1
|
Mu H, Zhu X, Jia H, Zhou L, Liu H. Combination Therapies in Chronic Myeloid Leukemia for Potential Treatment-Free Remission: Focus on Leukemia Stem Cells and Immune Modulation. Front Oncol 2021; 11:643382. [PMID: 34055612 PMCID: PMC8155539 DOI: 10.3389/fonc.2021.643382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Although tyrosine Kinase Inhibitors (TKI) has revolutionized the treatment of chronic myeloid leukemia (CML), patients are not cured with the current therapy modalities. Also, the more recent goal of CML treatment is to induce successful treatment-free remission (TFR) among patients achieving durable deep molecular response (DMR). Together, it is necessary to develop novel, curative treatment strategies. With advancements in understanding the biology of CML, such as dormant Leukemic Stem Cells (LSCs) and impaired immune modulation, a number of agents are now under investigation. This review updates such agents that target LSCs, and together with TKIs, have the potential to eradicate CML. Moreover, we describe the developing immunotherapy for controlling CML.
Collapse
Affiliation(s)
- Hui Mu
- Medical School, Nantong University, Nantong, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Jia
- Medical School, Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Jurj A, Pop-Bica C, Slaby O, Ştefan CD, Cho WC, Korban SS, Berindan-Neagoe I. Tiny Actors in the Big Cellular World: Extracellular Vesicles Playing Critical Roles in Cancer. Int J Mol Sci 2020; 21:7688. [PMID: 33080788 PMCID: PMC7589964 DOI: 10.3390/ijms21207688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Communications among cells can be achieved either via direct interactions or via secretion of soluble factors. The emergence of extracellular vesicles (EVs) as entities that play key roles in cell-to-cell communication offer opportunities in exploring their features for use in therapeutics; i.e., management and treatment of various pathologies, such as those used for cancer. The potential use of EVs as therapeutic agents is attributed not only for their cell membrane-bound components, but also for their cargos, mostly bioactive molecules, wherein the former regulate interactions with a recipient cell while the latter trigger cellular functions/molecular mechanisms of a recipient cell. In this article, we highlight the involvement of EVs in hallmarks of a cancer cell, particularly focusing on those molecular processes that are influenced by EV cargos. Moreover, we explored the roles of RNA species and proteins carried by EVs in eliciting drug resistance phenotypes. Interestingly, engineered EVs have been investigated and proposed as therapeutic agents in various in vivo and in vitro studies, as well as in several clinical trials.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Pathology, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Cristina D. Ştefan
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China;
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Jurj A, Pasca S, Teodorescu P, Tomuleasa C, Berindan-Neagoe I. Basic knowledge on BCR-ABL1-positive extracellular vesicles. Biomark Med 2020; 14:451-458. [PMID: 32270699 DOI: 10.2217/bmm-2019-0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematological malignancy characterized by the excessive proliferation of myeloid progenitors. In the case of CML, these extracellular vesicles (EVs) were shown to communicate with hematopoietic stem cells, mesenchymal stem cells, myeloid derived suppressor cells and endothelial cells determining a beneficial microenvironment for the CML clone. Moreover, as these EVs are marked through BCR-ABL1, they were shown to be useful in clinical research in determining the grade of molecular remission with further studies being needed to determine if they are better or worse at predicting CML relapse. More than this, we consider BCR-ABL1-positive EVs to represent only a stepping-stone for other malignancies that also present fusion genes that are loaded in EVs.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Republicii Street 34-36, 400015, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Republicii Street 34-36, 400015, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Jiang L, Wang H, Zhu X, Liu W, Zhou S, Geng Z, Xiao Y, Zou P, You Y, Li Q, Zhu X. The Impact of Tyrosine Kinase Inhibitors on Chronic Myeloid Leukemia Stem Cells and the Implication in Discontinuation. Stem Cells Dev 2019; 28:1480-1485. [PMID: 31530245 DOI: 10.1089/scd.2019.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BCR-ABL1 tyrosine kinase inhibitors (TKIs) are selective therapies for patients with chronic myeloid leukemia (CML) and induce deep molecular response (DMR). However, ∼60% of patients relapse after the discontinuation of TKIs. Relapse after discontinuation is likely due the inability of TKIs to eradicate CML stem cells (CML-LSCs). In our previous study, 12 out of 22 patients maintained a stable DMR after TKI withdrawal, and we found that fewer patients who were treated with second-generation TKI relapsed compared with those receiving imatinib. Therefore, we hypothesized that second-generation TKIs and imatinib may have different effects on CML-LSCs, which may affect the clinical outcome after TKI discontinuation. To investigate this, we established a TKI discontinuation model in vitro by treating CML CD34+ cells with imatinib and dasatinib continuously for 72 h and then removing the TKI for 24 h. Colony-forming cell (CFC) assays, apoptosis assessment, and proteomic analysis were then performed. We found that TKI discontinuation resulted in less proliferation and CFC output in dasatinib-treated cells compared with imatinib. However, the dasatinib-treated group exhibited increased apoptosis. In the proteomics analysis, we identified 160 upregulated and 151 downregulated proteins when the two TKI discontinuation groups were compared. Importantly, proteins involved in NAD+ nucleosidase activity, mitochondrial ATP synthesis coupled proton transport, and oxidative phosphorylation were significantly expressed, which were mainly involved in metabolic processes. In conclusion, we demonstrate that imatinib and dasatinib have clear differential effects on CML-LSCs through the regulation of mitochondria oxidative phosphorylation, which may provide a new target for eliminating CML-LSCs in the context of TKI discontinuation.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Hematology, the Central Hospital of Wuhan, Wuhan, China
| | - Hongxiang Wang
- Department of Hematology, the Central Hospital of Wuhan, Wuhan, China
| | - Xiaoying Zhu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Geng
- Department of Hematology, the Central Hospital of Wuhan, Wuhan, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Shen N, You Y, Zhong ZD, Meng L, Zhou JF, Zou P, Zhu XJ, Wang HX, Cheng FJ. Monitoring and Analysis of Chinese Chronic Myeloid Leukemia Patients Who Have Stopped Tyrosine Kinase Inhibitor Therapy. Curr Med Sci 2019; 39:211-216. [PMID: 31016512 DOI: 10.1007/s11596-019-2021-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/18/2019] [Indexed: 02/02/2023]
Abstract
Discontinuation of tyrosine kinase inhibitor (TKI) therapy after achieving a persistent deep molecular response (DMR) is an urgently needed treatment goal for chronic myeloid leukemia (CML) patients and has been included in the National Comprehensive Cancer Network (NCCN) guidelines (version 2.2017) for CML. Indeed, various studies have confirmed the feasibility of discontinuing TKI therapy. In this study, we analyzed data from 45 CML patients who had discontinued TKI therapy. Univariate analysis was performed to predict factors that were potentially related to treatment-free remission (TFR) and identify the differences between early relapse and late relapse. Out of the 45 patients, 20 exhibited molecular relapse after a median follow-up of 18 months (range, 1-54 months), and the estimated TFR at 24 months was 40%. The univariate analysis revealed that a high Sokal score and interruptions or dose reductions during TKI treatment were the only baseline factors associated with poor outcomes. Our results indicate that TKI discontinuation could be successfully put into practice in China.
Collapse
Affiliation(s)
- Na Shen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhao-Dong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Feng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Jian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Xiang Wang
- Department of Hematology, The Central Hospital of Wuhan, Wuhan, 430014, China.
| | - Fan-Jun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
MiR-657/ATF2 Signaling Pathway Has a Critical Role in Spatholobus suberectus Dunn Extract-Induced Apoptosis in U266 and U937 Cells. Cancers (Basel) 2019; 11:cancers11020150. [PMID: 30696076 PMCID: PMC6406694 DOI: 10.3390/cancers11020150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
Though Spatholobus suberectus Dunn (SSD) has been reported to have anti-virus, anti-osteoclastogenesis, and anti-inflammation activities, its underlying anti-cancer mechanism has never been elucidated in association with the role of miR-657 in endoplasmic reticulum (ER) stress-related apoptosis to date. SSD treatment exerted cytotoxicity in U266 and U937 cells in a dose-dependent manner. Also, apoptosis-related proteins such as PARP, procaspase-3, and Bax were regulated by SSD treatment. Furthermore, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay revealed that a number of apoptotic bodies were increased by SSD. Interestingly, the ER stress-related proteins such as p-ATF2 and CHOP were elevated by SSD. Interestingly, reactive oxygen species (ROS) generation and cytotoxicity by SSD treatment were significantly reduced by N-Acetyl-L-cysteine (NAC). Among the microRNAs (miRNAs) regulated by SSD treatment, miR-657 was most significantly reduced by SSD treatment. However, an miR-657 mimic reversed SSD-induced apoptosis by the attenuation of the expression of p-ATF2, CHOP, and PARP cleavage. Overall, these findings provide scientific evidence that miR657 is an onco-miRNA targeting the ER stress signal pathway and SSD induces apoptosis via the inhibition of miR-657, ROS, and the activation of p-ATF2 and CHOP as a potent anti-cancer agent for myeloid-originated hematological cancer.
Collapse
|