1
|
Kou Z, Zhu S, Zhu J, Wang S, Zheng Y, Zhou S, Si Z, Zhu H. Multi-omics analysis identifies DLX4 as a novel biomarker for diagnosis, prognosis, and immune infiltration: from pan-cancer to renal cancer. Discov Oncol 2025; 16:467. [PMID: 40186710 PMCID: PMC11972278 DOI: 10.1007/s12672-025-02258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND DLX4 is involved in the regulation of embryonic development, but its function in cancer remains unclear. Here, we conducted a pan-cancer analysis to investigate the molecular mechanisms of DLX4, with a particular emphasis on its role in renal cancer. METHODS A comprehensive analysis of DLX4 was performed, focusing on differences in expression, prognostic value, somatic mutations, methylation modifications, and immune landscapes across various cancer types using multiple databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were utilized to explore the potential biological functions. Additionally, we evaluated the expression profile, prognostic significance, and immune infiltration of DLX4 in Kidney Renal Clear Cell Carcinoma (KIRC). The effect of DLX4 on KIRC was further validated by Spatial Transcriptomics, Real-time PCR (RT-PCR), and Immunohistochemistry experiments. RESULTS DLX4 was found to be upregulated in 26 cancer types and associated with poor prognosis. It was also correlated with tumor mutational burden (TMB), microsatellite instability, mismatch repair, and methylation, and was significantly enriched in pathways related to cell proliferation. In KIRC, DLX4 expression increased along with TMB and immune scores, likely due to the infiltration of regulatory T cells (Tregs) and T-helper 2 (Th2) cells. Spatial transcriptomics revealed a strong correlation between DLX4 localization and tumor cells. Experimental validation confirmed that DLX4 expression is significantly upregulated in renal cancer tissues. CONCLUSION Our study explored the mechanisms of DLX4 in pan-cancer, especially in renal clear cell carcinoma, identifying it as a promising biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zengshun Kou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuaizhi Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao West Coast New Area District Hospital, Qingdao, China
| | - Jiaxi Zhu
- Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Canada
| | - Shufei Wang
- College of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Zheng
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Shengjie Zhou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zi'ang Si
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
2
|
Lou Y, Fallah Y, Yamane K, Berg PE. BP1, a potential biomarker for breast cancer prognosis. Biomark Med 2018; 12:535-545. [DOI: 10.2217/bmm-2017-0212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeobox genes are critical in tumor development. An isoform protein of DLX4 called BP1 is expressed in 80% of invasive ductal breast carcinomas. BP1 overexpression is implicated in an aggressive phenotype and poor prognosis. BP1 upregulation is associated with estrogen receptor negativity so those tumors do not respond to antiestrogens. Breast cancer is the second leading cause of death in women. BP1 could serve as both a novel prognostic biomarker for breast cancer and a therapeutic target. In this review, we address the role of BP1 protein in tumorigenesis of breast cancer and four other malignancies. A number of functions of BP1 in cancer are also discussed.
Collapse
Affiliation(s)
- Yaoxian Lou
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Yassi Fallah
- Department of Oncology, Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Kellie Yamane
- NantOmics, Diagnostic Center in Montgomery County, Rockville, MD 20850, USA
| | - Patricia E Berg
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037, USA
| |
Collapse
|