1
|
Karataş L, Tatar Z, James EA, Colakogullari M. Investigating Associations between HLA-DR Genotype, H. pylori Infection, and Anti-CagA IgA Seropositivity in a Turkish Gastritis Cohort. Genes (Basel) 2024; 15:339. [PMID: 38540398 PMCID: PMC10969812 DOI: 10.3390/genes15030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 06/14/2024] Open
Abstract
Helicobacter pylori (H. pylori) is associated with gastric inflammation and mucosal antibodies against its cytotoxin-associated gene A (CagA) are protective. Vaccine-elicited immunity against H. pylori requires MHC class II expression, indicating that CD4+ T cells are protective. We hypothesized that the HLA-DR genotypes in human populations include protective alleles that more effectively bind immunogenic CagA peptide fragments and susceptible alleles with an impaired capacity to present CagA peptides. We recruited patients (n = 170) admitted for gastroendoscopy procedures and performed high-resolution HLA-DRB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.2% positive) and H. pylori classified as positive or negative in gastric mucosal tissue slides (72.9% positive). Pearson Chi-square analysis revealed that H. pylori infection was significantly increased in DRB1*11:04-positive individuals (p = 0.027). Anti-CagA IgA was significantly decreased in DRB1*11:04 positive individuals (p = 0.041). In contrast, anti-CagA IgA was significantly increased in DRB1*03:01 positive individuals (p = 0.030). For these HLA-DRB1 alleles of interest, we utilized two in silico prediction methods to compare their capacity to present CagA peptides. Both methods predicted increased numbers of peptides for DRB1*03:01 than DRB1*11:04. In addition, both alleles preferred distinctively different CagA 15mer peptide sequences for high affinity binding. These observations suggest that DRB1*11:04 is a susceptible genotype with impaired CagA immunity, whereas DRB1*03:01 is a protective genotype that promotes enhanced CagA immunity.
Collapse
Affiliation(s)
- Lokman Karataş
- Health Sciences Institution, Istanbul Medipol University, Istanbul 34815, Turkey;
- HLA Laboratory, Istinye University, Istanbul 34010, Turkey
| | - Zeynep Tatar
- Patomer Pathology Laboratory, Fatih, Istanbul 34096, Turkey;
| | - Eddie A. James
- Translational Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Mukaddes Colakogullari
- Clinical Biochemistry Department, Faculty of Medicine, Izmir Democracy University, Izmir 35140, Turkey
| |
Collapse
|
2
|
Zhang J, Jing H, Luo P, Zhang X, Zou Q. Design, implementation, and outcomes of an elective course on preliminary structural biology for undergraduate students majoring in biotechnology. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:168-174. [PMID: 31663671 DOI: 10.1002/bmb.21312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Biotechnological pharmaceuticals is a key course offered to third-year undergraduates majoring in biotechnology in our university. However, students often experience difficulties in understanding the principles of related technologies. In this study, we developed and implemented an elective course on preliminary structural biology for biotechnology undergraduates, aiming at reinforcing the principles of these technologies by experimental practice. The course was composed of three phases and lasted for 15 weeks, 18 students were randomly divided into six teams and were encouraged to design, prepare, carry out, and conclude a project on their own. The main contents of their project were cloning, expression, purification, and crystal screening of HpaA, a lipoprotein from the gastric pathogen Helicobacter pylori. Examination scores of biotechnology pharmaceuticals were used to assess learning outcomes. The results showed that students who participated in this course gained higher scores in the final examination, and they performed better on the questions specifically related to the elective course. These results demonstrated that the course enhanced students' understanding of the technologies involved in this course by practical applications. Thus, this elective course was effective in helping biotechnology undergraduates to learn the theory and application of biological technologies, and the experience gained in this course may be useful for other technology-based courses.
Collapse
Affiliation(s)
- Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Urrutia-Baca VH, Gomez-flores R, De La Garza-Ramos MA, Tamez-guerra P, Lucio-sauceda DG, Rodríguez-padilla MC. Immunoinformatics Approach to Design a Novel Epitope-Based Oral Vaccine Against Helicobacter pylori. J Comput Biol 2019; 26:1177-1190. [PMID: 31120321 PMCID: PMC6786345 DOI: 10.1089/cmb.2019.0062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori is an infectious agent that colonizes the gastric mucosa of half of the population worldwide. This bacterium has been recognized as belonging to group 1 carcinogen by the World Health Organization for the role in development of gastritis, peptic ulcers, and cancer. Due to the increase in resistance to antibiotics used in the anti-H. pylori therapy, the development of an effective vaccine is an alternative of great interest, which remains a challenge. Therefore, a rational, strategic, and efficient vaccine design against H. pylori is necessary where the use of the most current bioinformatics tools could help achieve it. In this study, immunoinformatics approach was used to design a novel multiepitope oral vaccine against H. pylori. Our multiepitope vaccine is composed of cholera toxin subunit B (CTB) that is used as a mucosal adjuvant to enhance vaccine immunogenicity for oral immunization. CTB fused to 11 epitopes predicted of pathogenic (UreB170-189, VacA459-478, CagA1103-1122, GGT106-126, NapA30-44, and OipA211-230) and colonization (HpaA33-52, FlaA487-506, FecA437-456, BabA129-149, and SabA540-559) proteins from H. pylori. CKS9 peptide (CKSTHPLSC) targets epithelial microfold cells to enhance vaccine uptake from the gut barrier. All sequences were joined to each other by proper linkers. The vaccine was modeled and validated to achieve a high-quality three-dimensional structure. The vaccine design was evaluated as nonallergenic, antigenic, soluble, and with an appropriate molecular weight and isoelectric point. Our results suggest that our newly designed vaccine could serve as a promising anti-H. pylori vaccine candidate.
Collapse
Affiliation(s)
- Victor Hugo Urrutia-Baca
- Laboratory of Immunology and Virology, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Ricardo Gomez-flores
- Laboratory of Immunology and Virology, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Myriam Angélica De La Garza-Ramos
- Integral Dentistry Unit and Specialties, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Patricia Tamez-guerra
- Laboratory of Immunology and Virology, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Daniela Guadalupe Lucio-sauceda
- Laboratory of Immunology and Virology, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | | |
Collapse
|
4
|
Yang Y, Chen L, Sun HW, Guo H, Song Z, You Y, Yang LY, Tong YN, Gao JN, Zeng H, Yang WC, Zou QM. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. J Nanobiotechnology 2019; 17:6. [PMID: 30660182 PMCID: PMC6339695 DOI: 10.1186/s12951-019-0441-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection remains a global public health issue, especially in Asia. Due to the emergence of antibiotic-resistant strains and the complexity of H. pylori infection, conventional vaccination is the best way to control the disease. Our previous study found that the N-acetyl-neuroaminyllactose-binding hemagglutinin protein (HpaA) is an effective protective antigen for vaccination against H. pylori infection, and intranasal immunization with the immunodominant HpaA epitope peptide (HpaA 154-171, P22, MEGVLIPAGFIKVTILEP) in conjunction with a CpG adjuvant decreased bacterial colonization in H. pylori-infected mice. However, to confer more robust and effective protection against H. pylori infection, an optimized delivery system is needed to enhance the P22-specific memory T cell response. RESULTS In this study, an intranasal nanoemulsion (NE) delivery system offering high vaccine efficacy without obvious cytotoxicity was designed and produced. We found that this highly stable system significantly prolonged the nasal residence time and enhanced the cellular uptake of the epitope peptide, which powerfully boosted the specific Th1 responses of the NE-P22 vaccine, thus reducing bacterial colonization without CpG. Furthermore, the protection efficacy was further enhanced by combining the NE-P22 vaccine with CpG. CONCLUSION This epitope-loaded nanoemulsion delivery system was shown to extend antigen release and elicit potent Th1 response, it is an applicable delivery system for intranasal vaccine against H. pylori.
Collapse
Affiliation(s)
- Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Hong-wu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying You
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liu-yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ya-nan Tong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ji-ning Gao
- Institute of Combined Injury of PLA, College of Military Preventive Medicine, Third Military Medical University of Chinese PLA, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wu-chen Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Department of Hematology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Quan-ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Yang WC, Sun HW, Sun HQ, Yuan HM, Li B, Li HB, Hu J, Yang Y, Zou QM, Guo H, Wu C, Chen L. Intranasal immunization with immunodominant epitope peptides derived from HpaA conjugated with CpG adjuvant protected mice against Helicobacter pylori infection. Vaccine 2018; 36:6301-6306. [DOI: 10.1016/j.vaccine.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/15/2018] [Accepted: 09/01/2018] [Indexed: 01/07/2023]
|
6
|
Ning Y, Ye J, Wen J, Wu D, Chen Z, Lin Y, Hu B, Luo M, Luo J, Ning L, Li Y. Identification of Two Lpp20 CD4 + T Cell Epitopes in Helicobacter pylori-Infected Subjects. Front Microbiol 2018; 9:884. [PMID: 29875738 PMCID: PMC5974113 DOI: 10.3389/fmicb.2018.00884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2018] [Indexed: 12/22/2022] Open
Abstract
Antigen-specific CD4+ T cells play an essential role in effective immunity against Helicobacter pylori (H. pylori) infection. Lpp20, a conserved lipoprotein of H. pylori, has been investigated as one of major protective antigens for vaccination strategies. Our previous study identified two H-2d-restricted CD4+ T cell epitopes within Lpp20 and an epitope vaccine based on these epitopes was constructed, which protected mice in prophylactic and therapeutic vaccination against H. pylori infection. Immunodominant CD4+ T cell response is an important feature of antiviral, antibacterial, and antitumor cellular immunity. However, while many immunodominant HLA-restricted CD4+ T cell epitopes of H. pylori protective antigens have been identified, immunodominant HLA-restricted Lpp20 CD4+ T cell epitope has not been elucidated. In this study, a systematic method was used to comprehensively evaluate the immunodominant Lpp20-specific CD4+ T cell response in H. pylori-infected patients. Using in vitro recombinant Lpp20 (rLpp20)-specific expanded T cell lines from H. pylori-infected subjects and 27 18mer overlapping synthetic peptides spanned the whole Lpp20 protein, we have shown that L55-72 and L79-96 harbored dominant epitopes for CD4+ T cell responses. Then the core sequence within these two 18mer dominant epitopes was screened by various extended or truncated 13mer peptides. The immunodominant epitope was mapped to L57-69 and L83-95. Various Epstein-Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCLs) with different HLA alleles were used as antigen presenting cell (APC) to present peptides to CD4+ T cells. The restriction molecules were determined by HLA class-antibody blocking. L57-69 was restricted by DRB1-1501 and L83-95 by DRB1-1602. The epitopes were recognized on autologous dendritic cells (DCs) loaded with rLpp20 but also those pulsed with whole cell lysates of H. pylori (HP-WCL), suggesting that these epitopes are naturally processed and presented by APC. CD4+ T cells were isolated from H. pylori-infected patients and stimulated with L57-69 and L83-95. These two epitopes were able to stimulate CD4+ T cell proliferation. This study may be of value for the future development of potential H. pylori vaccine.
Collapse
Affiliation(s)
- Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Danlin Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhongbiao Chen
- Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Yanqing Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bingxin Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meiqun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Luo
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Chirani AS, Ghazi M, Goudarzi M, Peerayeh SN, Soleimanjahi H, Dadashi M, Hajikhani B. A survey on chimeric UreB 229-561-HpaA protein targeting Helicobacter pylori: Computational and in vitro urease activity valuation. Comput Biol Chem 2018; 76:42-52. [PMID: 29929167 DOI: 10.1016/j.compbiolchem.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) as microaerophilic, Gram-negative bacterium colonize the human gastric milieu, where it impetuses chronic disorders. Vaccination is a complementary plan, along with antibiotic therapy, for clearance of H. pylori. Today, Computer based tools are essential for the evaluation, design, and experiment for novel chimeric targets for immunological administration. The purpose of this experiment was immunoinformatic analysis of UreB and HpaA molecules in a fusion arrangement and also, construction and expression of recombinant protein containing chimeric sequences. The targets sequences were screened by using of standard in silico tools and immunoinformatic web servers. The high-resolution 3D models of the protein were created and were validated; indeed, the B-and T-cell restricted epitopes were mapped on the chimeric protein. The recombinant protein in frame of the expression vector pET28a were expressed and purified successfully. The urease activity and immunoblotting were performed in vitro condition. This study confirmed that the engineered protein as a highly conserved, hydrophilic, non-allergenic contained remarkable B-cell and T-cell epitopes. It was magnificently attained; chimeric UreB229-561-HpaA could provoke both humoral and cellular immunity. The immunoblotting was shown that the chimeric protein could be detected by serum of immunized animal and H.pylori positive patients. In this study, several antigenic patches from UreB and HpaA were identified that could be an efficient immune system activator. The in vitro analysis of our chimeric molecule confirmed its urease activity. It also confirmed that the chimeric protein could be detected by serum of immunized animal and H.pylori positive patients.
Collapse
Affiliation(s)
- Alireza Salimi Chirani
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Ghazi
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Najar Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Dadashi
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Shi Y, Zhai W, Wang B, Zhao D, Jin H, Wang Y, Zhang J, An H, Fu Z, Zhao K, Lu C. Genetic susceptibility of eight nonsynonymous polymorphisms in HLA-DRB1 gene to hepatocellular carcinoma in Han Chinese. Oncotarget 2018; 7:80935-80942. [PMID: 27821814 PMCID: PMC5348366 DOI: 10.18632/oncotarget.13111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/28/2016] [Indexed: 01/17/2023] Open
Abstract
Backgrounds and Objective Mounting evidence suggests that human leukocyte antigen (HLA) plays a central role in anti-virus and tumor defense. To test whether genetic variation in HLA-DRB1 gene, a key component of HLA system, can predict its predisposition to hepatocellular carcinoma (HCC), we thereby conducted an association study by genotyping 8 nonsynonymous polymorphisms in HLA-DRB1 gene among 257 HCC patients and 264 controls. Results All polymorphisms respected the Hardy-Weinberg equilibrium. The genotypes and alleles of rs17879599 differed significantly between patients and controls after Bonferroni correction (both P < 0.001), and the power to detect this significance was 94.4%. After adjusting for age, gender, smoking, drinking and hepatitis infection, the mutant allele of rs17879702 was significantly associated with an increased risk for HCC under additive (odds ratio [OR] = 2.12, 95% confidence interval [CI]: 1.20-4.02, P = 0.004) and dominant (OR = 2.51, 95% CI: 1.39–2.96, P = 0.004) models. Haplotype analysis indicated that haplotype A-T-C-T-G-C-T-A (alleles ordered by rs199514452, rs201540428, rs201614260, rs17879702, rs17880292, rs17879599, rs17424145 and rs35445101) was overrepresented in patients and enhanced predisposition to HCC (adjusted OR = 2.72, 95% CI: 1.24–5.78, P = 0.004). In cumulative analysis, carriers of 7–9 unfavorable alleles had a 2.41-fold (95% CI: 1.18–4.92, P = 0.016) increased risk for HCC after adjusting for confounding factors relative to those possessing 4 or less unfavorable alleles. Materials and Methods Genotypes were determined by ligase detection reaction. HCC patients were newly diagnosed, histopathologically confirmed or previously untreated and controls were cancer-free. Conclusions Our findings suggest an independent leading contribution of rs17879599 in the 2nd exon of HLA-DRB1 gene to HCC risk in Han Chinese.
Collapse
Affiliation(s)
- Yanhui Shi
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Weiyu Zhai
- Department of Pharmacy, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bin Wang
- Department of Physiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dongmei Zhao
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - He Jin
- Department of Cardiology, Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, Heilongjiang, China
| | - Yuefei Wang
- Department of Physiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jidong Zhang
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Hongjun An
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Zhongze Fu
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Kun Zhao
- Department of Physiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Changzhu Lu
- Department of Physiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
9
|
Abstract
Helicobacter pylori is usually acquired in early childhood and the infection persists lifelong without causing symptoms. In a small of cases, the infection leads to gastric or duodenal ulcer disease, or gastric cancer. Why disease occurs in these individuals remains unclear, however the host response is known to play a very important part. Understanding the mechanisms involved in maintaining control over the immune and inflammatory response is therefore extremely important. Vaccines against H. pylori have remained elusive but are desperately needed for the prevention of gastric carcinogenesis. This review focuses on research findings which may prove useful in the development of prognostic tests for gastric cancer development, therapeutic agents to control immunopathology, and effective vaccines.
Collapse
Affiliation(s)
- Karen Robinson
- Nottingham Digestive Diseases Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kazuyo Kaneko
- Nottingham Digestive Diseases Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Leif Percival Andersen
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|