1
|
Choi SH, Jang HJ, Park JD, Ryu KS, Maeng E, Cho S, Park H, Jung HY, Park KS. ELK3-CYFIP2 axis-mediated actin remodeling modulates metastasis and natural killer cell responses in triple-negative breast cancer. J Exp Clin Cancer Res 2025; 44:48. [PMID: 39930469 PMCID: PMC11808954 DOI: 10.1186/s13046-025-03309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive, highly metastatic disease with a poor prognosis. E26 transformation-specific transcription factor (ELK3) is highly expressed in TNBCs, and functions as a regulator of epithelial-mesenchymal transition and immune responses. Because metastatic migration and immune evasion by TNBC cells are critical factors for successful metastasis, unravelling the underlying mechanisms and developing effective immunotherapeutic strategies is urgent. Here, TNBC cell lines MDA-MB-231 and Hs578T were examined to determine the relationship between ELK3 expression and filopodia protrusion on the cell membrane, as well as actin accumulation at contact sites with natural killer (NK) cells. RNA-sequencing analysis and molecular experiments were conducted to identify and validate downstream target genes of ELK3 associated with migration and attachment of TNBC cells. The immune response of TNBC to NK cells was evaluated through imaging and flow cytometry analyses. Clinical significance was assessed through Kaplan-Meier analysis of survival outcomes of TNBC patients. Gene expression profiling and molecular analysis revealed that oncogenic ELK3 directly suppresses expression of cytoplasmic FMR1 interacting protein2 (CYFIP2), a repressor of actin accumulation. Further molecular and pharmacological analyses confirmed that the ELK3-CYFIP2 axis serves a dual role in TNBC cell lines by (1) controlling filopodia-mediated migration and adhesion by regulating actin accumulation, and (2) regulating sensitivity to NK cells by modulating actin accumulation at contact sites. Kaplan-Meier analysis suggested that ELK3-CYFIP2 axis is associated with survival of TNBC patients, and that ELK3 suppresses transcription of CYFIP2. Thus, the ELK3-CYFIP2 axis plays a pivotal role in regulating actin, emphasizing its significance in controlling both cancer cell migration and NK cell responses in TNBC.
Collapse
Affiliation(s)
- Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hye Jung Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Joo Dong Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Seo Ryu
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Eunchong Maeng
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Seohyun Cho
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hail Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hae-Yun Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
2
|
Shen L, Li A, Cui J, Liu H, Zhang S. Integration of single-cell RNA-seq and bulk RNA-seq data to construct and validate a cancer-associated fibroblast-related prognostic signature for patients with ovarian cancer. J Ovarian Res 2024; 17:82. [PMID: 38627854 PMCID: PMC11020192 DOI: 10.1186/s13048-024-01399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND To establish a prognostic risk profile for ovarian cancer (OC) patients based on cancer-associated fibroblasts (CAFs) and gain a comprehensive understanding of their role in OC progression, prognosis, and therapeutic efficacy. METHODS Data on OC single-cell RNA sequencing (scRNA-seq) and total RNA-seq were collected from the GEO and TCGA databases. Seurat R program was used to analyze scRNA-seq data and identify CAFs clusters corresponding to CAFs markers. Differential expression analysis was performed on the TCGA dataset to identify prognostic genes. A CAF-associated risk signature was designed using Lasso regression and combined with clinicopathological variables to develop a nomogram. Functional enrichment and the immune landscape were also analyzed. RESULTS Five CAFs clusters were identified in OC using scRNA-seq data, and 2 were significantly associated with OC prognosis. Seven genes were selected to develop a CAF-based risk signature, primarily associated with 28 pathways. The signature was a key independent predictor of OC prognosis and relevant in predicting the results of immunotherapy interventions. A novel nomogram combining CAF-based risk and disease stage was developed to predict OC prognosis. CONCLUSION The study highlights the importance of CAFs in OC progression and suggests potential for innovative treatment strategies. A CAF-based risk signature provides a highly accurate prediction of the prognosis of OC patients, and the developed nomogram shows promising results in predicting the OC prognosis.
Collapse
Affiliation(s)
- Liang Shen
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
- Shandong University, Jinan, P.R. China
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, Shandong, 250021, P.R. China
| | - Aihua Li
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China.
| | - Jing Cui
- Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, 101 Jingliu Road, Jinan, Shandong, 250001, P.R. China
- Central Laboratory of Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, 101 Jingliu Road, Jinan, Shandong, 250001, P.R. China
| | - Haixia Liu
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, Shandong, 250021, P.R. China
| | - Shiqian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
3
|
Liu C, Zhou L, Chen Z. Construction of gastric cancer prognostic signature based on the E26 transcription factor and the identification of novel oncogene ELK3. Am J Cancer Res 2024; 14:1831-1849. [PMID: 38726274 PMCID: PMC11076248 DOI: 10.62347/rvbp7871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/11/2024] [Indexed: 05/12/2024] Open
Abstract
The aim of the present study was to investigate the function of 29 E26 (ETS) transcription factor families in gastric cancer (GC) and determine their association with prognosis. Our analysis of the expression of the ETS family revealed that 28 genes were dysregulated in GC, and that their expression was associated with multiple clinicopathological features (P<0.05). Based on the expression signature of the ETS family, consensus clustering was performed to generate two gastric cancer subtypes. These subtypes exhibited differences in overall survival (OS, P = 0.161), disease-free survival (DFS, P<0.05) and GC grade (P<0.01). Functional enrichment analysis of the target genes associated with the ETS family indicated that these genes primarily contribute to functions that facilitate tumor progression. A systematic statistical analysis was used to construct a prognostic model related to OS and DFS in association with the ETS family. This model demonstrated that the maximum area under the curve (AUC) values for predicting OS and DFS were 0.729 and 0.670, respectively, establishing ETS as an independent prognostic factor for GC Furthermore, a nomogram was created from the prognostic signature, and its predictive accuracy was confirmed by a calibration curve. Finally, the expression and prognostic significance of the six genes comprising the model were also examined. Among these, ELK3 was found to be significantly overexpressed in GC clinical samples. Subsequent in vitro and in vivo studies verified that ELK3 regulates GC proliferation and metastasis, highlighting its potential as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chenxi Liu
- School of Optometry, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Liqiang Zhou
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Zhiqing Chen
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
4
|
CHOI JINHO, PARK JOODONG, CHOI SEUNGHEE, KO EUNSU, JANG HYEJUNG, PARK KYUNGSOON. ELK3-ID4 axis governs the metastatic features of triple negative breast cancer. Oncol Res 2023; 32:127-138. [PMID: 38188675 PMCID: PMC10767247 DOI: 10.32604/or.2023.042945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/08/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Cancer cell metastasis is a multistep process, and the mechanism underlying extravasation remains unclear. ELK3 is a transcription factor that plays a crucial role in regulating various cellular processes, including cancer metastasis. Based on the finding that ELK3 promotes the metastasis of triple-negative breast cancer (TNBC), we investigated whether ELK3 regulates the extravasation of TNBC by forming the ELK3-ID4 axis. ID4 functions as a transcriptional regulator that interacts with other transcription factors, inhibiting their activity and subsequently influencing various biological processes associated with cell differentiation, survival, growth, and metastasis. Methods We assessed the correlation between the expression of ELK3 and that of ID4 in TNBCs using bioinformatics analyses, QRT-PCR, western blot analysis, luciferase reporter assays, and chromatin immunoprecipitation. Migration, adhesion, invasion, and lung metastasis assays were employed to determine whether the ELK3-ID4 axis regulates the metastatic features of TNBC. Results We found that ELK3 binds directly to a binding motif close to the ID4 promoter to repress promoter activity. The expression of E-cadherin in TNBC was regulated by the ELK3-ID4 axis. In vitro and in vivo analyses showed that inhibiting ID4 expression in ELK3-knockdown MDA-MB-231 (ELK3KD) cells restored the ability to extravasate and metastasize. Conclusion The results indicate that the ELK3 regulates ID4 promoter activity, and that the ELK3-ID4 axis regulates the metastatic characteristics of TNBC cells. Additionally, the data suggest that the ELK3-ID4 axis regulates metastasis of TNBCs by modulating expression of E-cadherin.
Collapse
Affiliation(s)
- JIN-HO CHOI
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - JOO DONG PARK
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - SEUNG HEE CHOI
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - EUN-SU KO
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - HYE JUNG JANG
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - KYUNG-SOON PARK
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
5
|
Al-Hawary SIS, Pallathadka H, Hjazi A, Zhumanov ZE, Alazbjee AAA, Imad S, Alsalamy A, Hussien BM, Jaafer NS, Mahmoudi R. ETS transcription factor ELK3 in human cancers: An emerging therapeutic target. Pathol Res Pract 2023; 248:154728. [PMID: 37542863 DOI: 10.1016/j.prp.2023.154728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Cancer is a genetic and complex disorder, resulting from several events associated with onset, development, and metastasis. Tumor suppressors and oncogenes are among the main regulators of tumor progression, contributing to various cancer-related behaviors like cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis. Transcription factors (TFs) could act as tumor suppressors or oncogenes in cancer progression. E-twenty-six/E26 (ETS) family of TFs have a winged helix-turn-helix (HLH) motif, which interacted with specific DNA regions with high levels of purines and GGA core. ETS proteins act as transcriptional repressors or activators to modulate the expression of target genes. ETS transcription factor ELK3 (ELK3), as a type of ETS protein, was shown to enhance in various cancers, suggesting that it may have an oncogenic role. These studies indicated that ELK3 promoted invasion, migration, cell cycle, proliferation, and EMT, and suppressed cell apoptosis. In addition, these studies demonstrated that ELK3 could be a promising diagnostic and prognostic biomarker in human cancer. Moreover, accumulating data proved that ELK3 could be a novel chemoresistance mediator in human cancer. Here, we aimed to explore the overall change of ELK3 and its underlying molecular mechanism in human cancers. Moreover, we aimed to investigate the potential role of ELK3 as a prognostic and diagnostic biomarker as well as its capability as a chemoresistance mediator in cancer.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ziyadulla Eshmamatovich Zhumanov
- Department of Pathological Anatomy, With a Section-biopsy Course, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent 100047, Uzbekistan
| | | | - Shad Imad
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Noor Sadiq Jaafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Park JD, Jang HJ, Choi SH, Jo GH, Choi JH, Hwang S, Park W, Park KS. The ELK3-DRP1 axis determines the chemosensitivity of triple-negative breast cancer cells to CDDP by regulating mitochondrial dynamics. Cell Death Discov 2023; 9:237. [PMID: 37422450 DOI: 10.1038/s41420-023-01536-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. TNBC patients have higher rates of metastasis and restricted therapy options. Although chemotherapy is the conventional treatment for TNBC, the frequent occurrence of chemoresistance significantly lowers the efficacy of treatment. Here, we demonstrated that ELK3, an oncogenic transcriptional repressor that is highly expressed in TNBC, determined the chemosensitivity of two representative TNBC cell lines (MDA-MB231 and Hs578T) to cisplatin (CDDP) by regulating mitochondrial dynamics. We observed that the knockdown of ELK3 in MDA-MB231 and Hs578T rendered these cell lines more susceptible to the effects of CDDP. We further demonstrated that the chemosensitivity of TNBC cells was caused by the CDDP-mediated acceleration of mitochondrial fission, excessive mitochondrial reactive oxygen species production, and subsequent DNA damage. In addition, we identified DNM1L, a gene encoding the dynamin-related protein 1 (a major regulator of mitochondrial fission), as a direct downstream target of ELK3. Based on these results, we propose that the suppression of ELK3 expression could be used as a potential therapeutic strategy for overcoming the chemoresistance or inducing the chemosensitivity of TNBC.
Collapse
Affiliation(s)
- Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hye Jung Jang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Gae Hoon Jo
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Jin-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
7
|
Arutyunyan A, Roberts K, Troulé K, Wong FCK, Sheridan MA, Kats I, Garcia-Alonso L, Velten B, Hoo R, Ruiz-Morales ER, Sancho-Serra C, Shilts J, Handfield LF, Marconato L, Tuck E, Gardner L, Mazzeo CI, Li Q, Kelava I, Wright GJ, Prigmore E, Teichmann SA, Bayraktar OA, Moffett A, Stegle O, Turco MY, Vento-Tormo R. Spatial multiomics map of trophoblast development in early pregnancy. Nature 2023; 616:143-151. [PMID: 36991123 PMCID: PMC10076224 DOI: 10.1038/s41586-023-05869-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/21/2023] [Indexed: 03/31/2023]
Abstract
The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.
Collapse
Affiliation(s)
- Anna Arutyunyan
- Wellcome Sanger Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | | | | | - Megan A Sheridan
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ilia Kats
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Britta Velten
- Wellcome Sanger Institute, Cambridge, UK
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Regina Hoo
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | | | | | - Luca Marconato
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Lucy Gardner
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Qian Li
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, UK
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | | | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Oliver Stegle
- Wellcome Sanger Institute, Cambridge, UK.
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
| | - Margherita Y Turco
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Wang C, Shi L, Yang S, Chang J, Liu W, Zeng J, Meng J, Zhang R, Xing D. Research progress on antitumor activity of XRP44X and analogues as microtubule targeting agents. Front Chem 2023; 11:1096666. [PMID: 36936533 PMCID: PMC10014799 DOI: 10.3389/fchem.2023.1096666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer threatens human health and life. Therefore, it is particularly important to develop safe and effective antitumor drugs. Microtubules, the main component of cytoskeleton, play an important role in maintaining cell morphology, mitosis, and signal transduction, which are one of important targets of antitumor drug research and development. Colchicine binding site inhibitors have dual effects of inhibiting proliferation and destroying blood vessels. In recent years, a series of inhibitors targeting this target have been studied and some progress has been made. XRP44X has a novel structure and overcomes some disadvantages of traditional inhibitors. It is also a multifunctional molecule that regulates not only the function of tubulin but also a variety of biological pathways. Therefore, the structure, synthesis, structure-activity relationship, and biological activity of XRP44X analogues reported in recent years were summarized in this paper, to provide a useful reference for the rational design of efficient colchicine binding site inhibitors.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| |
Collapse
|
9
|
Jung HY, Lee DK, Lee M, Choi SH, Park JD, Ko ES, Lee J, Park KS, Jung HY. ELK3-CXCL16 axis determines natural killer cell cytotoxicity via the chemotactic activity of CXCL16 in triple negative breast cancer. Oncoimmunology 2023; 12:2190671. [PMID: 36950218 PMCID: PMC10026901 DOI: 10.1080/2162402x.2023.2190671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer because of its aggressive behavior and the limited therapeutic strategies available. In the last decade, immunotherapy has become a promising treatment to prolong survival in advanced solid cancers including TNBC. However, the efficacy of immunotherapy in solid cancers remains limited because solid tumors contain few tumor-infiltrating lymphocytes. Here, we show that targeting an ETS transcription factor ELK3 (ELK3) recruits immune cells including natural killer (NK) cells into tumors via the chemotactic activity of chemokine. ELK3 depletion increases CXCL16 expression level and promotes NK cell cytotoxicity through CXCL16-mediated NK cell recruitment in TNBC. In silico analysis showed that ELK3 is negatively correlated with CXCL16 expression in breast cancer patient samples. Low expression of ELK3 and high expression of CXCL16 were associated with a better prognosis. Low expression of ELK3 and high expression of CXCL16 were associated with increased expression of NK cell-related genes. Our findings demonstrate that the ELK3-CXCL16 axis modulates NK cell recruitment to increase NK cell cytotoxicity, suggesting that targeting the ELK3 gene could be an adjuvant strategy for increasing the efficacy of immunotherapy in TNBC.
Collapse
Affiliation(s)
- Hae-Yun Jung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Hae-Yun Jung Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Dae-Keum Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Minwook Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Joo Dong Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun-Su Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jongwon Lee
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
- CONTACT Kyung-Soon Park
| | - Hae-Yun Jung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic ok Korea
| |
Collapse
|
10
|
Xu H, Zhang L, Gao J, Wang J, Wang Y, Xiao D, Chai S. Molecular and clinical features of a potential immunotherapy target ELK3 in glioma. Medicine (Baltimore) 2022; 101:e29544. [PMID: 35905257 PMCID: PMC9333475 DOI: 10.1097/md.0000000000029544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glioma represents the most prevalent malignant primary brain cancer, and its treatment remains a tremendous challenge. Novel and efficient molecular targets are therefore required for improving diagnosis, survival prediction, and treatment outcomes. Additionally, some studies have shown that immunity is highly associated with glioma progression. Our study aimed to investigate the clinicopathological features, prognostic significance, and immunotherapeutic targetability of ELK3, a member of the erythroblast transformation-specific transcription factor family, in glioma using bioinformatics analyses. ELK3 transcript levels in glioma tissues were evaluated using the Gene Expression Omnibus and The Cancer Genome Atlas databases. Clinical and transcriptomic data of The Cancer Genome Atlas glioma patients were analyzed to identify the molecular and clinical characterizations of ELK3. The prognostic significance of ELK3 was assessed using Cox regression and Kaplan-Meier analysis. The biological pathways related to ELK3 expression were identified by gene set enrichment analysis. The relationships between ELK3 and inflammatory responses, immune cell infiltration, and immune checkpoints were explored using canonical correlation analysis and gene set variation analysis. ELK3 was upregulated in gliomas, and its high expression was correlated with advanced clinicopathologic features and unfavorable prognosis. Gene set enrichment analysis revealed that several immune-related pathways were tightly linked to high ELK3 expression. gene set variation analysis and correlograms demonstrated that ELK3 was robustly associated with inflammatory and immune responses. Correlation analyses indicated that ELK3 was positively associated with infiltrating immune cells and synergistic with several immune checkpoints. ELK3 may serve as a novel marker of poor prognosis and a potential immunotherapeutic target in glioma.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, Wuhan Changjiang Shipping General Hospital, Wuhan, China
| | - Li Zhang
- School of Information Management, Wuhan University, Wuhan, China
| | - Jin Gao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiajing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songshan Chai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Songshan Chai, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan, Hubei 430071, China (e-mail: )
| |
Collapse
|
11
|
Park JD, Kim KS, Choi SH, Jo GH, Choi JH, Park SW, Ko ES, Lee M, Lee DK, Jang HJ, Hwang S, Jung HY, Park KS. ELK3 modulates the antitumor efficacy of natural killer cells against triple negative breast cancer by regulating mitochondrial dynamics. J Immunother Cancer 2022; 10:jitc-2022-004825. [PMID: 35858708 PMCID: PMC9305827 DOI: 10.1136/jitc-2022-004825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is the most lethal subtype of breast cancer due to its aggressive behavior and frequent development of resistance to chemotherapy. Although natural killer (NK) cell-based immunotherapy is a promising strategy for overcoming barriers to cancer treatment, the therapeutic efficacy of NK cells against TNBC is below expectations. E26 transformation-specific transcription factor ELK3 (ELK3) is highly expressed in TNBCs and functions as a master regulator of the epithelial-mesenchymal transition. Methods Two representative human TNBC cell lines, MDA-MB231 and Hs578T, were exposed to ELK3-targeting shRNA or an ELK3-expressing plasmid to modulate ELK3 expression. The downstream target genes of ELK3 were identified using a combined approach comprising gene expression profiling and molecular analysis. The role of ELK3 in determining the immunosensitivity of TNBC to NK cells was investigated in terms of mitochondrial fission–fusion transition and reactive oxygen species concentration both in vitro and in vivo. Results ELK3-dependent mitochondrial fission–fusion status was linked to the mitochondrial superoxide concentration in TNBCs and was a main determinant of NK cell-mediated immune responses. We identified mitochondrial dynamics proteins of 51 (Mid51), a major mediator of mitochondrial fission, as a direct downstream target of ELK3 in TNBCs. Also, we demonstrated that expression of ELK3 correlated inversely with that of Mid51, and that the ELK3-Mid51 axis is associated directly with the status of mitochondrial dynamics. METABRIC analysis revealed that the ELK3-Mid51 axis has a direct effect on the immune score and survival of patients with TNBC. Conclusions Taken together, the data suggest that NK cell responses to TNBC are linked directly to ELK3 expression levels, shedding new light on strategies to improve the efficacy of NK cell-based immunotherapy of TNBC.
Collapse
Affiliation(s)
- Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Kwang-Soo Kim
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Gae Hoon Jo
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Jin-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Si-Won Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Eun-Su Ko
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Minwook Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Dae-Keum Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hye Jung Jang
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hae-Yun Jung
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| |
Collapse
|
12
|
Liu Z, Ren Z, Zhang C, Qian R, Wang H, Wang J, Zhang W, Liu B, Lian X, Wang Y, Guo Y, Gao Y. ELK3: A New Molecular Marker for the Diagnosis and Prognosis of Glioma. Front Oncol 2022; 11:608748. [PMID: 34976781 PMCID: PMC8716454 DOI: 10.3389/fonc.2021.608748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
ETS transcription factor ELK3 (ELK3), a novel oncogene, affects pathological processes and progression of many cancers in human tissues. However, it remains unclear whether ELK3, as a key gene, affects the pathological process of gliomas and the prognosis of patients with gliomas. This study aimed to comprehensively and systematically reveal the correlation between ELK3 and the malignant progression of gliomas by analyzing clinical sample information stored in multiple databases. We revealed the putative mechanism of ELK3 involvement in malignant gliomas progression and identified a new and efficient biomarker for glioma diagnosis and targeted therapy. Based on the sample data from multiple databases and real-time quantitative polymerase chain reaction (RT-qPCR), the abnormally high expression of ELK3 in gliomas was confirmed. Kaplan-Meier and Cox regression analyses demonstrated that a high ELK3 expression was markedly associated with low patient survival and served as an independent biomarker of gliomas. Wilcox and Kruskal-Wallis tests revealed that expression of ELK3 was positively correlated with several clinical characteristics of patients with gliomas, such as age, WHO classification, and recurrence. Moreover, Cell Counting Kit‐8 (CCK-8), immunofluorescence, and wound healing assays confirmed that ELK3 overexpression markedly promoted the proliferation and migration of glioma cells. Finally, gene set enrichment analysis (GSEA) and western blotting confirmed that overexpression of ELK3 regulated the JAK–STAT signaling pathway and upregulate the expression of signal transducer and activator of transcription 3 (STAT3) and phosphorylated STAT3 (P-STAT3) to promote the malignant transition of gliomas. Therefore, ELK3 may serve as an efficient biomarker for the diagnosis and prognosis of gliomas and it can also be used as a therapeutic target to improve the poor prognosis of patients with gliomas.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhishuai Ren
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Cheng Zhang
- North Broward Preparatory School, Nord Anglia Education, Coconut Creek, FL, United States
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongbo Wang
- People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jialin Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binfeng Liu
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiaoyu Lian
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanbiao Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yuqi Guo
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.,Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
13
|
周 立, 吴 忧, 辛 林. [Expression characteristics and functional analysis of ELK3 in gastric cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1287-1295. [PMID: 34658341 PMCID: PMC8526318 DOI: 10.12122/j.issn.1673-4254.2021.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the expression characteristics of ELK3 and its role in the occurrence, progression and prognosis of gastric cancer. METHODS We analyzed the expression characteristics of ELK3 in gastric cancer based on E-MTAB-6693 dataset and explored the prognostic value of ELK3 using Kaplan-Meier survival analysis and univariate and multivariate Cox regression analysis. Chip-Atlas, ChipBase, Genes Transcription Regulation Database, and hTFtarget were used for predicting the target genes of ELK3 and constructing the transcription regulation network. Functional enrichment analysis of the target genes was performed using R software. The proportions of infiltrating immune cells in gastric cancer were analyzed using Cibersort tool, and the Pearson coefficients between ELK3 and these cells were calculated. The expression profile of ELK3 was verified based on Gene Expression Profiling Interactive Analysis and Human Protein Atlas databases. We also collected 5 pairs of gastric cancer and adjacent tissue samples and detected the expression of ELK3 at both the mRNA and protein levels using RT-PCR and Western blotting. RESULTS In public datasets and clinical samples, ELK3 was highly expressed in gastric cancer (P < 0.05), and its expression increased with the progression of M stage, AJCC stage, and perineural invasion (P < 0.05). ELK3 expression was correlated with N stage, AJCC stage, Lauren classification, differentiation, pathological classification, and microsatellite status of gastric cancer (P < 0.05). A high expression of ELK3 was associated with significantly reduced overall survival and disease-free survival of the patients, and served as an independent prognostic factor of gastric cancer (P < 0.05). Comprehensive analysis identified 176 potential target genes of ELK3, and enrichment analysis showed that ELK3 may regulate Rap1, AMPK, chemokines, VEGF, TNF, and tumor PD-L1/PD-1 signaling (PP < 0.05). The expression of ELK3 was negatively correlated with regulatory T cells, follicular helper T cells, and CD8+T cells in gastric cancer (P < 0.05). CONCLUSION ELK3 acts as an oncogene in gastric cancer, and its high expression may promote the occurrence, progression and immune escape of gastric cancer.
Collapse
Affiliation(s)
- 立强 周
- />南昌大学第二附属医院胃肠外科,江西 南昌 330006Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 忧 吴
- />南昌大学第二附属医院胃肠外科,江西 南昌 330006Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 林 辛
- />南昌大学第二附属医院胃肠外科,江西 南昌 330006Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
14
|
Zhao Q, Ren Y, Xie H, Yu L, Lu J, Jiang W, Xiao W, Zhu Z, Wan R, Li B. ELK3 Mediated by ZEB1 Facilitates the Growth and Metastasis of Pancreatic Carcinoma by Activating the Wnt/β-Catenin Pathway. Front Cell Dev Biol 2021; 9:700192. [PMID: 34409034 PMCID: PMC8365240 DOI: 10.3389/fcell.2021.700192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Rapid progression and metastasis are the major causes of death in patients with pancreatic ductal adenocarcinoma (PDAC). ELK3, a member of the ternary complex factor (TCF), has been associated with the initiation and progression of various cancers. However, the role of ELK3 in PDAC is not yet fully understood. Online databases and immunohistochemistry were used to analyze the ELK3 levels in PDAC tissues. The function of ELK3 was confirmed by a series of in vivo and in vitro studies. Western blotting and immunofluorescence were used to detect the molecular mechanisms of PDAC. ChIP-qPCR was used to study the mechanism responsible for the elevation of ELK3 expression in PDAC. The ELK3 levels were higher in PDAC tissues than in adjacent normal tissues. Functionally, we demonstrated that ELK3 acted as an oncogene to promote PDAC tumorigenesis and metastasis. Further study suggested that ELK3 promoted PDAC cell migration and invasion by activating the Wnt/β-catenin pathway, and proved that ZEB1 could directly bind to the promoter of ELK3 to increase its transcription. Finally, both were associated with the patients’ clinicopathological features and worse overall survival. Conclusively, our findings enrich the role of ELK3 in PDAC, and provide potential avenues for exploring more effective biomarkers and therapeutic strategies for the treatment of PDAC.
Collapse
Affiliation(s)
- Qiuyan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchun Ren
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqin Xiao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonglin Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Niklaus NJ, Tokarchuk I, Zbinden M, Schläfli AM, Maycotte P, Tschan MP. The Multifaceted Functions of Autophagy in Breast Cancer Development and Treatment. Cells 2021; 10:cells10061447. [PMID: 34207792 PMCID: PMC8229352 DOI: 10.3390/cells10061447] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (herein referred to as autophagy) is a complex catabolic process characterized by the formation of double-membrane vesicles called autophagosomes. During this process, autophagosomes engulf and deliver their intracellular content to lysosomes, where they are degraded by hydrolytic enzymes. Thereby, autophagy provides energy and building blocks to maintain cellular homeostasis and represents a dynamic recycling mechanism. Importantly, the clearance of damaged organelles and aggregated molecules by autophagy in normal cells contributes to cancer prevention. Therefore, the dysfunction of autophagy has a major impact on the cell fate and can contribute to tumorigenesis. Breast cancer is the most common cancer in women and has the highest mortality rate among all cancers in women worldwide. Breast cancer patients often have a good short-term prognosis, but long-term survivors often experience aggressive recurrence. This phenomenon might be explained by the high heterogeneity of breast cancer tumors rendering mammary tumors difficult to target. This review focuses on the mechanisms of autophagy during breast carcinogenesis and sheds light on the role of autophagy in the traits of aggressive breast cancer cells such as migration, invasion, and therapeutic resistance.
Collapse
Affiliation(s)
- Nicolas J. Niklaus
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Igor Tokarchuk
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Mara Zbinden
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
| | - Anna M. Schläfli
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla 74360, Mexico;
| | - Mario P. Tschan
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-632-87-80
| |
Collapse
|
16
|
Simon M, Mughal SS, Horak P, Uhrig S, Buchloh J, Aybey B, Stenzinger A, Glimm H, Fröhling S, Brors B, Imbusch CD. Deconvolution of sarcoma methylomes reveals varying degrees of immune cell infiltrates with association to genomic aberrations. J Transl Med 2021; 19:204. [PMID: 33980253 PMCID: PMC8117561 DOI: 10.1186/s12967-021-02858-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Soft-tissue sarcomas (STS) are a heterogeneous group of mesenchymal tumors for which response to immunotherapies is not well established. Therefore, it is important to risk-stratify and identify STS patients who will most likely benefit from these treatments. RESULTS To reveal shared and distinct methylation signatures present in STS, we performed unsupervised deconvolution of DNA methylation data from the TCGA sarcoma and an independent validation cohort. We showed that leiomyosarcoma can be subclassified into three distinct methylation groups. More importantly, we identified a component associated with tumor-infiltrating leukocytes, which suggests varying degrees of immune cell infiltration in STS subtypes and an association with prognosis. We further investigated the genomic alterations that may influence tumor infiltration by leukocytes including RB1 loss in undifferentiated pleomorphic sarcomas and ELK3 amplification in dedifferentiated liposarcomas. CONCLUSIONS In summary, we have leveraged unsupervised methylation-based deconvolution to characterize the immune compartment and molecularly stratify subtypes in STS, which may benefit precision medicine in the future.
Collapse
Affiliation(s)
- Malte Simon
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sadaf S Mughal
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Horak
- Translational Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Uhrig
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Buchloh
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bogac Aybey
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Hanno Glimm
- Department of Translational Medical Oncology, NCT Dresden, Dresden, Germany.,University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Stefan Fröhling
- Translational Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Kvokačková B, Remšík J, Jolly MK, Souček K. Phenotypic Heterogeneity of Triple-Negative Breast Cancer Mediated by Epithelial-Mesenchymal Plasticity. Cancers (Basel) 2021; 13:2188. [PMID: 34063254 PMCID: PMC8125677 DOI: 10.3390/cancers13092188] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma known for its unusually aggressive behavior and poor clinical outcome. Besides the lack of molecular targets for therapy and profound intratumoral heterogeneity, the relatively quick overt metastatic spread remains a major obstacle in effective clinical management. The metastatic colonization of distant sites by primary tumor cells is affected by the microenvironment, epigenetic state of particular subclones, and numerous other factors. One of the most prominent processes contributing to the intratumoral heterogeneity is an epithelial-mesenchymal transition (EMT), an evolutionarily conserved developmental program frequently hijacked by tumor cells, strengthening their motile and invasive features. In response to various intrinsic and extrinsic stimuli, malignant cells can revert the EMT state through the mesenchymal-epithelial transition (MET), a process that is believed to be critical for the establishment of macrometastasis at secondary sites. Notably, cancer cells rarely undergo complete EMT and rather exist in a continuum of E/M intermediate states, preserving high levels of plasticity, as demonstrated in primary tumors and, ultimately, in circulating tumor cells, representing a simplified element of the metastatic cascade. In this review, we focus on cellular drivers underlying EMT/MET phenotypic plasticity and its detrimental consequences in the context of TNBC cancer.
Collapse
Affiliation(s)
- Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Altaf R, Nadeem H, Babar MM, Ilyas U, Muhammad SA. Genome-scale meta-analysis of breast cancer datasets identifies promising targets for drug development. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2021; 28:5. [PMID: 33593445 PMCID: PMC7885587 DOI: 10.1186/s40709-021-00136-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/05/2021] [Indexed: 01/19/2023]
Abstract
Background Because of the highly heterogeneous nature of breast cancer, each subtype differs in response to several treatment regimens. This has limited the therapeutic options for metastatic breast cancer disease requiring exploration of diverse therapeutic models to target tumor specific biomarkers. Methods Differentially expressed breast cancer genes identified through extensive data mapping were studied for their interaction with other target proteins involved in breast cancer progression. The molecular mechanisms by which these signature genes are involved in breast cancer metastasis were also studied through pathway analysis. The potential drug targets for these genes were also identified. Results From 50 DEGs, 20 genes were identified based on fold change and p-value and the data curation of these genes helped in shortlisting 8 potential gene signatures that can be used as potential candidates for breast cancer. Their network and pathway analysis clarified the role of these genes in breast cancer and their interaction with other signaling pathways involved in the progression of disease metastasis. The miRNA targets identified through miRDB predictor provided potential miRNA targets for these genes that can be involved in breast cancer progression. Several FDA approved drug targets were identified for the signature genes easing the therapeutic options for breast cancer treatment. Conclusion The study provides a more clarified role of signature genes, their interaction with other genes as well as signaling pathways. The miRNA prediction and the potential drugs identified will aid in assessing the role of these targets in breast cancer.
Collapse
Affiliation(s)
- Reem Altaf
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan.
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-E-Millat University, Islamabad, 44000, Pakistan
| | - Umair Ilyas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 66000, Pakistan
| |
Collapse
|
19
|
Kim KS, Park KS. XRP44X Enhances the Cytotoxic Activity of Natural Killer Cells by Activating the c-JUN N-Terminal Kinase Signaling Pathway. Dev Reprod 2020; 24:53-62. [PMID: 32411918 PMCID: PMC7201060 DOI: 10.12717/dr.2020.24.1.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that play an essential role in
preventing cancer development by performing immune surveillance to eradicate
abnormal cells. Since ex vivo expanded NK cells have cytotoxic
activity against various cancers, including breast cancers, their clinical
potential as immune-oncogenic therapeutics has been widely investigated. Here,
we report that the pyrazole chemical XRP44X, an inhibitor of Ras/ERK activation
of ELK3, stimulates NK-92MI cells to enhance cytotoxic activity against breast
cancer cells. Under XRP44X stimulation, NK cells did not show notable apoptosis
or impaired cell cycle progression. We demonstrated that XRP44X enhanced
interferon gamma expression in NK-92MI cells. We also elucidated that
potentiation of the cytotoxic activity of NK-92MI cells by XRP44X is induced by
activation of the c-JUN N-terminal kinase (JNK) signaling pathway. Our data
provide insight into the evaluation of XRP44X as an immune stimulant and that
XRP44X is a potential candidate compound for the therapeutic development of NK
cells.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Dept. of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Kyung-Soon Park
- Dept. of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| |
Collapse
|
20
|
Functional Link between miR-200a and ELK3 Regulates the Metastatic Nature of Breast Cancer. Cancers (Basel) 2020; 12:cancers12051225. [PMID: 32414208 PMCID: PMC7281469 DOI: 10.3390/cancers12051225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) refers to breast cancer that does not have receptors for estrogen, progesterone, and HER2 protein. TNBC accounts for 10–20% of all cases of breast cancers and is characterized by its metastatic aggressiveness, poor prognosis, and limited treatment options. Here, we show that the metastatic nature of TNBC is critically regulated by a functional link between miR-200a and the transcription factor ELK3. We found that the expression levels of miR-200a and the ELK3 mRNA were negatively correlated in the luminal and TNBC subtypes of breast cancer cells. In vitro experiments revealed that miR-200a directly targets the 3’ untranslated region (UTR) of the ELK3 mRNA to destabilize the transcripts. Furthermore, ectopic expression of miR-200a impaired the migration and invasion of TNBC cells by reducing the expression level of the ELK3 mRNA. In in vivo studies, transfection of MDA-MB 231 cells (a claudin-low TNBC cell type) with exogenous miR-200a reduced their extravasation into the lung during 48 h after tail vein injection, and co-transfection of the cells with an expression plasmid harboring ELK3 that lacked an intact 3’UTR recovered their extravasation ability. Overall, our findings provide evidences that miR-200a and ELK3 is functionally linked to regulate invasive characteristics of breast cancers.
Collapse
|
21
|
Park JH, Park KS. SMAD3 promotes ELK3 expression following transforming growth factor β-mediated stimulation of MDA-MB231 cells. Oncol Lett 2020; 19:2749-2754. [PMID: 32218827 PMCID: PMC7068580 DOI: 10.3892/ol.2020.11375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 12/05/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a secreted cytokine whose aberrant spatiotemporal expression is related to cancer progression and metastasis. While TGFβ acts as a tumor suppressor in normal and premalignant stages, TGFβ functions as a tumor promoter during the malignant phases of tumor progression by prompting cancer cells to undergo epithelial-mesenchymal transition (EMT), which enhances tumor cell invasion and ultimately promotes metastasis to other organs. Extensive studies have been performed to uncover the molecular and cellular mechanisms underlying TGFβ inducing EMT in cancer cells. Here, we suggested that ELK3, which encodes a protein that orchestrates invasion and metastasis of triple negative breast cancer cells, is a downstream target of TGFβ-SMAD3 in MDA-MB231 cells. ELK3 expression was increased in a time-dependent manner upon TGFβ treatment. Chemical and molecular inhibition of the TGFβ receptor blocked the ability of TGFβ to induce ELK3 expression. Small interfering RNA-mediated suppression analysis revealed that SMAD3 induces TGFβ signaling to express ELK3. Moreover, the results of the luciferase reporter assay and chromatin immunoprecipitation analysis showed that SMAD3 directly binds to the SMAD-binding element on the promoter of ELK3 to activate gene expression following TGFβ stimulation. We concluded that ELK3 is a novel downstream target of TGFβ-SMAD3 signaling in aggressive breast cancer cells.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| |
Collapse
|
22
|
Silencing of ELK3 Induces S-M Phase Arrest and Apoptosis and Upregulates SERPINE1 Expression Reducing Migration in Prostate Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2406159. [PMID: 32104682 PMCID: PMC7040388 DOI: 10.1155/2020/2406159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
ELK3, an ETS domain-containing transcription factor, participates in various physiological and pathological processes including cell proliferation, migration, angiogenesis, and malignant progression. However, the role of ELK3 in prostate cancer cells and its mechanism are not fully understood. The contribution of ELK3 to prostate cancer progression was investigated in the present study. We showed that silencing of ELK3 by siRNA in prostate cancer cell DU145 induced S-M phase arrest, promoted apoptosis, inhibited cell proliferation and migration in vitro, and suppressed xenograft growth in mice in vivo. In accordance with its ability to arrest cells in S-M phase, the expression of cyclin A and cyclin B was downregulated. In addition, the expression of p53 was upregulated following ELK3 knockdown, while that of antiapoptotic Bcl-2 was decreased. The migration inhibition may partly due to upregulation of SERPINE1 (a serine protease inhibitor) followed ELK3 knockdown. Consistently, downregulation of SERPINE1 resulted in a modest elimination of migration inhibition resulted from ELK3 knockdown. Furthermore, we found that the AKT signaling was activated in ELK3 knockdown cells, and treatment these cells with AKT inhibitor attenuated SERPINE1 expression induced by ELK3 silencing, suggesting that activation of AKT pathway may be one of the reasons for upregulation of SERPINE1 after ELK3 knockdown. In conclusion, modulation of ELK3 expression may control the progression of prostate cancer partly by regulating cell growth, apoptosis, and migration.
Collapse
|
23
|
Regulation of MicroRNA-155 and Its Related Genes Expression by Inositol Hexaphosphate in Colon Cancer Cells. Molecules 2019; 24:molecules24224153. [PMID: 31744065 PMCID: PMC6891702 DOI: 10.3390/molecules24224153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Inositol hexaphosphate (IP6), a natural dietary component, has been found as an antitumor agent by stimulating apoptosis and inhibiting cancer cell proliferation, their migration, and metastasis in diverse cancers including colon cancer. However, molecular mechanisms of its action have not been well understood. In recent years, microRNAs (miRNAs) have been reported to play important roles in a broad range of biologic processes, such as cell growth, proliferation, apoptosis, or autophagy. These small noncoding molecules regulate post-transcriptional expression of targets genes via degradation of transcript or inhibition of protein synthesis. Aberrant expression and/or dysregulation of miRNAs have been characterized during tumor development and progression, thus, they are potential molecular targets for cancer prevention. The aim of this study was to investigate the effect of IP6 on the miRNAs expression profile in Caco-2 colon cancer cells. 84 miRNAs were analyzed in Caco-2 cells treated with 2.5 mM and 5 mM IP6 by the use of PCR (Polymerase Chain Reaction) array. The effect of 5 mM IP6 on selected potential miR-155 targets was determined by real-time (RT)-qPCR and ELISA (quantitative Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay )method. The results indicated alteration in the specific 10 miRNA expression in human colon cancer cells following their treatment with 5 mM IP6. It down-regulated 8 miRNAs (miR-155, miR-210, miR-144, miR-194, miR-26b, miR-126, miR-302c, and miR-29a) and up-regulated 2 miRNAs (miR-223 and miR-196b). In silico analysis revealed that FOXO3a, HIF-1α, and ELK3 mRNAs are those of predicted targets of miR-155. IP6 at the concentration of 5 mM markedly induced FOXO3a and HIF-1a genes’ expression at both mRNA and protein level and decreased the amount of ELK3 mRNA as well as protein concentration in comparison to the control. In conclusion, the present study indicates that one of the mechanisms of antitumor potential of IP6 is down-regulation of the miR-155 expression in human colon cancer cells. Moreover, the expression of genes that are targeted by miRNA are also modulated by IP6.
Collapse
|
24
|
Cho HJ, Oh N, Park JH, Kim KS, Kim HK, Lee E, Hwang S, Kim SJ, Park KS. ZEB1 Collaborates with ELK3 to Repress E-Cadherin Expression in Triple-Negative Breast Cancer Cells. Mol Cancer Res 2019; 17:2257-2266. [PMID: 31511359 DOI: 10.1158/1541-7786.mcr-19-0380] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/15/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
ZEB1 has intrinsic oncogenic functions that control the epithelial-to-mesenchymal transition (EMT) of cancer cells, impacting tumorigenesis from its earliest stages. By integrating microenvironment signals and being implicated in feedback regulatory loops, ZEB1 appears to be a central switch that determines EMT and metastasis of cancer cells. Here, we found that ZEB1 collaborates with ELK3, a ternary complex factor belonging to the ETS family, to repress E-cadherin expression. ZEB1 functions as a transcriptional activator of ELK3. We first identified that ELK3 and ZEB1 have a positively correlated expression in breast cancer cells by using multiple databases for correlation analysis. Molecular analysis revealed that ZEB1 functions as a transcriptional activator of ELK3 expression. GST pull-down assay and coimmunoprecipitation analysis of wild-type or domain deletion mutants of ZEB1 and ELK3 showed that these 2 proteins directly bound each other. Furthermore, we demonstrated that ZEB1 and ELK3 collaborate to repress the expression of E-cadherin, a representative protein that initiates EMT. Our finding suggested that ELK3 is a novel factor of the ZEB1/E-cadherin axis in triple-negative breast cancer cells. IMPLICATIONS: ELK3 is a novel factor in the ZEB1/E-cadherin axis and ZEB1 has a dual role in ELK3 as a transcriptional activator and as a collaborator to repress E-cadherin expression in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Hyeon-Ju Cho
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Hyung-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Eunbyeol Lee
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Seong-Jin Kim
- Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea.
| |
Collapse
|
25
|
Shang S, Yang J, Jazaeri AA, Duval AJ, Tufan T, Lopes Fischer N, Benamar M, Guessous F, Lee I, Campbell RM, Ebert PJ, Abbas T, Landen CN, Difeo A, Scacheri PC, Adli M. Chemotherapy-Induced Distal Enhancers Drive Transcriptional Programs to Maintain the Chemoresistant State in Ovarian Cancer. Cancer Res 2019; 79:4599-4611. [PMID: 31358529 DOI: 10.1158/0008-5472.can-19-0215] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/05/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Abstract
Chemoresistance is driven by unique regulatory networks in the genome that are distinct from those necessary for cancer development. Here, we investigate the contribution of enhancer elements to cisplatin resistance in ovarian cancers. Epigenome profiling of multiple cellular models of chemoresistance identified unique sets of distal enhancers, super-enhancers (SE), and their gene targets that coordinate and maintain the transcriptional program of the platinum-resistant state in ovarian cancer. Pharmacologic inhibition of distal enhancers through small-molecule epigenetic inhibitors suppressed the expression of their target genes and restored cisplatin sensitivity in vitro and in vivo. In addition to known drivers of chemoresistance, our findings identified SOX9 as a critical SE-regulated transcription factor that plays a critical role in acquiring and maintaining the chemoresistant state in ovarian cancer. The approach and findings presented here suggest that integrative analysis of epigenome and transcriptional programs could identify targetable key drivers of chemoresistance in cancers. SIGNIFICANCE: Integrative genome-wide epigenomic and transcriptomic analyses of platinum-sensitive and -resistant ovarian lines identify key distal regulatory regions and associated master regulator transcription factors that can be targeted by small-molecule epigenetic inhibitors.
Collapse
Affiliation(s)
- Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jiekun Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander James Duval
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Natasha Lopes Fischer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mouadh Benamar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Fadila Guessous
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Inyoung Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert M Campbell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Philip J Ebert
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Analisa Difeo
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
26
|
Jia X, Zhao Q, Zhang Y, Dong Y, Lei L, Williamson RA, Lei Y, Tan X, Zhang D, Hu J. Identification of a Five-CpG Signature with Diagnostic Value in Thyroid Cancer. J Comput Biol 2019; 26:1409-1417. [PMID: 31290678 DOI: 10.1089/cmb.2019.0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thyroid cancer (TC) ranks as the most common endocrine malignancy, and its incidence and mortality rates continue to rise annually. Increasing evidence have shown that DNA methylation, a kind of stable epigenetic modification, is associated with carcinogenesis, suggesting its potential as biomarkers for the early detection of tumors. With the aim of exploring likely DNA methylation biomarkers for TC diagnosis, we conducted a synthetic analysis of DNA methylation profiles based on 789 samples from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In the discovery phase, we identified five CpG probes (cg11228682, cg01291854, cg06778183, cg01668008, and cg01702055) on the condition of DNA methylation data from GSE86961 (n = 82) and constructed a five-CpG signature-based diagnostic model for TC. In addition, we validated the diagnostic score formula in two independent training cohorts, GSE97466 (n = 141) and TCGA (n = 566), as well as the previous developing cohort GSE86961. Receiver operating characteristic analysis revealed that the five-CpG signature had a good diagnostic performance to distinguish TC samples from benign samples. In conclusion, our findings suggest that the five-CpG signature could provide a novel biomarker with useful applications in TC diagnosis.
Collapse
Affiliation(s)
- Xi Jia
- Department of Nuclear Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qian Zhao
- Department of Otolaryngology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Zhang
- Department of Pediatrics, and The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yiping Dong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Li Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ramone A Williamson
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yutiantian Lei
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Tan
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dan Zhang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| |
Collapse
|
27
|
Kim KS, Park JI, Oh N, Cho HJ, Park JH, Park KS. ELK3 expressed in lymphatic endothelial cells promotes breast cancer progression and metastasis through exosomal miRNAs. Sci Rep 2019; 9:8418. [PMID: 31182803 PMCID: PMC6557839 DOI: 10.1038/s41598-019-44828-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated lymphatic vessels (LV) serve as a route of cancer dissemination through the prometastatic crosstalk between lymphatic endothelial cells (LECs) lining the LVs and cancer cells. Compared to blood endothelial cell-derived angiocrine factors, however, LEC-secreted factors in the tumor microenvironment and their roles in tumor metastasis are poorly understood. Here, we report that ELK3 expressed in LECs contributes to the dissemination of cancer cells during tumor growth by providing oncogenic miRNAs to tumor cells through exosomes. We found that conditioned medium from ELK3-suppressed LECs (LCM) lost its ability to promote the migration and invasion of breast cancer cells such as MDA-MB-231, Hs578T and BT20 in vitro. Suppression of ELK3 in LECs diminished the ability of LECs to promote tumor growth and metastasis of MDA-MB-231 in vivo. Exosomes derived from LECs significantly increased the migration and invasion of MDA-MB-231 in vitro, but ELK3 suppression significantly diminished the pro-oncogenic activity of exosomes from LECs. Based on the miRNA expression profiles of LECs and functional analysis, we identified miR-503-3p, miR-4269 and miR-30e-3p as downstream targets of ELK3 in LECs, which cause the above phenotype of cancer cells. These findings strongly suggest that ELK3 expressed in LECs is a major regulator that controls the communication between the tumor microenvironment and tumors to support cancer metastasis.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Ji-In Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Hyeon-Ju Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea.
| |
Collapse
|
28
|
Hsing M, Wang Y, Rennie PS, Cox ME, Cherkasov A. ETS transcription factors as emerging drug targets in cancer. Med Res Rev 2019; 40:413-430. [PMID: 30927317 DOI: 10.1002/med.21575] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which have been implicated in development and progression of a variety of cancers. While one family member, ERG, has been rigorously studied in the context of prostate cancer where it plays a critical role, other ETS factors keep emerging as potential hallmark oncodrivers. In recent years, numerous studies have reported initial discoveries of small molecule inhibitors of ETS proteins and opened novel avenues for ETS-directed cancer therapies. This review summarizes the state of the art data on therapeutic targeting of ETS family members and highlights the corresponding drug discovery strategies.
Collapse
Affiliation(s)
- Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Kim KS, Kim J, Oh N, Kim MY, Park KS. ELK3-GATA3 axis modulates MDA-MB-231 metastasis by regulating cell-cell adhesion-related genes. Biochem Biophys Res Commun 2018; 498:509-515. [PMID: 29510139 DOI: 10.1016/j.bbrc.2018.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 10/25/2022]
Abstract
GATA3 is a master regulator that drives mammary epithelial cell differentiation, and the suppression of GATA3 expression is associated with the development of aggressive breast cancer. However, the mechanism through which GATA3 loss drives cancer development is poorly understood. Previously, we reported that ELK3 suppression in MDA-MB-231 (ELK3 KD) resulted in the reprogramming of these cells from a basal to luminal subtype, which was associated with the induction of GATA3 expression, and that the ELK3-GATA3 axis orchestrated the metastatic characteristics of MDA-MB-231. Here, we show that GATA3 suppression in ELK3 knockdown MDA-MB-231 cells (ELK3/GATA3 DKD) restores the metastatic ability comparably to that of control MDA-MB-231 cells, even though the epithelial cell morphology and TGF-β signaling of ELK3 KD are not recovered in ELK3/GATA3 DKD. The expression of E-cadherin and tight junctional proteins, including occludin, claudin and ZO-1, which is activated in ELK3 KD, is suppressed in ELK3/GATA3 DKD. These results reveal the possibility that the ELK3-GATA3 axis determines the metastatic characteristics of MDA-MB-231 by regulating the expression of cell-cell adhesion factors.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Jiewan Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Mi-Young Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea.
| |
Collapse
|
30
|
Oh N, Park JI, Park JH, Kim KS, Lee DR, Park KS. The role of ELK3 to regulate peritumoral lymphangiogenesis and VEGF-C production in triple negative breast cancer cells. Biochem Biophys Res Commun 2017; 484:896-902. [DOI: 10.1016/j.bbrc.2017.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
|