plastic contamination is well known, there are no studies indicating a carcinogenic potential of polystyrene microplastics (MPs) and nanoplastics (NPs). Here, we evaluated the effects of the MPs and NPs on normal human intestinal CCD-18Co cells. Our results show that internalization of NPs and MPs induces metabolic changes under both acute and chronic exposure by inducing oxidative stress, increasing glycolysis via lactate to sustain energy metabolism and glutamine metabolism to sustain anabolic processes. We also show that this decoupling of nutrients mirrors the effect of the potent carcinogenic agent azoxymethane and HCT15 colon cancer cells, carrying out the typical strategy of cancer cells to optimize nutrients utilization and allowing metabolic adaptation to environmental stress conditions. Taken together our data provide new evidence that chronic NPs and MPs exposure could act as cancer risk factor for human health.
Collapse
Affiliation(s)
- Marcella Bonanomi
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Noemi Salmistraro
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI, Italy
| | - Danilo Porro
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, PA, Italy
| | - Anna Maria Colangelo
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Daniela Gaglio
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI, Italy.
| |
Collapse
|
2
|
Comprehensive Metabolic Profiling of MYC-Amplified Medulloblastoma Tumors Reveals Key Dependencies on Amino Acid, Tricarboxylic Acid and Hexosamine Pathways. Cancers (Basel) 2022; 14:cancers14051311. [PMID: 35267619 PMCID: PMC8909278 DOI: 10.3390/cancers14051311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The oncogene MYC alters cellular metabolism. Medulloblastoma is the most common malignant pediatric brain tumor. MYC-amplified medulloblastoma has a poor prognosis, and the metabolism of MYC-amplified medulloblastoma is poorly understood. We performed comprehensive metabolic profiling of MYC-amplified medulloblastoma and found increased reliance on potentially targetable pathways. We also found that the metabolism of MYC-amplified cell lines differed from orthotopic brain tumors in vitro and in flank tumors, suggesting that analyses conducted in vitro or in flank tumors may miss key vulnerabilities. Abstract Reprograming of cellular metabolism is a hallmark of cancer. Altering metabolism allows cancer cells to overcome unfavorable microenvironment conditions and to proliferate and invade. Medulloblastoma is the most common malignant brain tumor of children. Genomic amplification of MYC defines a subset of poor-prognosis medulloblastoma. We performed comprehensive metabolic studies of human MYC-amplified medulloblastoma by comparing the metabolic profiles of tumor cells in three different conditions—in vitro, in flank xenografts and in orthotopic xenografts in the cerebellum. Principal component analysis showed that the metabolic profiles of brain and flank high-MYC medulloblastoma tumors clustered closely together and separated away from normal brain and in vitro MYC-amplified cells. Compared to normal brain, MYC-amplified medulloblastoma orthotopic xenograft tumors showed upregulation of the TCA cycle as well as the synthesis of nucleotides, hexosamines, amino acids and glutathione. There was significantly higher glucose uptake and usage in orthotopic xenograft tumors compared to flank xenograft tumors and cells in culture. In orthotopic tumors, glucose was the main carbon source for the de novo synthesis of glutamate, glutamine and glutathione through the TCA cycle. In vivo, the glutaminase II pathway was the main pathway utilizing glutamine. Glutathione was the most abundant upregulated metabolite in orthotopic tumors compared to normal brain. Glutamine-derived glutathione was synthesized through the glutamine transaminase K (GTK) enzyme in vivo. In conclusion, high MYC medulloblastoma cells have different metabolic profiles in vitro compared to in vivo, and key vulnerabilities may be missed by not performing in vivo metabolic analyses.
Collapse
|
3
|
Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13205058. [PMID: 34680207 PMCID: PMC8534001 DOI: 10.3390/cancers13205058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rewiring glucose metabolism toward aerobic glycolysis provides cancer cells with a rapid generation of pyruvate, ATP, and NADH, while pyruvate oxidation to lactate guarantees refueling of oxidized NAD+ to sustain glycolysis. CtPB2, an NADH-dependent transcriptional co-regulator, has been proposed to work as an NADH sensor, linking metabolism to epigenetic transcriptional reprogramming. By integrating metabolomics and transcriptomics in a triple-negative human breast cancer cell line, we show that genetic and pharmacological down-regulation of CtBP2 strongly reduces cell proliferation by modulating the redox balance, nucleotide synthesis, ROS generation, and scavenging. Our data highlight the critical role of NADH in controlling the oncogene-dependent crosstalk between metabolism and the epigenetically mediated transcriptional program that sustains energetic and anabolic demands in cancer cells.
Collapse
|
4
|
Gaglio D, Bonanomi M, Valtorta S, Bharat R, Ripamonti M, Conte F, Fiscon G, Righi N, Napodano E, Papa F, Raccagni I, Parker SJ, Cifola I, Camboni T, Paci P, Colangelo AM, Vanoni M, Metallo CM, Moresco RM, Alberghina L. Disruption of redox homeostasis for combinatorial drug efficacy in K-Ras tumors as revealed by metabolic connectivity profiling. Cancer Metab 2020; 8:22. [PMID: 33005401 PMCID: PMC7523077 DOI: 10.1186/s40170-020-00227-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract Background Rewiring of metabolism induced by oncogenic K-Ras in cancer cells involves both glucose and glutamine utilization sustaining enhanced, unrestricted growth. The development of effective anti-cancer treatments targeting metabolism may be facilitated by the identification and rational combinatorial targeting of metabolic pathways. Methods We performed mass spectrometric metabolomics analysis in vitro and in vivo experiments to evaluate the efficacy of drugs and identify metabolic connectivity. Results We show that K-Ras-mutant lung and colon cancer cells exhibit a distinct metabolic rewiring, the latter being more dependent on respiration. Combined treatment with the glutaminase inhibitor CB-839 and the PI3K/aldolase inhibitor NVP-BKM120 more consistently reduces cell growth of tumor xenografts. Maximal growth inhibition correlates with the disruption of redox homeostasis, involving loss of reduced glutathione regeneration, redox cofactors, and a decreased connectivity among metabolites primarily involved in nucleic acid metabolism. Conclusions Our findings open the way to develop metabolic connectivity profiling as a tool for a selective strategy of combined drug repositioning in precision oncology.
Collapse
Affiliation(s)
- Daniela Gaglio
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI Italy.,ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy
| | - Marcella Bonanomi
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Silvia Valtorta
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI Italy.,ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Department of Medicine and Surgery and Tecnomed Foundation, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Rohit Bharat
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marilena Ripamonti
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI Italy.,ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy
| | - Federica Conte
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Giulia Fiscon
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Nicole Righi
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Elisabetta Napodano
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI Italy.,ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy
| | - Federico Papa
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Isabella Raccagni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI Italy.,ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Nuclear Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Seth J Parker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate, Milan, Italy
| | - Tania Camboni
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate, Milan, Italy
| | - Paola Paci
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.,Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Colangelo
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marco Vanoni
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI Italy.,ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Department of Medicine and Surgery and Tecnomed Foundation, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Lilia Alberghina
- ISBE. IT/Centre of Systems Biology, Piazza della Scienza 4, 20126 Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
5
|
Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. Int J Mol Sci 2020; 21:ijms21041539. [PMID: 32102370 PMCID: PMC7073232 DOI: 10.3390/ijms21041539] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
The synaptic cleft has been vastly investigated in the last decades, leading to a novel and fascinating model of the functional and structural modifications linked to synaptic transmission and brain processing. The classic neurocentric model encompassing the neuronal pre- and post-synaptic terminals partly explains the fine-tuned plastic modifications under both pathological and physiological circumstances. Recent experimental evidence has incontrovertibly added oligodendrocytes, astrocytes, and microglia as pivotal elements for synapse formation and remodeling (tripartite synapse) in both the developing and adult brain. Moreover, synaptic plasticity and its pathological counterpart (maladaptive plasticity) have shown a deep connection with other molecular elements of the extracellular matrix (ECM), once considered as a mere extracellular structural scaffold altogether with the cellular glue (i.e., glia). The ECM adds another level of complexity to the modern model of the synapse, particularly, for the long-term plasticity and circuit maintenance. This model, called tetrapartite synapse, can be further implemented by including the neurovascular unit (NVU) and the immune system. Although they were considered so far as tightly separated from the central nervous system (CNS) plasticity, at least in physiological conditions, recent evidence endorsed these elements as structural and paramount actors in synaptic plasticity. This scenario is, as far as speculations and evidence have shown, a consistent model for both adaptive and maladaptive plasticity. However, a comprehensive understanding of brain processes and circuitry complexity is still lacking. Here we propose that a better interpretation of the CNS complexity can be granted by a systems biology approach through the construction of predictive molecular models that enable to enlighten the regulatory logic of the complex molecular networks underlying brain function in health and disease, thus opening the way to more effective treatments.
Collapse
|
6
|
Jacomin AC, Gul L, Sudhakar P, Korcsmaros T, Nezis IP. What We Learned From Big Data for Autophagy Research. Front Cell Dev Biol 2018; 6:92. [PMID: 30175097 PMCID: PMC6107789 DOI: 10.3389/fcell.2018.00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is the process by which cytoplasmic components are engulfed in double-membraned vesicles before being delivered to the lysosome to be degraded. Defective autophagy has been linked to a vast array of human pathologies. The molecular mechanism of the autophagic machinery is well-described and has been extensively investigated. However, understanding the global organization of the autophagy system and its integration with other cellular processes remains a challenge. To this end, various bioinformatics and network biology approaches have been developed by researchers in the last few years. Recently, large-scale multi-omics approaches (like genomics, transcriptomics, proteomics, lipidomics, and metabolomics) have been developed and carried out specifically focusing on autophagy, and generating multi-scale data on the related components. In this review, we outline recent applications of in silico investigations and big data analyses of the autophagy process in various biological systems.
Collapse
Affiliation(s)
| | - Lejla Gul
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
7
|
Integration of genome-scale metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-induced metabolic perturbation. NPJ Syst Biol Appl 2018; 4:10. [PMID: 29507756 PMCID: PMC5827733 DOI: 10.1038/s41540-018-0048-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/19/2022] Open
Abstract
Drug-induced perturbations of the endogenous metabolic network are a potential root cause of cellular toxicity. A mechanistic understanding of such unwanted side effects during drug therapy is therefore vital for patient safety. The comprehensive assessment of such drug-induced injuries requires the simultaneous consideration of both drug exposure at the whole-body and resulting biochemical responses at the cellular level. We here present a computational multi-scale workflow that combines whole-body physiologically based pharmacokinetic (PBPK) models and organ-specific genome-scale metabolic network (GSMN) models through shared reactions of the xenobiotic metabolism. The applicability of the proposed workflow is illustrated for isoniazid, a first-line antibacterial agent against Mycobacterium tuberculosis, which is known to cause idiosyncratic drug-induced liver injuries (DILI). We combined GSMN models of a human liver with N-acetyl transferase 2 (NAT2)-phenotype-specific PBPK models of isoniazid. The combined PBPK-GSMN models quantitatively describe isoniazid pharmacokinetics, as well as intracellular responses, and changes in the exometabolome in a human liver following isoniazid administration. Notably, intracellular and extracellular responses identified with the PBPK-GSMN models are in line with experimental and clinical findings. Moreover, the drug-induced metabolic perturbations are distributed and attenuated in the metabolic network in a phenotype-dependent manner. Our simulation results show that a simultaneous consideration of both drug pharmacokinetics at the whole-body and metabolism at the cellular level is mandatory to explain drug-induced injuries at the patient level. The proposed workflow extends our mechanistic understanding of the biochemistry underlying adverse events and may be used to prevent drug-induced injuries in the future. The genotype of a patient determines the extent of drug-induced metabolic perturbations on the endogenous cellular network of the liver. A team around Lars Kuepfer at Germany’s RWTH Aachen University developed a computational workflow that links drug pharmacokinetics at the whole-body level with a cellular network of the liver. The authors used the competitive cofactor and energy demands in endogenous and drug metabolism to establish a multi-scale model for the antibiotic isoniazid. Their model quantitatively describes how isoniazid pharmacokinetics alter the intracellular liver biochemistry and the utilization of extracellular metabolites in different patient genotypes. The study outlines how a mechanistic understanding of genotype-dependent drug-induced metabolic perturbations may help to explain diverging incidence rates of toxic events in different patient subgroups. This could reduce the occurrence of toxic side effects during drug treatments in the future.
Collapse
|
8
|
Valtorta S, Lo Dico A, Raccagni I, Gaglio D, Belloli S, Politi LS, Martelli C, Diceglie C, Bonanomi M, Ercoli G, Vaira V, Ottobrini L, Moresco RM. Metformin and temozolomide, a synergic option to overcome resistance in glioblastoma multiforme models. Oncotarget 2017; 8:113090-113104. [PMID: 29348889 PMCID: PMC5762574 DOI: 10.18632/oncotarget.23028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor survival. Cytoreduction in association with radiotherapy and temozolomide (TMZ) is the standard therapy, but response is heterogeneous and life expectancy is limited. The combined use of chemotherapeutic agents with drugs targeting cell metabolism is becoming an interesting therapeutic option for cancer treatment. Here, we found that metformin (MET) enhances TMZ effect on TMZ-sensitive cell line (U251) and overcomes TMZ-resistance in T98G GBM cell line. In particular, combined-treatment modulated apoptosis by increasing Bax/Bcl-2 ratio, and reduced Reactive Oxygen Species (ROS) production. We also observed that MET associated with TMZ was able to reduce the expression of glioma stem cells (GSC) marker CD90 particularly in T98G cells but not that of CD133. In vivo experiments showed that combined treatment with TMZ and MET significantly slowed down growth of TMZ-resistant tumors but did not affect overall survival of TMZ-sensitive tumor bearing mice. In conclusion, our results showed that metformin is able to enhance TMZ effect in TMZ-resistant cell line suggesting its potential use in TMZ refractory GBM patients. However, the lack of effect on a GBM malignancy marker like CD133 requires further evaluation since it might influence response duration.
Collapse
Affiliation(s)
- Silvia Valtorta
- Tecnomed Foundation and Medicine and Surgery Department, University of Milan-Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Isabella Raccagni
- Tecnomed Foundation and Medicine and Surgery Department, University of Milan-Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| | - Daniela Gaglio
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| | - Letterio S Politi
- Imaging Core, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University of Massachusetts Medical School, Worcester, MA, USA.,Hematology/Oncology Division and Radiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Tecnomed Foundation and Medicine and Surgery Department, University of Milan-Bicocca, Monza, Italy
| | | | - Giulia Ercoli
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ottobrini
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Rosa Maria Moresco
- Tecnomed Foundation and Medicine and Surgery Department, University of Milan-Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
9
|
Damiani C, Colombo R, Gaglio D, Mastroianni F, Pescini D, Westerhoff HV, Mauri G, Vanoni M, Alberghina L. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect. PLoS Comput Biol 2017; 13:e1005758. [PMID: 28957320 PMCID: PMC5634631 DOI: 10.1371/journal.pcbi.1005758] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/10/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023] Open
Abstract
Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which metabolic pathways are used to convert glucose and glutamine to balanced energy and biomass production, we performed systematic constraint-based simulations of a model of human central metabolism. Sampling of the feasible flux space allowed us to obtain a large number of randomly mutated cells simulated at different glutamine and glucose uptake rates. We observed that, in the limited subset of proliferating cells, most displayed fermentation of glucose to lactate in the presence of oxygen. At high utilization rates of glutamine, oxidative utilization of glucose was decreased, while the production of lactate from glutamine was enhanced. This emergent phenotype was observed only when the available carbon exceeded the amount that could be fully oxidized by the available oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this metabolic pattern is optimal to maximize biomass and ATP production; it requires the activity of a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced metabolic changes. We validated computational results through an extension of Flux Balance Analysis that allows prediction of metabolite variations. Taken together these findings offer new understanding of the logic of the metabolic reprogramming that underlies cancer cell growth. Hallmarks describing common key events in initiation, maintenance and progression of cancer have been identified. One hallmark deals with rewiring of metabolic reactions required to sustain enhanced cell proliferation. The availability of molecular, mechanistic models of cancer hallmarks will mightily improve optimized personal treatment and new drug discovery. Metabolism is the only hallmark for which it is currently possible to derive large scale mathematical models, which have predictive ability. In this paper, we exploit a constraint-based model of the core metabolism required for biomass conversion of the most relevant nutrients—glucose and glutamine—to clarify the logic of control of cancer metabolism. We newly report that, when available oxygen is not sufficient to fully oxidize available glucose and glutamine carbons–a situation compatible with that observed under normal oxygen conditions in human and in cancer cells growing in vitro—utilization of glutamine by reductive carboxylation and conversion of glucose and glutamine to lactate confer advantage for biomass production. Redox homeostasis can be maintained through the use of different alternative pathways. In conclusion, this paper offers a logic interpretation to the link between metabolic rewiring and enhanced proliferation, which may offer new approaches to targeted drug discovery and utilization.
Collapse
Affiliation(s)
- Chiara Damiani
- SYSBIO Centre of Systems Biology, Milano, Italy
- Dept of Informatics, Systems and Communication, University Milano-Bicocca, Milano, Italy
| | - Riccardo Colombo
- SYSBIO Centre of Systems Biology, Milano, Italy
- Dept of Informatics, Systems and Communication, University Milano-Bicocca, Milano, Italy
| | - Daniela Gaglio
- SYSBIO Centre of Systems Biology, Milano, Italy
- Institute of Molecular Bioimaging and Physiology, CNR, Segrate, Milan, Italy
| | - Fabrizia Mastroianni
- SYSBIO Centre of Systems Biology, Milano, Italy
- Dept of Biotechnology and Biosciences, University Milano-Bicocca, Milano, Italy
| | - Dario Pescini
- SYSBIO Centre of Systems Biology, Milano, Italy
- Dept of Statistics and Quantitative Methods, University Milano-Bicocca, Milano, Italy
| | - Hans Victor Westerhoff
- Dept of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
- Manchester Centre for Integrative Systems Biology, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Giancarlo Mauri
- SYSBIO Centre of Systems Biology, Milano, Italy
- Dept of Informatics, Systems and Communication, University Milano-Bicocca, Milano, Italy
| | - Marco Vanoni
- SYSBIO Centre of Systems Biology, Milano, Italy
- Dept of Biotechnology and Biosciences, University Milano-Bicocca, Milano, Italy
- * E-mail: (LA); (MV)
| | - Lilia Alberghina
- SYSBIO Centre of Systems Biology, Milano, Italy
- Dept of Biotechnology and Biosciences, University Milano-Bicocca, Milano, Italy
- * E-mail: (LA); (MV)
| |
Collapse
|
10
|
De Sanctis G, Spinelli M, Vanoni M, Sacco E. K-Ras Activation Induces Differential Sensitivity to Sulfur Amino Acid Limitation and Deprivation and to Oxidative and Anti-Oxidative Stress in Mouse Fibroblasts. PLoS One 2016; 11:e0163790. [PMID: 27685888 PMCID: PMC5042513 DOI: 10.1371/journal.pone.0163790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer cells have an increased demand for amino acids and require transport even of non-essential amino acids to support their increased proliferation rate. Besides their major role as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids, methionine and cysteine, play specific biological functions. In humans, methionine is essential for cell growth and development and may act as a precursor for cysteine synthesis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for reactive oxygen species. METHODOLOGY AND PRINCIPAL FINDINGS We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport and metabolism of cysteine and methionine. We show that cysteine limitation and deprivation cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due to accumulation of reactive oxygen species and a decrease in reduced glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-containing glutathione partially rescues the cell growth defect induced by limiting cysteine. Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-ras-transformed cells-but not their parental NIH3T3-are extremely sensitive to methionine limitation. This fragility correlates with decreased expression of the Slc6a15 gene-encoding the nutrient transporter SBAT1, known to exhibit a strong preference for methionine-and decreased methionine uptake. CONCLUSIONS AND SIGNIFICANCE Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells. Growth defects induced by cysteine limitation in mouse fibroblasts are largely-though not exclusively-due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts requiring an exogenous cysteine source for protein synthesis. Therapeutic regimens of cancer involving modulation of methionine metabolism could be more effective in cells with limited methionine transport capability.
Collapse
Affiliation(s)
- Gaia De Sanctis
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Michela Spinelli
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Vanoni
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elena Sacco
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- * E-mail:
| |
Collapse
|