1
|
Takemura K, Ikeda K, Miyake H, Sogame Y, Yasuda H, Okada N, Iwata K, Sakagami J, Yamaguchi K, Itoh Y, Umemura A. Epithelial-Mesenchymal Transition Suppression by ML210 Enhances Gemcitabine Anti-Tumor Effects on PDAC Cells. Biomolecules 2025; 15:70. [PMID: 39858464 PMCID: PMC11763895 DOI: 10.3390/biom15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Neoadjuvant chemotherapy (NAC) has become a standard treatment for patients scheduled for surgical resection, but the high rate of postoperative recurrence is a critical problem. Optimization of NAC is desirable to reduce postoperative recurrence and achieve long-term survival. However, if a patient's general condition deteriorates due to NAC toxicity, surgical outcomes may be compromised. Therefore, we aimed to identify drug(s) that can be used in combination with gemcitabine (GEM), a drug widely used for the treatment of PDAC, to inhibit distant metastatic recurrence, particularly after surgery. After several screening steps, ML210, a low molecular weight chemical, was found to suppress the epithelial-mesenchymal transition (EMT) in PDAC cells in combination with GEM. Specifically, low dose ML210 in combination with GEM was sufficient for cell migration without apparent toxicity or cell death. Mechanistically, ML210, which was developed as a glutathione peroxidase 4 (GPX4) inhibitor to induce lipid peroxidation, increased the oxidized lipid concentrations in PDAC cells. The oxidization of the cell membrane lipids may suppress EMT, including cell migration. Since EMT is a major malignant phenotype of PDAC, our findings may lead to the advancement of PDAC therapy, especially in the prevention of postoperative recurrence.
Collapse
Affiliation(s)
- Keisuke Takemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.T.); (K.I.); (N.O.); (K.I.)
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.M.); (Y.S.); (H.Y.); (J.S.); (K.Y.); (Y.I.)
| | - Kyohei Ikeda
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.T.); (K.I.); (N.O.); (K.I.)
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.M.); (Y.S.); (H.Y.); (J.S.); (K.Y.); (Y.I.)
| | - Hayato Miyake
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.M.); (Y.S.); (H.Y.); (J.S.); (K.Y.); (Y.I.)
| | - Yoshio Sogame
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.M.); (Y.S.); (H.Y.); (J.S.); (K.Y.); (Y.I.)
| | - Hiroaki Yasuda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.M.); (Y.S.); (H.Y.); (J.S.); (K.Y.); (Y.I.)
- Saiseikai Shiga Hospital, 2-4-1 Ohashi, Ritto 520-3046, Shiga, Japan
| | - Nobuhiro Okada
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.T.); (K.I.); (N.O.); (K.I.)
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.T.); (K.I.); (N.O.); (K.I.)
| | - Junichi Sakagami
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.M.); (Y.S.); (H.Y.); (J.S.); (K.Y.); (Y.I.)
- Fukuchiyama City Hospital, 231 Atsunaka-cho, Fukuchiyama 620-8505, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.M.); (Y.S.); (H.Y.); (J.S.); (K.Y.); (Y.I.)
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.M.); (Y.S.); (H.Y.); (J.S.); (K.Y.); (Y.I.)
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.T.); (K.I.); (N.O.); (K.I.)
| |
Collapse
|
2
|
Cao P, Zhang W, Qiu J, Tang Z, Xue X, Feng T. Gemcitabine Inhibits the Progression of Pancreatic Cancer by Restraining the WTAP/MYC Chain in an m6A-Dependent Manner. Cancer Res Treat 2024; 56:259-271. [PMID: 37591781 PMCID: PMC10789956 DOI: 10.4143/crt.2022.1600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSE Pancreatic cancer (PC) is a common malignant tumor of the digestive system, and its 5-year survival rate is only 4%. N6-methyladenosine (m6A) RNA methylation is the most common post-transcriptional modification and dynamically regulates cancer development, while its role in PC treatment remains unclear. MATERIALS AND METHODS We treated PC cells with gemcitabine and quantified the overall m6A level with m6A methylation quantification. Real-time quantitative reverse transcription polymerase chain reaction and Western blot analyses were used to detect expression changes of m6A regulators. We verified the m6A modification on the target genes through m6A-immunoprecipitation (IP), and further in vivo experiments and immunofluorescence (IF) assays were applied to verify regulation of gemcitabine on Wilms' tumor 1-associated protein (WTAP) and MYC. RESULTS Gemcitabine inhibited the proliferation and migration of PC cells and reduced the overall level of m6A modification. Additionally, the expression of the "writer" WTAP was significantly downregulated after gemcitabine treatment. We knocked down WTAP in cells and found target gene MYC expression was significantly downregulated, m6A-IP also confirmed the m6A modification on MYC. Our experiments showed that m6A-MYC may be recognized by the "reader" IGF2BP1. In vivo experiments revealed gemcitabine inhibited the tumorigenic ability of PC cells. IF analysis also showed that gemcitabine inhibited the expression of WTAP and MYC, which displayed a significant trend of co-expression. CONCLUSION Our study confirmed that gemcitabine interferes with WTAP protein expression in PC, reduces m6A modification on MYC and RNA stability, thereby inhibiting the downstream pathway of MYC, and inhibits the progression of PC.
Collapse
Affiliation(s)
- Pei Cao
- Department of General Surgery,The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weigang Zhang
- Department of General Surgery,The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junyi Qiu
- Department of General Surgery,The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zuxiong Tang
- Department of General Surgery,The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Xue
- Department of General Surgery,The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Feng
- Department of Infectious Disease,The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Han JM, Kim SM, Kim HL, Cho HJ, Jung HJ. Natural Cyclophilin A Inhibitors Suppress the Growth of Cancer Stem Cells in Non-Small Cell Lung Cancer by Disrupting Crosstalk between CypA/CD147 and EGFR. Int J Mol Sci 2023; 24:ijms24119437. [PMID: 37298389 DOI: 10.3390/ijms24119437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a fatal malignant tumor with a high mortality rate. Cancer stem cells (CSCs) play pivotal roles in tumor initiation and progression, treatment resistance, and NSCLC recurrence. Therefore, the development of novel therapeutic targets and anticancer drugs that effectively block CSC growth may improve treatment outcomes in patients with NSCLC. In this study, we evaluated, for the first time, the effects of natural cyclophilin A (CypA) inhibitors, including 23-demethyl 8,13-deoxynargenicin (C9) and cyclosporin A (CsA), on the growth of NSCLC CSCs. C9 and CsA more sensitively inhibited the proliferation of epidermal growth factor receptor (EGFR)-mutant NSCLC CSCs than EGFR wild-type NSCLC CSCs. Both compounds suppressed the self-renewal ability of NSCLC CSCs and NSCLC-CSC-derived tumor growth in vivo. Furthermore, C9 and CsA inhibited NSCLC CSC growth by activating the intrinsic apoptotic pathway. Notably, C9 and CsA reduced the expression levels of major CSC markers, including integrin α6, CD133, CD44, ALDH1A1, Nanog, Oct4, and Sox2, through dual downregulation of the CypA/CD147 axis and EGFR activity in NSCLC CSCs. Our results also show that the EGFR tyrosine kinase inhibitor afatinib inactivated EGFR and decreased the expression levels of CypA and CD147 in NSCLC CSCs, suggesting close crosstalk between the CypA/CD147 and EGFR pathways in regulating NSCLC CSC growth. In addition, combined treatment with afatinib and C9 or CsA more potently inhibited the growth of EGFR-mutant NSCLC CSCs than single-compound treatments. These findings suggest that the natural CypA inhibitors C9 and CsA are potential anticancer agents that suppress the growth of EGFR-mutant NSCLC CSCs, either as monotherapy or in combination with afatinib, by interfering with the crosstalk between CypA/CD147 and EGFR.
Collapse
Affiliation(s)
- Jang Mi Han
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Sung Min Kim
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hong Lae Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Hee Jeong Cho
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
4
|
Wu L, Ge Y, Yuan Y, Li H, Sun H, Xu C, Wang Y, Zhao T, Wang X, Liu J, Gao S, Chang A, Hao J, Huang C. Genome-wide CRISPR screen identifies MTA3 as an inducer of gemcitabine resistance in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548:215864. [PMID: 35981571 DOI: 10.1016/j.canlet.2022.215864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Gemcitabine (GEM) resistance is one of the major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC) in clinic. Here, through CRISPR/Cas9 activation library screen, we found that MTA3 mediates the GEM resistance of PDAC and thus might be a potential therapeutic target for combination chemotherapy. The CRISPR library screening showed that MTA3 is the most enriched gene in the surviving GEM-treated cells, and bioinformatic and histology analysis implied its high correlation with GEM resistance. MTA3 promoted GEM resistance of PDAC cells in in vitro and in vivo experiments. Mechanistically, as a component of the Mi-2/nucleosome remodeling and deacetylase transcriptional repression complex, MTA3 transcriptionally represses CRIP2, a transcriptional repressor of NF-Κb/p65, activating NF-κB signaling and consequently leading to GEM resistance. Furthermore, the treatment of GEM increases MTA3 expression in PDAC cells via activating STAT3 signaling, thereby inducing the acquired chemoresistance of PDAC to GEM. In patients derived xenografts (PDX) mouse model, Colchicine suppresses the expression of MTA3 and increases the sensitivity of tumor cells to GEM. Based on these findings, MTA3 plays a key role in GEM resistance in pancreatic cancer and is a promising therapeutic target for reversing GEM chemotherapy resistance.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yi Ge
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yudong Yuan
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Huizhi Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Chao Xu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
5
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Gu Z, Du Y, Zhao X, Wang C. Tumor microenvironment and metabolic remodeling in gemcitabine-based chemoresistance of pancreatic cancer. Cancer Lett 2021; 521:98-108. [PMID: 34461181 DOI: 10.1016/j.canlet.2021.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with a very low operative rate and a poor patient prognosis. Therefore, gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, the efficacy of GEM monotherapy or GEM combination chemotherapy in improving the survival of patients with advanced PDAC is very limited, primarily due to GEM resistance. The mechanism of GEM resistance is complex and unclear. An extensive and dense fibrous matrix in the tumor microenvironment (TME) is an important feature of PDAC. Increasing evidence indicates that this fibrotic TME not only actively participates in the growth and spread of PDAC but also contributes to the induction of GEM resistance. Metabolic remodeling reduces GEM transport and synthesis in PDAC. This review focuses on the main cellular and molecular mechanisms underlying the involvement of the extracellular matrix (ECM), immune cells, and metabolic remodeling in the induction of GEM resistance; highlights the prospect of targeting the TME as an essential strategy to overcome GEM resistance; and provides new precise interventions for chemotherapy sensitization and improving the overall prognosis of patients with PDAC.
Collapse
Affiliation(s)
- Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xueping Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Doello K, Mesas C, Quiñonero F, Perazzoli G, Cabeza L, Prados J, Melguizo C, Ortiz R. The Antitumor Activity of Sodium Selenite Alone and in Combination with Gemcitabine in Pancreatic Cancer: An In Vitro and In Vivo Study. Cancers (Basel) 2021; 13:cancers13133169. [PMID: 34201986 PMCID: PMC8268835 DOI: 10.3390/cancers13133169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
Sodium selenite acts by depleting enzymes that protect against cellular oxidative stress. To determine its effect alone or in combination with gemcitabine (GMZ) in pancreatic cancer, we used PANC-1 and Pan02 cell lines and C57BL mice bearing a Pan02-generated tumor. Our results demonstrated a significant inhibition of pancreatic cancer cell viability with the use of sodium selenite alone and a synergistic effect when associated with GMZ. The molecular mechanisms of the antitumor effect of sodium selenite alone involved apoptosis-inducing factor (AIF) and the expression of phospho-p38 in the combined therapy. In addition, sodium selenite alone and in association with GMZ significantly decreased the migration capacity and colony-forming ability, reduced tumor activity in multicellular tumor spheroids (MTS) and decreased sphere formation of cancer stem cells. In vivo studies demonstrated that combined therapy not only inhibited tumor growth (65%) compared to the untreated group but also relative to sodium selenite or GMZ used as monotherapy (up to 40%), increasing mice survival. These results were supported by the analysis of C57BL/6 albino mice bearing a Pan02-generated tumor, using the IVIS system. In conclusion, our results showed that sodium selenite is a potential agent for the improvement in the treatment of pancreatic cancer and should be considered for future human clinical trials.
Collapse
Affiliation(s)
- Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain;
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
| | - Cristina Mesas
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
| | - Francisco Quiñonero
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Medicine, Faculty of Health Sciences, University of Almería, 04120 Granada, Spain
| | - Laura Cabeza
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Consolacion Melguizo
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Raul Ortiz
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Cai J, Cui Y, Yang J, Wang S. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells. Biochim Biophys Acta Rev Cancer 2021; 1876:188564. [PMID: 33974950 DOI: 10.1016/j.bbcan.2021.188564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population characterized by protumoral functions in the tumor immune network. An increasing number of studies have focused on the biological functions of MDSCs in tumor immunity. Epithelial-mesenchymal transition (EMT) is a cellular plasticity process accompanied by a loss of epithelial phenotypes and an acquisition of mesenchymal phenotypes. In general, tumor cells that undergo EMT are more likely to invade and metastasize. Recently, extensive evidence suggests that EMT is closely related to a highly immunosuppressive environment. This review will summarize the immunosuppressive capacities of MDSC subsets and their distinct role in tumor EMT and further discuss immunotherapy for tumor EMT by targeting MDSCs.
Collapse
Affiliation(s)
- Jingshan Cai
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yudan Cui
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
9
|
Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:421-434. [DOI: 10.11569/wcjd.v29.i8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a solid malignant tumor with the worst prognosis worldwide, and about 90% of cases are pancreatic ductal adenocarcinoma (PDAC). Although surgical resection is the only potential way to cure PDAC, the overall survival rate after surgery is still not optimistic. Consequently, gemcitabine (GEM)-based chemotherapy is still one of the most important treatment options for PDAC. However, the survival improvement by GEM monotherapy for advanced PDAC is very limited, and GEM resistance is the key reason. The mechanism underlying gemcitabine resistance is complex and still unclear in PDAC. The extensive and dense fibrous mesenchyme in the tumor microenvironment (TME) is an important feature of PDAC. More and more evidence has shown that TME is not only an active participant in tumor growth and spread, but also a contributor to the induction of GEM resistance. This article will review the recent advances in the understanding of the cellular and molecular mechanisms underlying GEM resistance in PDAC, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
10
|
Ryu WJ, Han G, Lee SH, Choi KY. Suppression of Wnt/β-catenin and RAS/ERK pathways provides a therapeutic strategy for gemcitabine-resistant pancreatic cancer. Biochem Biophys Res Commun 2021; 549:40-46. [PMID: 33662667 DOI: 10.1016/j.bbrc.2021.02.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is a major malignant tumor without an effective treatment. KRAS mutations occur in 90% of the pancreatic cancer patients and are a major obstacle for treatment of pancreatic cancer. Pancreatic cancer patients have been treated with limited chemotherapeutic agents such as gemcitabine. However, patients often develop resistance to gemcitabine that is attributed to KRAS mutations. Gemcitabine treatment activates both the Wnt/β-catenin and RAS/ERK pathways. These signaling pathways are also activated in the gemcitabine-resistant pancreatic cancer cell lines, suggesting that they play an important role in gemcitabine resistance in pancreatic cancer. The gemcitabine-resistant cell lines show enhanced migratory and invasive capabilities than their parental lines. Therefore, we investigated the effects of a small molecule, KYA1797K that degrades both β-catenin and RAS, on pancreatic cancer. KYA1797K decreased the expression level of both β-catenin and KRAS in pancreatic cancer cell lines expressing either wild-type or mutant KRAS. It also suppressed migration and invasion of gemcitabine-resistant and parental pancreatic cancer cells. Overall, we demonstrated that inhibiting the Wnt/β-catenin and RAS/ERK pathways by destabilizing β-catenin and RAS could be a therapeutic approach to overcome gemcitabine resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Won-Ji Ryu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Soung-Hoon Lee
- CK Biotechnology Inc., Building 117, 50 Yonsei Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea; CK Biotechnology Inc., Building 117, 50 Yonsei Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
11
|
Wade SJ, Sahin Z, Piper A, Talebian S, Aghmesheh M, Foroughi J, Wallace GG, Moulton SE, Vine KL. Dual Delivery of Gemcitabine and Paclitaxel by Wet-Spun Coaxial Fibers Induces Pancreatic Ductal Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation. Adv Healthc Mater 2020; 9:e2001115. [PMID: 33000905 DOI: 10.1002/adhm.202001115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with surgical resection of the tumor in conjunction with systemic chemotherapy the only potential curative therapy. Up to 80% of diagnosed cases are deemed unresectable, prompting the need for alternative treatment approaches. Herein, coaxial polymeric fibers loaded with two chemotherapeutic agents, gemcitabine (Gem) and paclitaxel (Ptx), are fabricated to investigate the effect of local drug delivery on PDAC cell growth in vitro and in vivo. A wet-spinning fabrication method to form a coaxial fiber with a polycaprolactone shell and alginate core loaded with Ptx and Gem, respectively, is used. In vitro, Gem+Ptx fibers display significant cytotoxicity as well as radiosensitizing properties toward PDAC cell lines greater than the equivalent free drugs, which may be attributed to a radiosensitizing effect of the polymers. In vivo studies assessing Gem+Ptx fiber efficacy found that Gem+Ptx fibers reduce tumor volume in a xenograft mouse model of PDAC. Importantly, no difference in mouse weight, circulating cytokines, or liver function is observed in mice treated with Gem+Ptx fibers compared to the empty fiber controls confirming the safety of the implant approach. With further development, Gem+Ptx fibers can improve the treatment of unresectable PDAC in the future.
Collapse
Affiliation(s)
- Samantha J. Wade
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
| | - Zeliha Sahin
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
| | - Ann‐Katrin Piper
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
| | - Sepehr Talebian
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Morteza Aghmesheh
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
- Illawarra Cancer Care Centre Illawarra Shoalhaven Local Area Health District Wollongong Hospital Wollongong NSW 2500 Australia
| | - Javad Foroughi
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Simon E. Moulton
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
- Biomedical Engineering Faculty of Science Engineering and Technology Swinburne University of Technology Hawthorn Vic 3122 Australia
| | - Kara L. Vine
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
| |
Collapse
|
12
|
Meng Y, Fan XY, Yang LJ, Xu BQ, He D, Xu Z, Wu D, Wang B, Cui HY, Wang SJ, Wang LJ, Wu XQ, Jiang JL, Xu L, Chen ZN, Li L. Detachment Activated CyPA/CD147 Induces Cancer Stem Cell Potential in Non-stem Breast Cancer Cells. Front Cell Dev Biol 2020; 8:543856. [PMID: 33195186 PMCID: PMC7640948 DOI: 10.3389/fcell.2020.543856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/17/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), responsible for cancer metastasis and recurrence, are generated from non-CSCs after chemo-radiation therapy. This study investigated the induction of CSC potential in non-stem breast cancer cells and the underlying molecular mechanisms in detachment culture. METHODS Bulk breast cancer cells, or sorted non-CSCs and CSCs were cultured under an attached or detached condition to assess CSC numbers, ability to form tumor spheres, expression of stemness markers, and chemoresistance. Lentivirus carrying CD147 shRNA or cDNA was used to manipulate CD147 expression, while CD147 ligand recombinant cyclophilin A (CyPA) or its inhibitor was used to activate or inhibit CD147 signaling. RESULTS Detachment promoted anoikis resistance, chemoresistance, sphere formation, self-renewal, and expression of stemness markers in breast cancer cells. Detachment increased functional ALDH+ or CD44highCD24-/low CSCs, and induced CSC potential in ALDH- or CD44 low CD24high non-CSCs. Upon detachment, both CD147 expression and CyPA secretion were enhanced, and CyPA-CD147 activation mediated detachment induced CSC potential in non-CSCs via STAT3 signaling. Clinically, CD147 and pSTAT3 were highly co-expressed and correlated with poor overall survival and tumor recurrence in breast cancer patients. CONCLUSION This study demonstrates that detachment induces the generation of CSCs from non-stem breast cancer cells via CyPA-CD147 signaling, indicating that targeting CD147 may serve as a potential novel therapeutic strategy for lethal metastatic breast cancer by eliminating induced CSCs.
Collapse
Affiliation(s)
- Yao Meng
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an, China
| | - Xin-Yu Fan
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Li-Jun Yang
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Bao-Qing Xu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
- Department of Pathology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, China
| | - Duo He
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Zhe Xu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Dong Wu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Shi-Jie Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Li-Juan Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Xiao-Qing Wu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
- Department of Radiation Oncology, The University of Kansas, Lawrence, KS, United States
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
- Department of Radiation Oncology, The University of Kansas, Lawrence, KS, United States
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
13
|
CD147 promotes DNA damage response and gemcitabine resistance via targeting ATM/ATR/p53 and affects prognosis in pancreatic cancer. Biochem Biophys Res Commun 2020; 528:62-70. [PMID: 32456796 DOI: 10.1016/j.bbrc.2020.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
The acquisition of chemoresistance is a major clinical challenge for pancreatic cancer (PC) treatment. Chemoresistance is largely attributed to aberrant DNA damage repair. However, the underlying mechanisms of chemoresistance in pancreatic cancer remain unclear. Here, we showed that CD147 was strongly correlated to DNA damage response (DDR) indices and poor prognosis in pancreatic ductal adenocarcinoma (PDAC) patients. CD147 knockdown or monoclonal antibodies improved the killing effects of gemcitabine in gemcitabine resistant cells, exhibiting reduced activation of ATM/p53. Moreover, we found the interaction of CD147 with ATM, ATR and p53, which was augmented in gemcitabine resistant cells. High CD147/p-ATM/p-ATR/p-p53 cytoplasmic expression associated with poor survival of PC patients. Our studies thus identify CD147 as a critical player in DDR programing that affects gemcitabine therapeutic outcomes of pancreatic cancer patients.
Collapse
|
14
|
Fan XY, He D, Sheng CB, Wang B, Wang LJ, Wu XQ, Xu L, Jiang JL, Li L, Chen ZN. Therapeutic anti-CD147 antibody sensitizes cells to chemoradiotherapy via targeting pancreatic cancer stem cells. Am J Transl Res 2019; 11:3543-3554. [PMID: 31312365 PMCID: PMC6614658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/02/2019] [Indexed: 06/10/2023]
Abstract
We have previously demonstrated that anti-CD44s H4C4 or liposomal-delivered STAT3 inhibitor FLLL32 sensitized pancreatic cancer cells to radiotherapy through the elimination or inhibition of cancer stem cells (CSCs) and that HAb18G/CD147 promoted STAT3-mediated pancreatic tumor development by forming a signaling complex with CD44s. In this paper, we therefore explored whether anti-CD147 HAb18IgG sensitized pancreatic cancer cells to chemoradiotherapy via the targeting of CSCs. We tested the influence of HAb18IgG on the sensitivity of pancreatic cancer cells to chemoradiotherapy by clonogenic and MTT assays and on pancreatic CSCs by colony and sphere formation assays, flow cytometry, quantitative real-time RT-PCR (qRT-PCR) and stem cell transcription factors PCR array analysis. Changes in CD147 signaling were examined by immunoblot and reporter assays. We found that HAb18IgG sensitized pancreatic cancer cells to chemoradiotherapy by dose-dependently decreasing colony and sphere formation. Furthermore, HAb18IgG reduced the pancreatic CSC subpopulation and the expression of stem cell transcription factors OCT4, SOX2 and NANOG. Mechanistically, HAb18IgG inhibited CSCs by blocking CD44s-pSTAT3 signaling. The present findings indicated the promising therapeutic role of anti-CD147 HAb18IgG in suppressing pancreatic tumor initiation and overcoming post-chemoradiotherapy recurrence through the direct targeting of CSCs.
Collapse
Affiliation(s)
- Xin-Yu Fan
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Air Force Medical UniversityXi’an 710032, Shaanxi, China
| | - Duo He
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Air Force Medical UniversityXi’an 710032, Shaanxi, China
| | - Chang-Bin Sheng
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Air Force Medical UniversityXi’an 710032, Shaanxi, China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Air Force Medical UniversityXi’an 710032, Shaanxi, China
| | - Li-Juan Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Air Force Medical UniversityXi’an 710032, Shaanxi, China
| | - Xiao-Qing Wu
- Department of Molecular Biosciences and Radiation Oncology, University of KansasLawrence, KS 66045, USA
| | - Liang Xu
- Department of Molecular Biosciences and Radiation Oncology, University of KansasLawrence, KS 66045, USA
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Air Force Medical UniversityXi’an 710032, Shaanxi, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Air Force Medical UniversityXi’an 710032, Shaanxi, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Air Force Medical UniversityXi’an 710032, Shaanxi, China
| |
Collapse
|
15
|
Zhang X, Wu L, Xiao T, Tang L, Jia X, Guo Y, Zhang J, Li J, He Y, Su J, Zhao S, Tao J, Zhou J, Chen X, Peng C. TRAF6 regulates EGF-induced cell transformation and cSCC malignant phenotype through CD147/EGFR. Oncogenesis 2018; 7:17. [PMID: 29463844 PMCID: PMC5833715 DOI: 10.1038/s41389-018-0030-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
TRAF6, a well-known adapter molecule, plays pivotal role in TLR/IL-1R associated signaling pathway. Although TRAF6 has been shown to have oncogenic activity in various malignant tumors, the details remain unclear. In this study, we demonstrated that TRAF6 facilitates Ras (G12V) and EGF-induced cellular transformation through EGFR. Silencing of TRAF6 expression significantly downregulated AP-1 activity, as well as MMP-2,9 expression after EGF stimulation. Furthermore, we found that TRAF6 plays an essential role in cutaneous squamous cell carcinoma (cSCC) malignant phenotypes, affecting cell growth and migration. CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is over-expressed in tumors and induces tumorigenesis. Our results showed that CD147 formed complex with EGFR and TRAF6. Knockdown of TRAF6 disrupted the CD147-EGFR complex, thereby inducing EGFR endocytosis. Therefore, TRAF6 might be a novel molecular target for cSCC prevention or therapy.
Collapse
Affiliation(s)
- Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Wu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ta Xiao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuekun Jia
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yeye Guo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - JiangLin Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijing He
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianda Zhou
- Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Qu C, Gao S, Shao H, Zhang W, Bo H, Lu X, Chen T, Kou J, Wang Y, Chen GS, Huang S, Shen H. Identification of an HLA-A2-restricted CD147 epitope that can induce specific CTL cytotoxicity against drug resistant MCF-7/Adr cells. Oncol Lett 2018; 15:6050-6056. [PMID: 29556319 DOI: 10.3892/ol.2018.8085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/19/2018] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147 is highly expressed in drug-resistant tumor cell lines and is involved in the formation of tumor drug resistance. Therefore, immunotherapy utilizing CD147 epitope peptides is a promising approach for the elimination of drug-resistant tumor cells. However, like most tumor-associated antigens (TAAs), CD147 belongs to the autoantigen category, and T cells that recognize high affinity, immunodominant epitopes from autoantigens are deleted though thymic negative selection. Furthermore, wild-type autoantigen peptides cannot effectively activate and expand T lymphocytes with lower affinity T cell receptors in vivo. However, mutations of TAA peptides have been demonstrated to increase the affinity of major histocompatibility complex molecules and their binding to T cell receptor molecules, leading to activation of T lymphocytes in vitro. In the present study, a high-affinity point mutation peptide, CD147126-134L2, was predicted by the human leukocyte antigen (HLA) binding prediction algorithm and its affinity was testified using a T2 binding assay. In addition, when peptide-specific cytotoxic T lymphocytes (CTLs) were stimulated with dendritic cells loaded with the CD147126-134L2 peptide under HLA-A*02:01 restriction, interferon-γ release and cytotoxicity assays showed that peptide-specific CTLs effectively cross-recognized and lysed T2 target cells loaded either with the wild-type (CD147126-134) or mutated peptide (CD147126-134L2). Moreover, the CD147126-134L2 peptide-specific CTLs exerted strong cytotoxic activity against drug-resistant MCF-7/Adr cells, which express a high level of CD147 and are HLA-A*02:01-positive, but not against normal MCF-7 cells. Thus, this suggests that the wild-type peptide (CD147126-134) is naturally presented on HLA-A*02:01 of CD147-expressing MCF-7/Adr cells and is cross-recognized by CTLs. In conclusion, an HLA-A*02:01-restricted CD147-point mutant epitope peptide was identified that induces CTLs to efficiently lyse drug-resistant MCF-7 cells that highly express CD147. Therefore, this immunotherapeutic approach should be explored as a potential treatment for drug-resistant tumors.
Collapse
Affiliation(s)
- Chuang Qu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Shuhui Gao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huabben Bo
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xin Lu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Tianjiao Chen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Kou
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yue Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Gui Si Chen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Shulin Huang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Han Shen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
17
|
Duan Q, Zhao H, Zhang Z, Li H, Wu H, Shen Q, Wang C, Yin T. Mechanistic Evaluation and Translational Signature of Gemcitabine-induced Chemoresistance by Quantitative Phosphoproteomics Analysis with iTRAQ Labeling Mass Spectrometry. Sci Rep 2017; 7:12891. [PMID: 29018223 PMCID: PMC5634998 DOI: 10.1038/s41598-017-13330-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
One of the main causations of the poor prognosis of pancreatic cancer is the lack of effective chemotherapies. Gemcitabine is a widely used chemotherapeutic drug, but limited therapeutic efficacy is achieved due to chemoresistance. Recent studies demonstrated that the presence of cancer stem cells may lead to the failure of chemotherapy. Moreover, gemcitabine can promote the stemness of pancreatic cancer cells. We detected the alterations in protein phosphorylation and signaling pathways in pancreatic cancer cells after gemcitabine treatment using iTRAQ labeling LC-MS/MS, because it was featured with the advantages of strong separation ability and analysis range. A total of 232 differentially expressed phosphorylated proteins were identified in this study. Gene Ontology analysis revealed that nuclear lumen, nuclear part and organelle lumen were enriched for cell components and protein binding, poly (A) RNA binding and RNA binding were enriched for molecular function. A variety of signaling pathways were enriched based on KEGG analysis. AMPK, mTOR and PI3K/Akt pathways were verified after gemcitabine exposure. Moreover, we found there were complex interactions of phosphorylated proteins in modulating cancer stemness induced by gemcitabine exposure based on PPIs map. Our experiments may identify potential targets and strategies for sensitizing pancreatic cancer cells to gemcitabine.
Collapse
Affiliation(s)
- Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hehe Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Chen R, Lai LA, Sullivan Y, Wong M, Wang L, Riddell J, Jung L, Pillarisetty VG, Brentnall TA, Pan S. Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer. Sci Rep 2017; 7:7950. [PMID: 28801576 PMCID: PMC5554139 DOI: 10.1038/s41598-017-08436-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a lethal disease with poor prognosis. Gemcitabine has been the first line systemic treatment for pancreatic cancer. However, the rapid development of drug resistance has been a major hurdle in gemcitabine therapy leading to unsatisfactory patient outcomes. With the recent renewed understanding of glutamine metabolism involvement in drug resistance and immuno-response, we investigated the anti-tumor effect of a glutamine analog (6-diazo-5-oxo-L-norleucine) as an adjuvant treatment to sensitize chemoresistant pancreatic cancer cells. We demonstrate that disruption of glutamine metabolic pathways improves the efficacy of gemcitabine treatment. Such a disruption induces a cascade of events which impacts glycan biosynthesis through Hexosamine Biosynthesis Pathway (HBP), as well as cellular redox homeostasis, resulting in global changes in protein glycosylation, expression and functional effects. The proteome alterations induced in the resistant cancer cells and the secreted exosomes are intricately associated with the reduction in cell proliferation and the enhancement of cancer cell chemosensitivity. Proteins associated with EGFR signaling, including downstream AKT-mTOR pathways, MAPK pathway, as well as redox enzymes were downregulated in response to disruption of glutamine metabolic pathways.
Collapse
Affiliation(s)
- Ru Chen
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Lisa A Lai
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Yumi Sullivan
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Wong
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Lei Wang
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jonah Riddell
- Cell Signaling Technology, Inc, Danvers, MA, 01923, USA
| | - Linda Jung
- Cell Signaling Technology, Inc, Danvers, MA, 01923, USA
| | | | - Teresa A Brentnall
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
19
|
Zheng HC, Gong BC. CD147 expression was positively linked to aggressiveness and worse prognosis of gastric cancer: a meta and bioinformatics analysis. Oncotarget 2017; 8:90358-90370. [PMID: 29163835 PMCID: PMC5685756 DOI: 10.18632/oncotarget.20089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
CD147 (also named as Basigin or EMMPRIN) might promote cancer invasion and metastasis by inducing MMP and VEGF synthesis in tumor microenvironment. We performed a systematic meta and bioinformatics analysis through multiple online databases up to March 14, 2017. Up-regulated CD147 expression was found in gastric cancer, compared with normal mucosa (p < 0.05). The male patients with gastric cancer showed higher CD147 expression than the female ones (p < 0.0001). CD147 expression was positively correlated with tumor size, depth of invasion, lymph node metastasis, TNM staging and unfavorable prognosis of gastric cancer (p < 0.05). At mRNA level, CD147 expression was higher in intestinal-type and mixed-type gastric carcinomas than normal tissues (p < 0.05). CD147 mRNA expression was negatively associated with histological grading and dedifferentiation of gastric cancer (p < 0.05). A higher CD147 mRNA expression was negatively correlated with overall and progression-free survival rates of all cancer patients, even stratified by clinicopathological features (p < 0.05). These findings indicated that CD147 expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bao-Cheng Gong
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
20
|
Song JW, Tan YX, Li SB, Zhang SK, Wan LM, Ji SP, Zhou H, Zhou ZH, Gong F. Gemcitabine-induced heparanase promotes aggressiveness of pancreatic cancer cells via activating EGFR signaling. Oncotarget 2017; 8:58417-58429. [PMID: 28938567 PMCID: PMC5601663 DOI: 10.18632/oncotarget.16911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC), characterized by aggressive local invasion and metastasis, is one of the most malignant cancers. Gemcitabine is currently used as the standard drug for the treatment of advanced and metastatic PC, but with limited efficacy. In this study, we demonstrated that gemcitabine increased the expression of heparanase (HPA1), the only known mammalian endoglycosidase capable of cleaving heparan sulfate, both in vitro and in vivo. Furthermore, overexpression of HPA1 in PC cell lines enhanced proliferation and invasion, accompanied with elevated phosphorylation of EGFR. In addition, we showed that the NF-κB pathway mediated the gemcitabine-induced HPA1 expression. Importantly, we found that an HPA1 inhibitor attenuated gemcitabine-induced invasion of PC cells. Finally, we showed that HPA1 was of negative prognostic value for PC patients. Taken together, our results demonstrated that gemcitabine-induced HPA1 promotes proliferation and invasion of PC cells through activating EGFR, implying that HPA1 may serve as promising therapeutic target in the treatment of PC.
Collapse
Affiliation(s)
- Jin-Wen Song
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Ying-Xia Tan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Su-Bo Li
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shi-Kun Zhang
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Lu-Ming Wan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shou-Ping Ji
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Hong Zhou
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Zhi-Hang Zhou
- Department of Pathology, The 309th Hospital of People's Liberation Army, Beijing, China
| | - Feng Gong
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| |
Collapse
|