Mohammed MR, El-Bahkery AM, Shedid SM. The Influence of Different γ-Irradiation Patterns on Factors that May Affect Cell Cycle Progression in Male Rats.
Dose Response 2022;
20:15593258221117898. [PMID:
35982824 PMCID:
PMC9379971 DOI:
10.1177/15593258221117898]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most studies of the biological effects of ionizing radiation have been done on a
single acute dose, while clinically and environmentally exposures occur under
chronic/repetitive conditions. It is important to study effects of different
patterns of ionizing radiation. In this study, a rat model was used to compare
the effects of repetitive and acute exposure. Groups: (I) control, (II, III)
were exposed to fractionated doses (1.5 GyX4) and (2 GyX4), respectively/24h
interval, and (IV, V) were exposed to 6 Gy and 8 Gy of whole-body gamma
irradiation, respectively. The gene expression of MAPT and tau phosphorylation
increased in all irradiated groups but the gene expression of PKN not affected.
TGFβ% increased at dose of 2 GyX4 only. In addition, the cell cycle was arrested
in S phase. Micronucleus (MN) increased and cell proliferation decreased. In
conclusion, the dose and pattern of ionizing radiation do not affect the MAPT
and PKN gene expression, but TGF-β, p-tau, MN assay and cell proliferation are
significantly affected. The dose of 2 GyX4 showed distinctive effect. Repetitive
exposure may increase TGF-β%, which causes radio-resistance and, G2/M delay.
Thus, the cell cycle could be regulated in a different manner according to the
dose and pattern of irradiation.
Collapse