1
|
Liu Y, Liu J, Peng N, Hai S, Zhang S, Zhao H, Liu W. Role of non-canonical post-translational modifications in gastrointestinal tumors. Cancer Cell Int 2023; 23:225. [PMID: 37777749 PMCID: PMC10544213 DOI: 10.1186/s12935-023-03062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins contribute to the occurrence and development of tumors. Previous studies have suggested that canonical PTMs such as ubiquitination, glycosylation, and phosphorylation are closely implicated in different aspects of gastrointestinal tumors. Recently, emerging evidence showed that non-canonical PTMs play an essential role in the carcinogenesis, metastasis and treatment of gastrointestinal tumors. Therefore, we summarized recent advances in sumoylation, neddylation, isoprenylation, succinylation and other non-canonical PTMs in gastrointestinal tumors, which comprehensively describe the mechanisms and functions of non-classical PTMs in gastrointestinal tumors. It is anticipated that targeting specific PTMs could benefit the treatment as well as improve the prognosis of gastrointestinal tumors.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Ebrahimizadeh W, Guérard KP, Rouzbeh S, Scarlata E, Brimo F, Patel PG, Jamaspishvili T, Hamel L, Aprikian AG, Lee AY, Berman DM, Bartlett JMS, Chevalier S, Lapointe J. A DNA copy number alteration classifier as a prognostic tool for prostate cancer patients. Br J Cancer 2023; 128:2165-2174. [PMID: 37037938 PMCID: PMC10241891 DOI: 10.1038/s41416-023-02236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Distinguishing between true indolent and potentially life-threatening prostate cancer is challenging in tumours displaying clinicopathologic features associated with low or intermediate risk of relapse. Several somatic DNA copy number alterations (CNAs) have been identified as potential prognostic biomarkers, but the standard cytogenetic method to assess them has a limited multiplexing capability. METHODS Multiplex ligation-dependent probe amplification (MLPA) targeting 14 genes was optimised to survey 448 tumours of patients with low or intermediate risk (Grade Group 1-3, Gleason score ≤7) who underwent radical prostatectomy. A 6-gene CNA classifier was developed using random survival forest and Cox proportional hazard modelling to predict biochemical recurrence. RESULTS The classifier score was significantly associated with biochemical recurrence after adjusting for standard clinicopathologic variables and the known prognostic index CAPRA-S score with a hazard ratio of 2.17 and 1.80, respectively (n = 406, P < 0.01). The prognostic value of this classifier was externally validated in published CNA data from three radical prostatectomy cohorts and one radiation therapy pre-treatment biopsy cohort. CONCLUSION The 6-gene CNA classifier generated by a single MLPA assay compatible with the small quantities of DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue specimens has the potential to improve the clinical management of patients with low or intermediate risk disease.
Collapse
Affiliation(s)
- Walead Ebrahimizadeh
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada
- Current affiliation: IMV Inc., Dartmouth, Canada
| | - Karl-Philippe Guérard
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada
| | - Shaghayegh Rouzbeh
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada
| | - Eleonora Scarlata
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada
| | - Palak G Patel
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Tamara Jamaspishvili
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada
- Department of Pathology & Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lucie Hamel
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada
| | - Armen G Aprikian
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada
| | - Anna Y Lee
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - David M Berman
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - John M S Bartlett
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Simone Chevalier
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada
| | - Jacques Lapointe
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, QC, Canada.
| |
Collapse
|
3
|
Hernandez Vargas S, AghaAmiri S, Ghosh SC, Luciano MP, Borbon LC, Ear PH, Howe JR, Bailey-Lundberg JM, Simonek GD, Halperin DM, Tran Cao HS, Ikoma N, Schnermann MJ, Azhdarinia A. High-Contrast Detection of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Mol Pharm 2022; 19:4241-4253. [PMID: 36174110 PMCID: PMC9830638 DOI: 10.1021/acs.molpharmaceut.2c00583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dye design can influence the ability of fluorescently labeled imaging agents to generate tumor contrast and has become an area of significant interest in the field of fluorescence-guided surgery (FGS). Here, we show that the charge-balanced near-infrared fluorescent (NIRF) dye FNIR-Tag enhances the imaging properties of a fluorescently labeled somatostatin analogue. In vitro studies showed that the optimized fluorescent conjugate MMC(FNIR-Tag)-TOC bound primarily via somatostatin receptor subtype-2 (SSTR2), whereas its negatively charged counterpart with IRDye 800CW had higher off-target binding. NIRF imaging in cell line- and patient-derived xenograft models revealed markedly higher tumor contrast with MMC(FNIR-Tag)-TOC, which was attributed to increased tumor specificity. Ex vivo staining of surgical biospecimens from primary and metastatic tumors, as well as involved lymph nodes, demonstrated binding to human tumors. Finally, in an orthotopic tumor model, a simulated clinical workflow highlighted our unique ability to use standard preoperative nuclear imaging for selecting patients likely to benefit from SSTR2-targeted FGS. Our findings demonstrate the translational potential of MMC(FNIR-Tag)-TOC for intraoperative imaging and suggest broad utility for using FNIR-Tag in fluorescent probe development.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Michael P. Luciano
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Luis C. Borbon
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Po Hien Ear
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - James R. Howe
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Jennifer M. Bailey-Lundberg
- Department
of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Gregory D. Simonek
- Center
for Laboratory Animal Medicine and Care, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United States
| | - Hop S. Tran Cao
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Naruhiko Ikoma
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States,
| |
Collapse
|
4
|
Bareli Y, Shimon I, Tobar A, Rubinfeld H. PICT-1 regulates p53 splicing and sensitivity of medullary thyroid carcinoma cells to everolimus. J Neuroendocrinol 2022; 34:e13187. [PMID: 36306198 DOI: 10.1111/jne.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Protein interacting with carboxyl terminus 1 (PICT-1) is a nucleolar protein shown to act as a tumor suppressor that interacts with PTEN, or in a contrasting manner to facilitate the accessibility of p53 to ubiquitination and degradation, thus to function as an oncogene. The aim of the study was to examine the potential role of PICT-1 in neuroendocrine neoplasm (NEN) tumorigenesis and response to mTOR inhibitor treatment. PICT-1 was overexpressed in medullary thyroid (TT) and pancreatic (BON1) NEN cell lines using lentiviral vector. Whereas in BON1 cells PICT-1 overexpression exhibited no significant impact, in TT cells it induced the appearance of p53β lacking the C-terminus end. This was accompanied by a robust decrease in p21 expression and elevation of cell viability. Remarkably, PICT-1 overexpression completely reversed the reduction in cell viability of medullary thyroid neoplasm cells induced by everolimus, a therapeutic option for patients with progressive NENs. mTOR pathway investigations revealed that PICT-1 overexpression induced a reduction in PTEN expression and a robust increase in the expression level of phospho-Akt-Ser47 only partially inhibited by everolimus. These findings suggest a possible role of PICT-1 in the spliceosome machinery and provide functional involvement of PICT-1 in the complex network of mTOR.
Collapse
Affiliation(s)
- Yifat Bareli
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ilan Shimon
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ana Tobar
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Hadara Rubinfeld
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| |
Collapse
|
5
|
Fuertes M, Elguero B, Gonilski-Pacin D, Herbstein F, Rosmino J, Ciancio del Giudice N, Fiz M, Falcucci L, Arzt E. Impact of RSUME Actions on Biomolecular Modifications in Physio-Pathological Processes. Front Endocrinol (Lausanne) 2022; 13:864780. [PMID: 35528020 PMCID: PMC9068994 DOI: 10.3389/fendo.2022.864780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022] Open
Abstract
The small RWD domain-containing protein called RSUME or RWDD3 was cloned from pituitary tumor cells with increasing tumorigenic and angiogenic proficiency. RSUME expression is induced under hypoxia or heat shock and is upregulated, at several pathophysiological stages, in tissues like pituitary, kidney, heart, pancreas, or adrenal gland. To date, several factors with essential roles in endocrine-related cancer appear to be modulated by RWDD3. RSUME regulates, through its post-translational (PTM) modification, pituitary tumor transforming gene (PTTG) protein stability in pituitary tumors. Interestingly, in these tumors, another PTM, the regulation of EGFR levels by USP8, plays a pathogenic role. Furthermore, RSUME suppresses ubiquitin conjugation to hypoxia-inducible factor (HIF) by blocking VHL E3-ubiquitin ligase activity, contributing to the development of von Hippel-Lindau disease. RSUME enhances protein SUMOylation of specific targets involved in inflammation such as IkB and the glucocorticoid receptor. For many of its actions, RSUME associates with regulatory proteins of ubiquitin and SUMO cascades, such as the E2-SUMO conjugase Ubc9 or the E3 ubiquitin ligase VHL. New evidence about RSUME involvement in inflammatory and hypoxic conditions, such as cardiac tissue response to ischemia and neuropathic pain, and its role in several developmental processes, is discussed as well. Given the modulation of PTMs by RSUME in neuroendocrine tumors, we focus on its interactors and its mode of action. Insights into functional implications and molecular mechanisms of RSUME action on biomolecular modifications of key factors of pituitary adenomas and renal cell carcinoma provide renewed information about new targets to treat these pathologies.
Collapse
Affiliation(s)
- Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - David Gonilski-Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Josefina Rosmino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Nicolas Ciancio del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lara Falcucci
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Martinefski MR, Elguero B, Knott ME, Gonilski D, Tedesco L, Gurevich Messina JM, Pollak C, Arzt E, Monge ME. Mass Spectrometry-Based Metabolic Fingerprinting Contributes to Unveil the Role of RSUME in Renal Cell Carcinoma Cell Metabolism. J Proteome Res 2020; 20:786-803. [PMID: 33124415 DOI: 10.1021/acs.jproteome.0c00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with 50-80% patients exhibiting mutations in the von Hippel-Lindau (VHL) gene. RSUME (RWD domain (termed after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases)-containing protein small ubiquitin-related modifier (SUMO) enhancer) acts as a negative regulator of VHL function in normoxia. A discovery-based metabolomics approach was developed by means of ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (MS) for fingerprinting the endometabolome of a human ccRCC cell line 786-O and three other transformed cell systems (n = 102) with different expressions of RSUME and VHL. Cross-validated orthogonal projection to latent structures discriminant analysis models were built on positive, negative, and a combination of positive- and negative-ion mode MS data sets. Discriminant feature panels selected by an iterative multivariate classification allowed differentiating cells with different expressions of RSUME and VHL. Fifteen identified discriminant metabolites with level 1, including glutathione, butyrylcarnitine, and acetylcarnitine, contributed to understand the role of RSUME in ccRCC. Altered pathways associated with the RSUME expression were validated by biological and bioinformatics analyses. Combined results showed that in the absence of VHL, RSUME is involved in the downregulation of the antioxidant defense system, whereas in the presence of VHL, it acts in rerouting energy-related pathways, negatively modulating the lipid utilization, and positively modulating the fatty acid synthesis, which may promote deposition in droplets.
Collapse
Affiliation(s)
- Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Ciudad de Buenos Aires, Argentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - María Elena Knott
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - David Gonilski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Lucas Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Juan M Gurevich Messina
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad de Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| |
Collapse
|
7
|
Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic. Cancers (Basel) 2020; 12:cancers12113170. [PMID: 33126717 PMCID: PMC7693644 DOI: 10.3390/cancers12113170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease.
Collapse
|
8
|
Mpilla GB, Philip PA, El-Rayes B, Azmi AS. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J Gastroenterol 2020; 26:4036-4054. [PMID: 32821069 PMCID: PMC7403797 DOI: 10.3748/wjg.v26.i28.4036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society's estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.
Collapse
Affiliation(s)
- Gabriel Benyomo Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Philip Agop Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bassel El-Rayes
- Department of Hematology Oncology, Emory Winship Institute, Atlanta, GA 30322, United States
| | - Asfar Sohail Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
9
|
A Comprehensive Molecular Characterization of the Pancreatic Neuroendocrine Tumor Cell Lines BON-1 and QGP-1. Cancers (Basel) 2020; 12:cancers12030691. [PMID: 32183367 PMCID: PMC7140066 DOI: 10.3390/cancers12030691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
Abstract
Experimental models of neuroendocrine tumor disease are scarce, with only a few existing neuroendocrine tumor cell lines of pancreatic origin (panNET). Their molecular characterization has so far focused on the neuroendocrine phenotype and cancer-related mutations, while a transcription-based assessment of their developmental origin and malignant potential is lacking. In this study, we performed immunoblotting and qPCR analysis of neuroendocrine, epithelial, developmental endocrine-related genes as well as next-generation sequencing (NGS) analysis of microRNAs (miRs) on three panNET cell lines, BON-1, QGP-1, and NT-3. All three lines displayed a neuroendocrine and epithelial phenotype; however, while insulinoma-derived NT-3 cells preferentially expressed markers of mature functional pancreatic β-cells (i.e., INS, MAFA), both BON-1 and QGP-1 displayed high expression of genes associated with immature or non-functional β/δ-cells genes (i.e., NEUROG3), or pancreatic endocrine progenitors (i.e., FOXA2). NGS-based identification of miRs in BON-1 and QGP-1 cells revealed the presence of all six members of the miR-17–92 cluster, which have been implicated in β-cell function and differentiation, but also have roles in cancer being both oncogenic or tumor suppressive. Notably, both BON-1 and QGP-1 cells expressed several miRs known to be negatively associated with epithelial–mesenchymal transition, invasion or metastasis. Moreover, both cell lines failed to exhibit migratory activity in vitro. Taken together, NT-3 cells resemble mature functional β-cells, while both BON-1 and QGP-1 are more similar to immature/non-functional pancreatic β/δ-cells or pancreatic endocrine progenitors. Based on the recent identification of three transcriptional subtypes in panNETs, NT-3 cells resemble the “islet/insulinoma tumors” (IT) subtype, while BON-1 and QGP-1 cells were tentatively classified as “metastasis-like/primary” (MLP). Our results provide a comprehensive characterization of three panNET cell lines and demonstrate their relevance as neuroendocrine tumor models.
Collapse
|
10
|
Chen X, Kuang W, Huang H, Li B, Zhu Y, Zhou B, Yan L. Knockdown of RWD domain containing 3 inhibits the malignant phenotypes of glioblastoma cells via inhibition of phosphoinositide 3-kinase/protein kinase B signaling. Exp Ther Med 2018; 16:384-393. [PMID: 29977365 DOI: 10.3892/etm.2018.6135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor. RWD domain containing 3 (RWDD3) has been previously reported to serve a promoting role in pituitary tumors. However, the exact role of RWDD3 in glioblastoma remains unclear. Therefore, the present study aimed to investigate the expression levels of RWDD3 in human glioblastoma tissues and cell lines, as well as to examine the regulatory mechanism of RWDD3 underlying glioblastoma growth and metastasis. The results revealed that RWDD3 was significantly upregulated in glioblastoma tissues compared with normal brain tissues, while high expression of RWDD3 was associated with a shorter survival time of glioblastoma patients. The expression levels of RWDD3 were also higher in the glioblastoma cell lines compared with the normal human astrocyte cell line. Subsequent to knockdown of RWDD3, the proliferation of glioblastoma U87 and U251 cells was significantly decreased, possibly due to the cell cycle arrest at G1 phase, as well as the increased cell apoptosis. Furthermore, downregulation of RWDD3 also suppressed U87 and U251 cell invasion by inhibiting the expression levels of matrix metalloproteinase 2 (MMP2) and MMP9. Molecular mechanism investigation demonstrated that knockdown of RWDD3 significantly downregulated the activity of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Activation of PI3K/AKT signaling prevented the suppressive effects of RWDD3 downregulation on glioblastoma cell proliferation and migration, concurrent with increased protein levels of MMP2 and MMP9. In conclusion, the current study demonstrated for the first time that inhibition of RWDD3 expression inhibited glioblastoma progression, at least partly, via suppressing the PI3K/AKT signaling activity, and thus RWDD3 may be a novel potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Weiping Kuang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Hongxing Huang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bo Li
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Yong Zhu
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bin Zhou
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Lin Yan
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
11
|
Abstract
The aim of this study was to assess the potential of 99mTc-Hynic-TOC imaging in the primary diagnosis and follow-up of midgut neuroendocrine tumors (NETs). In comparison to 111In-octreotide, 99mTc-Hynic-TOC has a higher imaging quality and leads to a lower radiation absorption in patients. 99mTc-Hynic-TOC was used for assessing primary diagnosis (n = 14) and during follow-up (n = 17) in patients with NETs. The scintigraphic findings were compared with computed tomography scans and follow-up. In 31 patients, 34 somatostatin receptor scans using 99mTc-Hynic-TOC were performed. The primary diagnoses were midgut NET. The scintigraphy was true positive in 17 patients, true negative in 9, false negative in 4, and false positive in 1. From these data, a sensitivity of 81%, specificity of 90%, positive predictive value of 94%, and negative predictive value of 69% were calculated. In summary, 99mTc-TOC represents a useful radiotracer in imaging SSTR-expressing tumor lesions with slightly higher sensitivity, higher imaging quality, and lower radiation exposure for patients compared to 111In-octreotide. A 1-day double-acquisition protocol should be used to reduce false-positive findings of the gut.
Collapse
Affiliation(s)
- Knut Liepe
- Department of Nuclear Medicine, Klinikum Frankfurt (Oder), 15236 Frankfurt (Oder), Germany
| | - Andreas Becker
- Department of Internal Medicine Gastroenterology, Klinikum Frankfurt (Oder), 15236 Frankfurt (Oder), Germany
| |
Collapse
|
12
|
Abstract
Endocrine is an important and tightly regulated system for maintaining body homeostasis. Endocrine glands produce hormones, which are released into blood stream to guide the target cells responding to all sorts of stimulations. For maintaining body homeostasis, the secretion and activity of a particular hormone needs to be adjusted in responding to environmental challenges such as changes in nutritional status or chronic stress. Hypoxia, a status caused by reduced oxygen availability or imbalance of oxygen consumption/supply in an organ or within a cell, is a stress that affects many physiological and pathological processes. Hypoxic stress in endocrine organs is especially critical because endocrine glands control body homeostasis. Local hypoxia affects not only the particular gland but also the downstream cells/organs regulated by hormones secreted from this gland. Hypoxia-inducible factors (HIFs) are transcription factors that function as master regulators of oxygen homeostasis. Recent studies report that aberrant expression of HIFs in endocrine organs may result in the development and/or progression of diseases including diabetes, endometriosis, infertility and cancers. In this article, we will review recent findings in HIF-mediated endocrine organ dysfunction and the systemic syndromes caused by these disorders.
Collapse
Affiliation(s)
- Hsiu-Chi Lee
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of PhysiologyCollege of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|