1
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Menezes A, Julião G, Mariath F, Ferreira AL, Oliveira-Nunes MC, Gallucci L, Evaristo JAM, Nogueira FCS, Pereira DDA, Carneiro K. Epigenetic Mechanisms Histone Deacetylase-Dependent Regulate the Glioblastoma Angiogenic Matrisome and Disrupt Endothelial Cell Behavior In Vitro. Mol Cell Proteomics 2024; 23:100722. [PMID: 38272115 PMCID: PMC10883839 DOI: 10.1016/j.mcpro.2024.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.
Collapse
Affiliation(s)
- Aline Menezes
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glaucia Julião
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Mariath
- Laboratório de Estudos Avançados em Jornalismo, UNICAMP/SP, São Paulo, São Paulo, Brazil
| | - Ana Luiza Ferreira
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lara Gallucci
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise de Abreu Pereira
- Programa de Oncobiologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer- INCA/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Krauze AV, Zhao Y, Li MC, Shih J, Jiang W, Tasci E, Cooley Zgela T, Sproull M, Mackey M, Shankavaram U, Tofilon P, Camphausen K. Revisiting Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients with Glioblastoma-Proteomic Alteration and Comparison Analysis with the Standard-of-Care Chemoirradiation. Biomolecules 2023; 13:1499. [PMID: 37892181 PMCID: PMC10604983 DOI: 10.3390/biom13101499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). PURPOSE The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. MATERIALS AND METHODS Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. RESULTS A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial-mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. CONCLUSIONS Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Yingdong Zhao
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Ming-Chung Li
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Joanna Shih
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Will Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Erdal Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Theresa Cooley Zgela
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Megan Mackey
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Philip Tofilon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| |
Collapse
|
4
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Comprehensive pharmacogenomics characterization of temozolomide response in gliomas. Eur J Pharmacol 2021; 912:174580. [PMID: 34678239 DOI: 10.1016/j.ejphar.2021.174580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/11/2023]
Abstract
Recent developments in pharmacogenomics have created opportunities for predicting temozolomide response in gliomas. Temozolomide is the main first-line alkylating chemotherapeutic drug together with radiotherapy as standard treatments of high-risk gliomas after surgery. However, there are great individual differences in temozolomide response. Besides the heterogeneity of gliomas, pharmacogenomics relevant genetic polymorphisms can not only affect pharmacokinetics of temozolomide but also change anti-tumor effects of temozolomide. This review will summarize pharmacogenomic studies of temozolomide in gliomas which can lay the foundation to personalized chemotherapy.
Collapse
|
6
|
Kuo YJ, Yang YH, Lee IY, Chen PC, Yang JT, Wang TC, Lin MHC, Yang WH, Cheng CY, Chen KT, Huang WC, Lee MH. Effect of valproic acid on overall survival in patients with high-grade gliomas undergoing temozolomide: A nationwide population-based cohort study in Taiwan. Medicine (Baltimore) 2020; 99:e21147. [PMID: 32664146 PMCID: PMC7360242 DOI: 10.1097/md.0000000000021147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-grade gliomas (HGGs) are a rapidly progressive and highly recurrent group of primary brain tumors. Despite aggressive surgical resection with chemoradiotherapy, prognoses remained poor. Valproic acid (VPA), a histone deacetylase inhibitor has shown the potential to inhibit glioma cell growth in vitro through several diverse mechanisms. However clinical studies regarding the effect of VPA on HGGs are limited. This study aimed to investigate whether using VPA in patients with HGGs under temozolomide (TMZ) would lead to a better overall survival (OS).We used the Taiwan National Health Insurance Research database to conduct this population-based cohort study. A total of 2379 patients with HGGs under TMZ treatment were included and were further classified into VPA (n = 1212, VPA ≥ 84 defined daily dose [DDD]) and non-VPA (n = 1167, VPA < 84 DDD) groups. Each patient was followed from 1998 to 2013 or until death. A Cox proportional hazard regression was performed to evaluate the effect of VPA and OS.The VPA group had a longer mean OS time compared with the non-VPA group (OS: 50.3 ± 41.0 vs 42.0 ± 37.2 months, P < .001). In patients between 18 and 40 years old, the difference is most significant (OS: 70.5 ± 48.7 vs 55.1 ± 46.0, P = .001). The adjusted hazard ratio is 0.81 (95% confidence interval, 0.72-0.91) for the VPA group relative to the non-VPA group.VPA at over 84 DDD improved OS in HGGs TMZ treatment.
Collapse
Affiliation(s)
| | - Yao-Hsu Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital
- Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - I-Yun Lee
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital
| | - Pau-Chung Chen
- Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei
| | - Jen-Tsung Yang
- Department of Neurosurgery
- Chang Gung University, College of Medicine, Taoyuan
| | | | | | | | | | | | | | - Ming-Hsueh Lee
- Department of Neurosurgery
- Chang Gung University of Science and Technology Chiayi Campus, Chiayi, Taiwan
| |
Collapse
|
7
|
Alieva M, Leidgens V, Riemenschneider MJ, Klein CA, Hau P, van Rheenen J. Intravital imaging of glioma border morphology reveals distinctive cellular dynamics and contribution to tumor cell invasion. Sci Rep 2019; 9:2054. [PMID: 30765850 PMCID: PMC6375955 DOI: 10.1038/s41598-019-38625-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of glioblastoma (GBM) is characterized by highly invasive behavior allowing dissemination and progression. A conclusive image of the invasive process is not available. The aim of this work was to study invasion dynamics in GBM using an innovative in vivo imaging approach. Primary brain tumor initiating cell lines from IDH-wild type GBM stably expressing H2B-Dendra2 were implanted orthotopically in the brains of SCID mice. Using high-resolution time-lapse intravital imaging, tumor cell migration in the tumor core, border and invasive front was recorded. Tumor cell dynamics at different border configurations were analyzed and multivariate linear modelling of tumor cell spreading was performed. We found tumor border configurations, recapitulating human tumor border morphologies. Not only tumor borders but also the tumor core was composed of highly dynamic cells, with no clear correlation to the ability to spread into the brain. Two types of border configurations contributed to tumor cell spreading through distinct invasion patterns: an invasive margin that executes slow but directed invasion, and a diffuse infiltration margin with fast but less directed movement. By providing a more detailed view on glioma invasion patterns, our study may improve accuracy of prognosis and serve as a basis for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Maria Alieva
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Prinses Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | - Verena Leidgens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | | | - Christoph A Klein
- Department of Experimental Medicine, University of Regensburg, Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany.
| | - Jacco van Rheenen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Lange F, Weßlau K, Porath K, Hörnschemeyer MF, Bergner C, Krause BJ, Mullins CS, Linnebacher M, Köhling R, Kirschstein T. AMPA receptor antagonist perampanel affects glioblastoma cell growth and glutamate release in vitro. PLoS One 2019; 14:e0211644. [PMID: 30716120 PMCID: PMC6361447 DOI: 10.1371/journal.pone.0211644] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Epileptic seizures are frequent in patients with glioblastoma, and anticonvulsive treatment is often necessary. While clinical guidelines recommend all approved anticonvulsants, so far it is still unclear which of the available drugs is the best therapeutic option for treating glioma-associated seizures, also in view of possible anti-tumorigenic effects. In our study, we employed four patient-derived low-passage cell lines of glioblastoma and three cell lines of brain metastases, and challenged these cultures with four anticonvulsants with different mechanisms of action: levetiracetam, valproic acid, carbamazepine and perampanel. Cell proliferation was determined by bromodeoxyuridine incorporation. To further analyze the effects of perampanel, apoptosis induction was measured by caspase 3/7 activation. Glutamate release was quantified and glucose uptake was determined using 18F-fluorodeoxyglucose. Real-time polymerase chain reaction was employed to assess the expression of genes associated with glutamate release and uptake in brain tumor cells. Of the four anticonvulsants, only perampanel showed systematic inhibitory effects on cell proliferation, whereas all other anticonvulsants failed to inhibit glioma and metastasis cell growth in vitro. Metastasis cells were much more resistant to perampanel than glioblastoma cell lines. Glucose uptake was attenuated in all glioblastoma cells after perampanel exposure, whereas cell death via apoptosis was not induced. Extracellular glutamate levels were found to be significantly higher in glioblastoma cell lines as compared to metastasis cell lines, but could be reduced by perampanel exposure. Incubation with perampanel up-regulated glutamine synthetase expression in glioblastoma cells, whereas treatment with valproic acid and levetiracetam downregulated excitatory amino acid transporter-2 expression. Overall, our data suggest that perampanel acts as an anticonvulsive drug and additionally mediated anti-tumorigenic effects.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Konrad Weßlau
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | | | - Carina Bergner
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | | | | | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Moeckel S, LaFrance K, Wetsch J, Seliger C, Riemenschneider MJ, Proescholdt M, Hau P, Vollmann-Zwerenz A. ATF4 contributes to autophagy and survival in sunitinib treated brain tumor initiating cells (BTICs). Oncotarget 2019; 10:368-382. [PMID: 30719230 PMCID: PMC6349458 DOI: 10.18632/oncotarget.26569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinase (RTK) pathways are known to play an important role in tumor cell proliferation of glioblastoma (GBM). Cellular determinants of RTK-inhibitor sensitivity are important to optimize and tailor treatment strategies. The stress response gene activating transcription factor 4 (ATF4) is involved in homeostasis and cellular protection. However, little is known about its function in GBM. We found that the ATF4/p-eIF2α pathway is activated in response to Sunitinib in primary tumor initiating progenitor cell cultures (BTICs). Furthermore, lysosome entrapment of RTK-inhibitors (RTK-Is) leads to accumulation of autophagosomes. In case of Sunitinib treated cells, autophagy is additionally increased by ATF4 mediated upregulation of autophagy genes. Inhibition of ATF4 by small interfering RNA (siRNA) reduced autophagy and cell proliferation after Sunitinib treatment in a subset of BTIC cultures. Overall, this study suggests a pro-survival role of the ATF4/p-eIF2α pathway in a cell type and treatment specific manner.
Collapse
Affiliation(s)
- Sylvia Moeckel
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Kelly LaFrance
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Julia Wetsch
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Corinna Seliger
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | | | - Martin Proescholdt
- Department of Neurosurgery, Regensburg University Hospital, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
10
|
Schulze M, Hutterer M, Sabo A, Hoja S, Lorenz J, Rothhammer-Hampl T, Herold-Mende C, Floßbach L, Monoranu C, Riemenschneider MJ. Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions. BMC Cancer 2018; 18:524. [PMID: 29724193 PMCID: PMC5934884 DOI: 10.1186/s12885-018-4440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The phosphatase chronophin (CIN/PDXP) has been shown to be an important regulator of glioma cell migration and invasion. It has two known substrates: p-Ser3-cofilin, the phosphorylated form of the actin binding protein cofilin, and pyridoxal 5'-phosphate, the active form of vitamin B6. Phosphoregulation of cofilin, among other functions, plays an important role in cell migration, whereas active vitamin B6 is a cofactor for more than one hundred enzymatic reactions. The role of CIN has yet only been examined in glioblastoma cell line models derived under serum culture conditions. RESULTS We found that CIN is highly expressed in cells cultured under non-adherent, serum-free conditions that are thought to better mimic the in vivo situation. Furthermore, the substrates of CIN, p-Ser3-cofilin and active vitamin B6, were significantly reduced as compared to cell lines cultured in serum-containing medium. To further examine its molecular role we stably knocked down the CIN protein with two different shRNA hairpins in the glioblastoma cell lines NCH421k and NCH644. Both cell lines did not show any significant alterations in proliferation but expression of differentiation markers (such as GFAP or TUBB3) was increased in the knockdown cell lines. In addition, colony formation was significantly impaired in NCH644. Of note, in both cell lines CIN knockdown increased active vitamin B6 levels with vitamin B6 being known to be important for S-adenosylmethionine biosynthesis. Nevertheless, global histone and DNA methylation remained unaltered as was chemoresistance towards temozolomide. To further elucidate the role of phosphocofilin in glioblastoma cells we applied inhibitors for ROCK1/2 and LIMK1/2 to our model. LIMK- and ROCK-inhibitor treatment alone was not toxic for glioblastoma cells. However, it had profound, but antagonistic effects in NCH421k and NCH644 under chemotherapy. CONCLUSION In non-adherent glioblastoma cell lines cultured in serum-free medium, chronophin knockdown induces phenotypic changes, e.g. in colony formation and transcription, but these are highly dependent on the cellular background. The same is true for phenotypes observed after treatment with inhibitors for kinases regulating cofilin phosphorylation (ROCKs and LIMKs). Targeting the cofilin phosphorylation pathway might therefore not be a straightforward therapeutic option in glioblastoma.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Maria Hutterer
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Anja Sabo
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Lucia Floßbach
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Camelia Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany. .,Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
11
|
Festuccia C, Mancini A, Colapietro A, Gravina GL, Vitale F, Marampon F, Delle Monache S, Pompili S, Cristiano L, Vetuschi A, Tombolini V, Chen Y, Mehrling T. The first-in-class alkylating deacetylase inhibitor molecule tinostamustine shows antitumor effects and is synergistic with radiotherapy in preclinical models of glioblastoma. J Hematol Oncol 2018; 11:32. [PMID: 29486795 PMCID: PMC5830080 DOI: 10.1186/s13045-018-0576-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
Background The use of alkylating agents such as temozolomide in association with radiotherapy (RT) is the therapeutic standard of glioblastoma (GBM). This regimen modestly prolongs overall survival, also if, in light of the still dismal prognosis, further improvements are desperately needed, especially in the patients with O6-methylguanine-DNA-methyltransferase (MGMT) unmethylated tumors, in which the benefit of standard treatment is less. Tinostamustine (EDO-S101) is a first-in-class alkylating deacetylase inhibitor (AK-DACi) molecule that fuses the DNA damaging effect of bendamustine with the fully functional pan-histone deacetylase (HDAC) inhibitor, vorinostat, in a completely new chemical entity. Methods Tinostamustine has been tested in models of GBM by using 13 GBM cell lines and seven patient-derived GBM proliferating/stem cell lines in vitro. U87MG and U251MG (MGMT negative), as well as T98G (MGMT positive), were subcutaneously injected in nude mice, whereas luciferase positive U251MG cells and patient-derived GBM stem cell line (CSCs-5) were evaluated the orthotopic intra-brain in vivo experiments. Results We demonstrated that tinostamustine possesses stronger antiproliferative and pro-apoptotic effects than those observed for vorinostat and bendamustine alone and similar to their combination and irrespective of MGMT expression. In addition, we observed a stronger radio-sensitization of single treatment and temozolomide used as control due to reduced expression and increased time of disappearance of γH2AX indicative of reduced signal and DNA repair. This was associated with higher caspase-3 activation and reduction of RT-mediated autophagy. In vivo, tinostamustine increased time-to-progression (TTP) and this was additive/synergistic to RT. Tinostamustine had significant therapeutic activity with suppression of tumor growth and prolongation of DFS (disease-free survival) and OS (overall survival) in orthotopic intra-brain models that was superior to bendamustine, RT and temozolomide and showing stronger radio sensitivity. Conclusions Our data suggest that tinostamustine deserves further investigation in patients with glioblastoma. Electronic supplementary material The online version of this article (10.1186/s13045-018-0576-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudio Festuccia
- Laboratory of Radiobiology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Laboratory of Radiobiology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy.,Division of Radiotherapy, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy
| | - Flora Vitale
- Division of Neurosciences, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Division of Radiotherapy, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy
| | - Simona Delle Monache
- Division of Applied Biology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy
| | - Simona Pompili
- Division of Human Anatomy, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Laboratory of Applied Biology, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Division of Human Anatomy, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Tombolini
- Division of Radiotherapy, Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Yi Chen
- Northlake International LLC, Pleasanton, CA, USA
| | | |
Collapse
|
12
|
Schulze M, Violonchi C, Swoboda S, Welz T, Kerkhoff E, Hoja S, Brüggemann S, Simbürger J, Reinders J, Riemenschneider MJ. RELN signaling modulates glioblastoma growth and substrate-dependent migration. Brain Pathol 2018; 28:695-709. [PMID: 29222813 DOI: 10.1111/bpa.12584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and most malignant type of primary brain tumor and significantly contributes to cancer morbidity and mortality. Invasion into the healthy brain parenchyma is a major feature of glioblastoma aggressiveness. Reelin (RELN) is a large secreted extracellular matrix glycoprotein that regulates neuronal migration and positioning in the developing brain and sustains functionality in the adult brain. We here show that both RELN and its main downstream effector DAB1 are silenced in glioblastoma as compared to non-neoplastic tissue and mRNA expression is inversely correlated with malignancy grade. Furthermore, RELN expression is positively correlated with patient survival in two large, independent clinically annotated datasets. RELN silencing occurs via promoter hypermethylation as shown by both database mining and bisulfite sequencing of the RELN promoter. Consequently, treatment with 5'-Azacytidine and trichostatin A induced RELN expression in vitro. On the functional level, we found RELN to regulate glioblastoma cell migration both in a DAB1 (tyrosine phosphorylation)-dependent and -independent fashion, depending on the substrate provided. Moreover, stimulation of RELN signaling strongly reduced proliferation in glioblastoma cells. This phenotype depends on DAB1 stimulation by RELN, as a mutant that lacks all RELN induced tyrosine phosphorylation sites (DAB1-5F) failed to induce a growth arrest. Proteomic analyzes revealed that these effects are mediated by a reduction in E2F targets and dephosphorylation of ERK1/2. Taken together, our data establish a relevance of RELN signaling in glioblastoma pathology and thereby might unearth novel, yet unrecognized treatment options.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Christ Violonchi
- Department of Neuropathology, Heinrich-Heine University, Düsseldorf, Germany
| | - Stefan Swoboda
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Susanne Brüggemann
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Johann Simbürger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.,Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
13
|
El-Habr EA, Dubois LG, Burel-Vandenbos F, Bogeas A, Lipecka J, Turchi L, Lejeune FX, Coehlo PLC, Yamaki T, Wittmann BM, Fareh M, Mahfoudhi E, Janin M, Narayanan A, Morvan-Dubois G, Schmitt C, Verreault M, Oliver L, Sharif A, Pallud J, Devaux B, Puget S, Korkolopoulou P, Varlet P, Ottolenghi C, Plo I, Moura-Neto V, Virolle T, Chneiweiss H, Junier MP. A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathol 2017; 133:645-660. [PMID: 28032215 PMCID: PMC5348560 DOI: 10.1007/s00401-016-1659-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten–eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.
Collapse
|
14
|
Khoury T, Chen S, Abu Rmeileh A, Daher S, Yaari S, Benson AA, Cohen J, Mizrahi M. Acute liver injury induced by levetiracetam and temozolomide co-treatment. Dig Liver Dis 2017; 49:297-300. [PMID: 28034663 DOI: 10.1016/j.dld.2016.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Temozolomide (TMZ) is an alkylating agent used for treatment of brain neoplasms and levetiracetam (LEV) is a commonly used antiepileptic. When administered separately each medication has few negative side effects impacting the liver. AIMS We sought to determine the risk of liver injury associated with the co-administration of TMZ and LEV. METHODS A case-control study was performed comparing patients who received combination therapy of TMZ and LEV (group A) with matched controls (group B) who received monotherapy with one of either TMZ or LEV. We assessed patient demographics, laboratory results including presence of liver injury, and mortality. RESULTS Twenty-six patients were included in group A and 68 patients were included in group B. Both groups were similar with respect to demographics and baseline liver function tests (P>0.05). There was a significant elevation in liver enzymes in 73%, 46%, 19%, 31% and 27% of ALT, AST, ALK-P, GGT and bilirubin, respectively, in group A, as compared to elevations of 10.3%, 19%, 1.5%, 7% and 1.5%, respectively in group B (P<0.05). One patient in group A died as a result of acute liver failure while no deaths from acute liver failure occurred in group B (P=0.05). Univariate analysis identified combination therapy as a risk factor for liver injury. Multivariate regression showed that only co-treatment with TMZ and LEV was an independent risk factor for liver injury with an odds ratio of 19.1 (95 CI, 2.16-160). CONCLUSIONS Combination therapy with TMZ and LEV may precipitate acute liver injury and even death.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Internal Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Gastroenterology and Liver Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Shmuel Chen
- Cardiology Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Ayman Abu Rmeileh
- Department of Internal Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Saleh Daher
- Department of Internal Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Gastroenterology and Liver Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Shaul Yaari
- Department of Internal Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Gastroenterology and Liver Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Ariel A Benson
- Department of Gastroenterology and Liver Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Jonah Cohen
- Center for Advanced Endoscopy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Meir Mizrahi
- Center for Advanced Endoscopy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Wang G, Wang JJ, Fu XL, Guang R, To SST. Advances in the targeting of HIF-1α and future therapeutic strategies for glioblastoma multiforme (Review). Oncol Rep 2016; 37:657-670. [PMID: 27959421 DOI: 10.3892/or.2016.5309] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/09/2016] [Indexed: 11/06/2022] Open
Abstract
Cell metabolism can be reprogrammed by tissue hypoxia leading to cell transformation and glioblastoma multiforme (GBM) progression. In response to hypoxia, GBM cells are able to express a transcription factor called hypoxia inducible factor-1 (HIF-1). HIF-1 belongs to a family of heterodimeric proteins that includes HIF-1α and HIF-1β subunits. HIF-1α has been reported to play a pivotal role in GBM development and progression. In the present review, we discuss the role of HIF-1α in glucose uptake, cancer proliferation, cell mobility and chemoresistance in GBM. Evidence from previous studies indicates that HIF-1α regulates angiogenesis, metabolic and transcriptional signaling pathways. Examples of such are the EGFR, PI3K/Akt and MAPK/ERK pathways. It affects cell migration and invasion by regulating glucose metabolism and growth in GBM cells. The present review focuses on the strategies through which to target HIF-1α and the related downstream genes highlighting their regulatory roles in angiogenesis, apoptosis, migration and glucose metabolism for the development of future GBM therapeutics. Combined treatment with inhibitors of HIF-1α and glycolysis may enhance antitumor effects in clinical settings.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Jun-Jie Wang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Xing-Li Fu
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Rui Guang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Shing-Shun Tony To
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong, SAR, P.R. China
| |
Collapse
|