1
|
Perona-Moratalla AB, Carrión B, Villar Gómez de las Heras K, Arias-Salazar L, Yélamos-Sanz B, Segura T, Serrano-Heras G. Dual Inhibition of HIF-1α and HIF-2α as a Promising Treatment for VHL-Associated Hemangioblastomas: A Pilot Study Using Patient-Derived Primary Cell Cultures. Biomedicines 2025; 13:1234. [PMID: 40427061 PMCID: PMC12108798 DOI: 10.3390/biomedicines13051234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Von Hippel-Lindau (VHL) disease, a hereditary cancer syndrome, is characterized by mutations in the VHL gene, which result in the stabilization of hypoxia-inducible factors (HIF)-1α and -2α, ultimately leading to the development of highly vascularized tumors, such as hemangioblastomas of the central nervous system (CNS-HBs). The standard treatment for these brain tumors is neurosurgical resection. However, multiple surgeries are often necessary due to tumor recurrence, which increases the risk of neurological sequelae. Thus, elucidation of the proliferative behavior of hemangioblastomas (with the aim of identifying biomarkers associated with tumor progression) and the development of pharmacological therapies could reduce the need for repeated surgical interventions and provide alternative treatment options for unresectable CNS-HBs. Belzutifan (Welireg™), a selective HIF-2α inhibitor and the only FDA-approved non-surgical option, has shown limited efficacy in CNS-HBs, highlighting the need for alternative therapeutic strategies. Results: In this study, primary cell cultures were successfully established from CNS-HB tissue samples of VHL patients, achieving a 75% success rate. These cultures were predominantly composed of stromal cells and pericytes. The proliferative patterns of patient-derived HB cell cultures significantly correlated with tumor burden and recurrence in VHL patients. Furthermore, flow cytometry, reverse transcription-PCR, and Western blot analyses revealed marked overexpression of both HIF-1α and HIF-2α isoforms in primary HB cells. In addition, evaluation of the therapeutic potential of acriflavine, a dual HIF-1α/HIF-2α inhibitor, demonstrated reduced HB cells viability, induced G2/M cell cycle arrest, and predominantly triggered necrotic cell death in patient-derived HB cultures. Conclusions: These results suggest that the in vitro proliferative dynamics of HB cell cultures may reflect clinical characteristics associated with CNS-HB progression, potentially serving as indicators to predict tumor development in patients with VHL. Furthermore, our findings support the simultaneous targeting of both HIF-1α and HIF-2α isoforms as a promising non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Ana B. Perona-Moratalla
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008 Albacete, Spain;
| | - Blanca Carrión
- Research Unit, General University Hospital of Albacete, Laurel, s/n, 02008 Albacete, Spain; (B.C.); (L.A.-S.); (B.Y.-S.)
- Department of Medicine, Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | - Lourdes Arias-Salazar
- Research Unit, General University Hospital of Albacete, Laurel, s/n, 02008 Albacete, Spain; (B.C.); (L.A.-S.); (B.Y.-S.)
- Neuroscience Section, Institute of Health Research of Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Blanca Yélamos-Sanz
- Research Unit, General University Hospital of Albacete, Laurel, s/n, 02008 Albacete, Spain; (B.C.); (L.A.-S.); (B.Y.-S.)
- Neuroscience Section, Institute of Health Research of Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Tomás Segura
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008 Albacete, Spain;
- Neuroscience Section, Institute of Health Research of Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Biomedicine Institute of UCLM (IB-UCLM), Faculty of Medicine, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Gemma Serrano-Heras
- Research Unit, General University Hospital of Albacete, Laurel, s/n, 02008 Albacete, Spain; (B.C.); (L.A.-S.); (B.Y.-S.)
- Neuroscience Section, Institute of Health Research of Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
2
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
3
|
Yang C, Passos Gibson V, Hardy P. The Role of MiR-181 Family Members in Endothelial Cell Dysfunction and Tumor Angiogenesis. Cells 2022; 11:1670. [PMID: 35626707 PMCID: PMC9140109 DOI: 10.3390/cells11101670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial dysfunction plays a critical role in many human angiogenesis-related diseases, including cancer and retinopathies. Small non-coding microRNAs (miRNAs) repress gene expression at the post-transcriptional level. They are critical for endothelial cell gene expression and function and are involved in many pathophysiological processes. The miR-181 family is one of the essential angiogenic regulators. This review summarizes the current state of knowledge of the role of miR-181 family members in endothelial cell dysfunction, with emphasis on their pathophysiological roles in aberrant angiogenesis. The actions of miR-181 members are summarized concerning their targets and associated major angiogenic signaling pathways in a cancer-specific context. Elucidating the underlying functional mechanisms of miR-181 family members that are dysregulated in endothelial cells or cancer cells is invaluable for developing miRNA-based therapeutics for angiogenesis-related diseases such as retinopathies, angiogenic tumors, and cancer. Finally, potential clinical applications of miR-181 family members in anti-angiogenic tumor therapy are discussed.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Victor Passos Gibson
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pediatrics, University of Montréal, Quebec, QC H3T 1C5, Canada
| |
Collapse
|
4
|
Chernyakov D, Groß A, Fischer A, Bornkessel N, Schultheiss C, Gerloff D, Edemir B. Loss of RANBP3L leads to transformation of renal epithelial cells towards a renal clear cell carcinoma like phenotype. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:226. [PMID: 34233711 PMCID: PMC8265145 DOI: 10.1186/s13046-021-01982-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/16/2021] [Indexed: 01/21/2023]
Abstract
Background Renal cell carcinomas (RCC) are characterized by the deregulation of several hundred hyperosmolality-responsive genes. High expression of a subset of these genes including the Ran binding protein 3 like (RANBP3L) is linked to a favorable prognostic outcome in RCC. However, the cellular function of RANBP3L remains largely unknown. Methods We used CRISPR/Cas9-mediated gene editing to generate functional deletions of the Ranbp3l and nuclear factor of activated T cells 5 (Nfat5) gene loci in a murine renal cell line. The NFAT5-KO cells were used to assess the regulation of Ranbp3l by NFAT5 using immunofluorescence, RNA-Seq and promoter assays. RANBP3L-deficient cells were analyzed for changes in cell morphology, proliferation, migration and colony-forming capacity using immunofluorescence and live cell imaging. RANPB3L-dependent changes in gene expression were identified by RNA-Seq. Results We show that NFAT5 directly regulates Ranpb3l under hyperosmotic conditions by binding its promoter. Functional analysis of RANBP3L-deficient cells revealed a loss of epithelial structure, an increased cell migration behavior and colony forming capacity, accompanied by massive alterations in gene expression, all of which are hallmarks for tumor cells. Strikingly, a RANBP3L dependent signature of 60 genes separated samples with clear cell carcinoma (KIRC) from papillary (KIRP), chromophobe renal carcinoma (KICH) and healthy tissue. Conclusions Loss of RANBP3L induces a tumor like phenotype resembles RCC, especially KIRC, on the morphological and gene expression level and might promote tumor development and progression. Therapeutic reconstitution or elevation of osmoregulated RANBP3L expression might represent a novel treatment strategy for RCC or KIRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01982-y.
Collapse
Affiliation(s)
- Dmitry Chernyakov
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Groß
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Annika Fischer
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicola Bornkessel
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiss
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dennis Gerloff
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bayram Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany. .,Current address: Klinik für Innere Medizin IV, Hämatologie und Onkologie, Universitätsklinikum Halle (Saale), Halle (Saale), Germany.
| |
Collapse
|
5
|
Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res 2021; 40:186. [PMID: 34099013 PMCID: PMC8183071 DOI: 10.1186/s13046-021-01961-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) have been the mainstay of treatment for patients with advanced renal cell carcinoma (RCC). Despite its early promising results in decreasing or delaying the progression of RCC in patients, VEGF-TKIs have provided modest benefits in terms of disease-free progression, as 70% of the patients who initially respond to the treatment later develop drug resistance, with 30% of the patients innately resistant to VEGF-TKIs. In the past decade, several molecular and genetic mechanisms of VEGF-TKI resistance have been reported. One of the mechanisms of VEGF-TKIs is inhibition of the classical angiogenesis pathway. However, recent studies have shown the restoration of an alternative angiogenesis pathway in modulating resistance. Further, in the last 5 years, immune checkpoint inhibitors (ICIs) have revolutionized RCC treatment. Although some patients exhibit potent responses, a non-negligible number of patients are innately resistant or develop resistance within a few months to ICI therapy. Hence, an understanding of the mechanisms of VEGF-TKI and ICI resistance will help in formulating useful knowledge about developing effective treatment strategies for patients with advanced RCC. In this article, we review recent findings on the emerging understanding of RCC pathology, VEGF-TKI and ICI resistance mechanisms, and potential avenues to overcome these resistance mechanisms through rationally designed combination therapies.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
| | - Mark Myers
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | | | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia.
- Federation University Australia, Ballarat, Victoria, 3350, Australia.
- The Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, 3052, Australia.
| |
Collapse
|
6
|
Pan SY, Chiang WC, Chen YM. The journey from erythropoietin to 2019 Nobel Prize: Focus on hypoxia-inducible factors in the kidney. J Formos Med Assoc 2021; 120:60-67. [DOI: 10.1016/j.jfma.2020.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
|
7
|
Deng Y, Li S, Li S, Yu C, Huang D, Chen H, Yin X. CircPDE4B inhibits retinal pathological angiogenesis via promoting degradation of HIF-1α though targeting miR-181c. IUBMB Life 2020; 72:1920-1929. [PMID: 32584521 DOI: 10.1002/iub.2307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 01/11/2023]
Abstract
Retinopathy of prematurity is a major cause of childhood blindness worldwide. Hence, exploring the proper treatment methods is a must in tacking this disease. qRT-PCR and western blot were used to detect the expression of genes and proteins, respectively. The proliferation of human retinal vascular endothelial cells (HRECs) was ensured by MTT assay. The luciferase activity was measured through luciferase assay. The inverted phase-contrast light microscope was used to observe the formation of a vascular tube. In the present study, our data demonstrated that circPDE4B was downregulated, while hypoxia-inducible factor-1α (HIF-1α) and VEGFA were upregulated in the retinopathy of prematurity model in vitro and in vivo. CircPDE4B increasing remarkably inhibited the expression of HIF-1α and VEGFA in hypoxia-induced HRECs and subsequent repressed cell proliferation and pathological angiogenesis. We further found that miR-181c suppressed the expression of von Hippel-Lindau (VHL), while circPDE4B could promote VHL expression via binding to miR-181c. Finally, our results revealed that circPDE4B inhibited the expression of VEGFA and pathological angiogenesis via facilitating VHL-mediated ubiquitin degradation of HIF-1α. In conclusion, circPDE4B suppressed the expression of VEGFA and pathological angiogenesis via promoting VHL-mediated ubiquitin degradation of HIF-1α through binding to miR-181c. Our study indicated that circPDE4B might be an effective therapeutic target of retinopathy of prematurity.
Collapse
Affiliation(s)
- Yan Deng
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shurong Li
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuanglian Li
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chunhong Yu
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dan Huang
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaolong Yin
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Groß A, Chernyakov D, Gallwitz L, Bornkessel N, Edemir B. Deletion of Von Hippel-Lindau Interferes with Hyper Osmolality Induced Gene Expression and Induces an Unfavorable Gene Expression Pattern. Cancers (Basel) 2020; 12:cancers12020420. [PMID: 32059438 PMCID: PMC7073186 DOI: 10.3390/cancers12020420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Loss of von Hippel–Lindau (VHL) protein function can be found in more than 90% of patients with clear cell renal carcinoma (ccRCC). Mice lacking Vhl function in the kidneys have urine concentration defects due to postulated reduction of the hyperosmotic gradient. Hyperosmolality is a kidney-specific microenvironment and induces a unique gene expression pattern. This gene expression pattern is inversely regulated in patients with ccRCC with consequences for cancer-specific survival. Within this study, we tested the hypothesis if Vhl function influences the hyperosmolality induced changes in gene expression. We made use of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to inhibit functional Vhl expression in murine collecting duct cell line. Loss of Vhl function induced morphological changes within the cells similar to epithelial to mesenchymal transition like phenotype. Vhl-deficient cells migrated faster and proliferated slower compared to control cells. Gene expression profiling showed significant changes in gene expression patterns in Vhl-deficient cells compared to control cells. Several genes with unfavorable outcomes showed induced and genes with favorable outcomes for patients with renal cancer reduced gene expression level. Under hyperosmotic condition, the expression of several hyperosmolality induced genes, with favorable prognostic value, was downregulated in cells that do not express functional Vhl. Taken together, this study shows that Vhl interferes with hyperosmotic signaling pathway and hyperosmolality affected pathways might represent new promising targets.
Collapse
Affiliation(s)
| | | | | | | | - Bayram Edemir
- Correspondence: ; Tel.: +49-345-557-4890; Fax: +49-345-557-2950
| |
Collapse
|
9
|
Ciarimboli G, Theil G, Bialek J, Edemir B. Contribution and Expression of Organic Cation Transporters and Aquaporin Water Channels in Renal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:81-104. [PMID: 32772272 DOI: 10.1007/112_2020_34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The body homeostasis is maintained mainly by the function of the kidneys, which regulate salt and water balance and excretion of metabolism waste products and xenobiotics. This important renal function is determined by the action of many transport systems, which are specifically expressed in the different parts of the nephron, the functional unit of the kidneys. These transport systems are involved, for example, in the reabsorption of sodium, glucose, and other important solutes and peptides from the primary urine. They are also important in the reabsorption of water and thereby production of a concentrated urine. However, several studies have shown the importance of transport systems for different tumor entities. Transport systems, for example, contributed to the proliferation and migration of cancer cells and thereby on tumor progression. They could also serve as drug transporters that could enable drug resistance by outward transport of, for example, chemotherapeutic agents and other drugs. Although many renal transporters have been characterized in detail with respect to the significance for proper kidney function, their role in renal cancer progression is less known. Here, we describe the types of renal cancer and review the studies that analyzed the role of organic cation transporters of the SLC22-family and of the aquaporin water channel family in kidney tumors.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Medicine Clinic D, Experimental Nephrology, University Hospital of Münster, Münster, Germany
| | - Gerit Theil
- Clinic of Urology, University Hospital, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Joanna Bialek
- Clinic of Urology, University Hospital, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bayram Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
10
|
Hypertonicity-Affected Genes Are Differentially Expressed in Clear Cell Renal Cell Carcinoma and Correlate with Cancer-Specific Survival. Cancers (Basel) 2019; 12:cancers12010006. [PMID: 31861377 PMCID: PMC7017076 DOI: 10.3390/cancers12010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
The heterogeneity of renal cell carcinoma (RCC) subtypes reflects the cell type of origin in the nephron, with consequences for therapy and prognosis. The transcriptional cues that determine segment-specific gene expression patterns are poorly understood. We recently showed that hypertonicity in the renal medulla regulates nephron-specific gene expression. Here, we analyzed a set of 223 genes, which were identified in the present study by RNA-Seq to be differentially expressed by hypertonicity, for the prediction of cancer-specific survival (CSS). Cluster analyses of these genes showed discrimination between tumor and non-tumor samples of clear cell RCC (ccRCC). Refinement of this gene signature to a four-gene score (OSM score) through statistical analyses enabled prediction of CSS in ccRCC patients of The Cancer Genome Atlas (TCGA) (n = 436) in univariate (HR = 4.1; 95% CI: 2.78−6.07; p = 4.39 × 10−13), and multivariate analyses including primary tumor (T); regional lymph node (N); distant metastasis (M); grading (G)(p = 2.3 × 10−5). The OSM score could be validated in an independent ccRCC study (n = 52) in univariate (HR = 1.29; 95% CI = 1.05–1.59; p = 0.011) and multivariate analyses (p = 0.016). Cell culture experiments using RCC cell lines demonstrated that the expression of the tumor suppressor ELF5 could be restored by hypertonicity. The innovation of our novel gene signature is that these genes are physiologically regulated only by hypertonicity, thereby providing the possibility to be targeted for therapy.
Collapse
|
11
|
Wang X, Hu Z, Wang Z, Cui Y, Cui X. Angiopoietin-like protein 2 is an important facilitator of tumor proliferation, metastasis, angiogenesis and glycolysis in osteosarcoma. Am J Transl Res 2019; 11:6341-6355. [PMID: 31737187 PMCID: PMC6834488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Background: Solid tumors are often exposed to hypoxia. Hypoxia inducible factor (HIF-1α) upregulates numerous target genes associated with the malignant behavior of hypoxic cancer cells. Angiopoietin-like protein 2 (Angptl2), a member of the angiopoietin family, is a hypoxia-inducible gene. However, the role and potential mechanism of Angptl2, and the relationship between Angptl2 and hypoxia in osteosarcoma (OS) remain unclear. Methods: In this study, quantitative RT-PCR was performed to detect the levels of Angptl2 and HIF-1α, and western blot assay was performed to measure the expression of Angptl2, HIF-1α, CDK2, cyclin E1, P21, MMP2, MMP9, VEGFA, Ang II and HK2 in osteosarcoma cells and tissue. Subsequently, cell viability and cycle were analyzed using CCK-8 and flow cytometer assays. Cell migration, invasion and glycolysis were analyzed with Transwell, Scratch Test and glucose/lactic acid detection kits, respectively. Experiments in vivo were performed to value the effects of Angptl2 on the growth of osteosarcoma xenografts in mice. Immunofluorescent and immunohistochemistry staining were conducted to detect the expression of Ki-67 and Angptl2, respectively. Results: The results demonstrated that Angptl2 was highly expressed in OS cells, which was induced by hypoxia (HIF-1α). Additionally, Angptl2 overexpression regulated cell proliferation, invasion, migration and G1 phase arrest in OS cells. Moreover, Angptl2 promoted OS tumor growth in vivo tumor xenografts. Angptl2 might enhance angiogenesis and glycolysis by promoting VEGFA, Ang II and HK2 both in vitro and in vivo. Conclusion: In conclusion, the present findings indicated that hypoxia-induced Angptl2 expression was independent of HIF-1α in hypoxic OS cells. Angptl2 might promote OS cell proliferation, metastasis, angiogenesis and glycolysis, which could be regarded as a favorable marker for predicting a long survival time in patients with OS.
Collapse
Affiliation(s)
- Xiuhui Wang
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health SciencesShanghai 201318, China
| | - Zhaohui Hu
- Department of Orthopedics, Liuzhou People’s HospitalNo. 8 Wenchang Road, Liuzhou 545006, Guangxi, China
| | - Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Yin Cui
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health SciencesShanghai 201318, China
| | - Xu Cui
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health SciencesShanghai 201318, China
| |
Collapse
|
12
|
Song N, Zhang T, Xu X, Lu Z, Yu X, Fang Y, Hu J, Jia P, Teng J, Ding X. miR-21 Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Preventing Epithelial Cell Apoptosis and Inhibiting Dendritic Cell Maturation. Front Physiol 2018; 9:790. [PMID: 30013485 PMCID: PMC6036242 DOI: 10.3389/fphys.2018.00790] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/06/2018] [Indexed: 02/02/2023] Open
Abstract
Renal tubular injury and innate immune responses induced by hypoxia contribute to acute kidney injury. Accumulating evidence suggests that miR-21 overexpression protects against kidney ischemia injury. Additionally, miR-21 emerges as a key inhibitor in dendritic cell maturation. Thus, we hypothesized that miR-21 protects the kidney from IR injury by suppressing epithelial cell damage and inflammatory reaction. In this study, we investigated effects of miR-21 and its signaling pathways (PTEN/AKT/mTOR/HIF, PDCD4/NFκ-B) on kidney ischemia/reperfusion (IR) injury in vitro and in vivo. The results revealed that IR increased miR-21, HIF1α, and 2α expression in vivo and in vitro. MiR-21 interacted with HIF1α and 2α through the PTEN/AKT/mTOR pathway. Moreover, inhibition of miR-21 activated PDCD4/NFκ-B pathways, which are critical for dendritic cell maturation. Renal IR triggers local inflammation by inducing the dendritic cell maturation and promoting the secretion of IL-12, IL-6, and TNF-α cytokines. Knockdown of miR-21 intensified the effect of IR on tubular epithelial cell apoptosis and dendritic cell maturation. Our results suggested that IR-inducible miR-21 protects epithelial cells from IR injury via a feedback interaction with HIF (PTEN/AKT/mTOR/HIF/miR-21) and by inhibiting maturation of DCs through the PDCD4/NF-κB pathway. These findings highlight new therapeutic opportunities in AKI.
Collapse
Affiliation(s)
- Nana Song
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Ting Zhang
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - XiaLian Xu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Zhihui Lu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaofang Yu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jiachang Hu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Ping Jia
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jie Teng
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| |
Collapse
|
13
|
Meléndez-Rodríguez F, Roche O, Sanchez-Prieto R, Aragones J. Hypoxia-Inducible Factor 2-Dependent Pathways Driving Von Hippel-Lindau-Deficient Renal Cancer. Front Oncol 2018; 8:214. [PMID: 29938199 PMCID: PMC6002531 DOI: 10.3389/fonc.2018.00214] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
The most common type of the renal cancers detected in humans is clear cell renal cell carcinomas (ccRCCs). These tumors are usually initiated by biallelic gene inactivation of the Von Hippel-Lindau (VHL) factor in the renal epithelium, which deregulates the hypoxia-inducible factors (HIFs) HIF1α and HIF2α, and provokes their constitutive activation irrespective of the cellular oxygen availability. While HIF1α can act as a ccRCC tumor suppressor, HIF2α has emerged as the key HIF isoform that is essential for ccRCC tumor progression. Indeed, preclinical and clinical data have shown that pharmacological inhibitors of HIF2α can efficiently combat ccRCC growth. In this review, we discuss the molecular basis underlying the oncogenic potential of HIF2α in ccRCC by focusing on those pathways primarily controlled by HIF2α that are thought to influence the progression of these tumors.
Collapse
Affiliation(s)
- Florinda Meléndez-Rodríguez
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Olga Roche
- Unidad Asociada de Biomedicina, Universidad de Castilla-La Mancha, Consejo Superior de Investigaciones Científicas (CSIC), Albacete, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ricardo Sanchez-Prieto
- Unidad Asociada de Biomedicina, Universidad de Castilla-La Mancha, Consejo Superior de Investigaciones Científicas (CSIC), Albacete, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de investigaciones Biomedicas Alberto Sols, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julian Aragones
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
14
|
Chen B, Jiao Z, Yin X, Qian Z, Gu J, Sun H. Novel insights into biomarkers associated with renal cell carcinoma. Oncol Lett 2018; 16:83-90. [PMID: 29928389 PMCID: PMC6006415 DOI: 10.3892/ol.2018.8665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common form of cancer of the urinary tract. The present study aimed to identify driver genes in RCC using a bioinformatics approach. GSE53757 and GSE40435 microarray data were analyzed, and differentially expressed genes were filtered prior to gene ontology (GO) and pathway analysis. A protein-protein interaction (PPI) network was established. Overall survival and recurrence were investigated and based on data presented in cBioPortal. The COPS7B gene within the PPI network was selected for further study in vitro. The present study identified 174 and 149 genes possessing a significant signal to noise ratio in GSE53757 and GSE40435, respectively. In total, 53 of these genes were selected based upon inclusion in both datasets. GO analysis indicated that PRKCDBP, EHD2, KCNJ10, ATP1A1, KCNJ1 and EHD2 may be involved in various biological processes. Furthermore, ALDH6A1, LDHA, SUCLG1 and ABAT may be involved in the propanoate metabolism pathway. A network consisting of 106 genes, and one typical cluster were constructed. In addition, COPS7B was selected, as it was associated with decreased overall survival and increased recurrence rates, in order to elucidate its function in RCC. Furthermore, upregulation of COPS7B was demonstrated to be predictive of advanced stage disease and metastasis of RCC. Finally, COPS7B-knockdown inhibited RCC cell proliferation and invasion ability. Collectively, these results provided novel insights into COPS7B function, indicating that COPS7B may serve as a prognostic marker and therapeutic target in RCC.
Collapse
Affiliation(s)
- Binghai Chen
- Department of Urology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Zhimin Jiao
- Department of Urology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Xifeng Yin
- Department of Urology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Zhounan Qian
- Department of Urology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Hao Sun
- Department of Urology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| |
Collapse
|
15
|
Hypoxia, HIF, and Associated Signaling Networks in Chronic Kidney Disease. Int J Mol Sci 2017; 18:ijms18050950. [PMID: 28468297 PMCID: PMC5454863 DOI: 10.3390/ijms18050950] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of chronic kidney disease (CKD) is complex and apparently multifactorial. Hypoxia or decrease in oxygen supply in kidney tissues has been implicated in CKD. Hypoxia inducible factors (HIF) are a small family of transcription factors that are mainly responsive to hypoxia and mediate hypoxic response. HIF plays a critical role in renal fibrosis during CKD through the modulation of gene transcription, crosstalk with multiple signaling pathways, epithelial-mesenchymal transition, and epigenetic regulation. Moreover, HIF also contributes to the development of various pathological conditions associated with CKD, such as anemia, inflammation, aberrant angiogenesis, and vascular calcification. Treatments targeting HIF and related signaling pathways for CKD therapy are being developed with promising clinical benefits, especially for anemia. This review presents an updated analysis of hypoxia response, HIF, and their associated signaling network involved in the pathogenesis of CKD.
Collapse
|
16
|
Wang Y, Wang X, Su X, Liu T. HIF-2α affects proliferation and apoptosis of MG-63 osteosarcoma cells through MAPK signaling. Mol Med Rep 2017; 15:2174-2178. [PMID: 28259908 PMCID: PMC5364827 DOI: 10.3892/mmr.2017.6243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
The present study explored the mechanism of hypoxia-inducible factor (HIF)-2α in proliferation and apoptosis of the osteosarcoma cell line, MG-63. Cells were treated with small interfering RNA (siRNA) against HIF-2α (silenced group) or without siRNA (control group). Cell viability of MG-63 in the silenced and the control groups was determined by MTT assay; cell apoptosis was measured by flow cytometry; the expression of HIF-2α and mitogen-activated protein kinase (MAPK)-p38 were measured by western blotting. According to MTT assay, 48 h after siRNA transfection, compared with the control group, cells in the silenced group significantly declined in quantity and the number of apoptotic cells increased significantly. The expression of HIF-2α and MAPK-p38 were significantly decreased (P<0.05). In conclusion, knockdown of HIF-2α in the osteosarcoma cell line reduced the proliferation of cancer cells and increased apoptosis. These effects likely occurred through the MAPK-p38 signaling pathway.
Collapse
Affiliation(s)
- Yuqiang Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of Logistics College of Chinese People's Armed Police Force, Pingjin Hospital, Tianjin 300162, P.R. China
| | - Xiaohua Wang
- Department of Neurological Intensive Care Unit, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Xuetao Su
- Department of Orthopedic Surgery, The Affiliated Hospital of Logistics College of Chinese People's Armed Police Force, Pingjin Hospital, Tianjin 300162, P.R. China
| | - Tiansheng Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of Logistics College of Chinese People's Armed Police Force, Pingjin Hospital, Tianjin 300162, P.R. China
| |
Collapse
|