1
|
García-Blay Ó, Hu X, Wassermann CL, van Bokhoven T, Struijs FMB, Hansen MMK. Multimodal screen identifies noise-regulatory proteins. Dev Cell 2025; 60:133-151.e12. [PMID: 39406240 DOI: 10.1016/j.devcel.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 01/11/2025]
Abstract
Gene-expression noise can influence cell-fate choices across pathology and physiology. However, a crucial question persists: do regulatory proteins or pathways exist that control noise independently of mean expression levels? Our integrative approach, combining single-cell RNA sequencing with proteomics and regulator enrichment analysis, identifies 32 putative noise regulators. SON, a nuclear speckle-associated protein, alters transcriptional noise without changing mean expression levels. Furthermore, SON's noise control can propagate to the protein level. Long-read and total RNA sequencing shows that SON's noise control does not significantly change isoform usage or splicing efficiency. Moreover, SON depletion reduces state switching in pluripotent mouse embryonic stem cells and impacts their fate choice during differentiation. Collectively, we demonstrate a class of proteins that control noise orthogonally to mean expression levels. This work serves as a proof of concept that can identify other functional noise regulators throughout development and disease progression.
Collapse
Affiliation(s)
- Óscar García-Blay
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Christin L Wassermann
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tom van Bokhoven
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Fréderique M B Struijs
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Ginley-Hidinger M, Abewe H, Osborne K, Richey A, Kitchen N, Mortenson KL, Wissink EM, Lis J, Zhang X, Gertz J. Cis-regulatory control of transcriptional timing and noise in response to estrogen. CELL GENOMICS 2024; 4:100542. [PMID: 38663407 PMCID: PMC11099348 DOI: 10.1016/j.xgen.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell variation or transcriptional noise. However, the combination of regulatory features that control these different attributes is not fully understood. Here, we used single-cell RNA-seq during an estrogen treatment time course and machine learning to identify predictors of expression timing and noise. We found that genes with multiple active enhancers exhibit faster temporal responses. We verified this finding by showing that manipulation of enhancer activity changes the temporal response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship between promoter and enhancer activity, with active promoters associated with low noise and active enhancers linked to high noise. Finally, we observed that co-expression across single cells is an emergent property associated with chromatin looping, timing, and noise. Overall, our results indicate a fundamental tradeoff between a gene's ability to quickly respond to incoming signals and maintain low variation across cells.
Collapse
Affiliation(s)
- Matthew Ginley-Hidinger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle Osborne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Richey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Noel Kitchen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Katelyn L Mortenson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyang Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Ginley-Hidinger M, Abewe H, Osborne K, Richey A, Kitchen N, Mortenson KL, Wissink EM, Lis J, Zhang X, Gertz J. Cis-regulatory control of transcriptional timing and noise in response to estrogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.532457. [PMID: 36993565 PMCID: PMC10054948 DOI: 10.1101/2023.03.14.532457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell variation or transcriptional noise. However, the combination of regulatory features that control these different attributes is not fully understood. Here, we used single cell RNA-seq during an estrogen treatment time course and machine learning to identify predictors of expression timing and noise. We find that genes with multiple active enhancers exhibit faster temporal responses. We verified this finding by showing that manipulation of enhancer activity changes the temporal response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship between promoter and enhancer activity, with active promoters associated with low noise and active enhancers linked to high noise. Finally, we observed that co-expression across single cells is an emergent property associated with chromatin looping, timing, and noise. Overall, our results indicate a fundamental tradeoff between a gene's ability to quickly respond to incoming signals and maintain low variation across cells.
Collapse
Affiliation(s)
- Matthew Ginley-Hidinger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle Osborne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Richey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Noel Kitchen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Katelyn L. Mortenson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin M. Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyang Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Le Priol C, Azencott CA, Gidrol X. Detection of genes with differential expression dispersion unravels the role of autophagy in cancer progression. PLoS Comput Biol 2023; 19:e1010342. [PMID: 36893104 PMCID: PMC9997931 DOI: 10.1371/journal.pcbi.1010342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
The majority of gene expression studies focus on the search for genes whose mean expression is different between two or more populations of samples in the so-called "differential expression analysis" approach. However, a difference in variance in gene expression may also be biologically and physiologically relevant. In the classical statistical model used to analyze RNA-sequencing (RNA-seq) data, the dispersion, which defines the variance, is only considered as a parameter to be estimated prior to identifying a difference in mean expression between conditions of interest. Here, we propose to evaluate four recently published methods, which detect differences in both the mean and dispersion in RNA-seq data. We thoroughly investigated the performance of these methods on simulated datasets and characterized parameter settings to reliably detect genes with a differential expression dispersion. We applied these methods to The Cancer Genome Atlas datasets. Interestingly, among the genes with an increased expression dispersion in tumors and without a change in mean expression, we identified some key cellular functions, most of which were related to catabolism and were overrepresented in most of the analyzed cancers. In particular, our results highlight autophagy, whose role in cancerogenesis is context-dependent, illustrating the potential of the differential dispersion approach to gain new insights into biological processes and to discover new biomarkers.
Collapse
Affiliation(s)
- Christophe Le Priol
- Univ. Grenoble Alpes, INSERM, CEA-IRIG, Biomics, Grenoble, France
- * E-mail: (CLP); (XG)
| | - Chloé-Agathe Azencott
- Center for Computational Biology, Mines ParisTech, PSL Research University, Paris, France
- Institut Curie, Paris, France
- INSERM U900, Paris, France
| | - Xavier Gidrol
- Univ. Grenoble Alpes, INSERM, CEA-IRIG, Biomics, Grenoble, France
- * E-mail: (CLP); (XG)
| |
Collapse
|
5
|
Fajiculay E, Hsu CP. Localization of Noise in Biochemical Networks. ACS OMEGA 2023; 8:3043-3056. [PMID: 36713703 PMCID: PMC9878546 DOI: 10.1021/acsomega.2c06113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Noise, or uncertainty in biochemical networks, has become an important aspect of many biological problems. Noise can arise and propagate from external factors and probabilistic chemical reactions occurring in small cellular compartments. For species survival, it is important to regulate such uncertainties in executing vital cell functions. Regulated noise can improve adaptability, whereas uncontrolled noise can cause diseases. Simulation can provide a detailed analysis of uncertainties, but parameters such as rate constants and initial conditions are usually unknown. A general understanding of noise dynamics from the perspective of network structure is highly desirable. In this study, we extended the previously developed law of localization for characterizing noise in terms of (co)variances and developed noise localization theory. With linear noise approximation, we can expand a biochemical network into an extended set of differential equations representing a fictitious network for pseudo-components consisting of variances and covariances, together with chemical species. Through localization analysis, perturbation responses at the steady state of pseudo-components can be summarized into a sensitivity matrix that only requires knowledge of network topology. Our work allows identification of buffering structures at the level of species, variances, and covariances and can provide insights into noise flow under non-steady-state conditions in the form of a pseudo-chemical reaction. We tested noise localization in various systems, and here we discuss its implications and potential applications. Results show that this theory is potentially applicable in discriminating models, scanning network topologies with interesting noise behavior, and designing and perturbing networks with the desired response.
Collapse
Affiliation(s)
- Erickson Fajiculay
- Institute
of Chemistry, Academia Sinica, Taipei115201, Taiwan
- Bioinformatics
Program, Institute of Information Science, Taiwan International Graduate
Program, Academia Sinica, Taipei115201, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Chao-Ping Hsu
- Institute
of Chemistry, Academia Sinica, Taipei115201, Taiwan
- Bioinformatics
Program, Institute of Information Science, Taiwan International Graduate
Program, Academia Sinica, Taipei115201, Taiwan
- Physics
Division, National Center for Theoretical
Sciences, Taipei106319, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University, Taipei106319, Taiwan
| |
Collapse
|
6
|
Luo Y, Liang H. Convergent Usage of Amino Acids in Human Cancers as A Reversed Process of Tissue Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:147-162. [PMID: 34492340 PMCID: PMC9510935 DOI: 10.1016/j.gpb.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
Genome- and transcriptome-wide amino acid usage preference across different species is a well-studied phenomenon in molecular evolution, but its characteristics and implication in cancer evolution and therapy remain largely unexplored. Here, we analyzed large-scale transcriptome/proteome profiles, such as The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and found that compared to normal tissues, different cancer types showed a convergent pattern toward using biosynthetically low-cost amino acids. Such a pattern can be accurately captured by a single index based on the average biosynthetic energy cost of amino acids, termed energy cost per amino acid (ECPA). With this index, we further compared the trends of amino acid usage and the contributing genes in cancer and tissue development, and revealed their reversed patterns. Finally, focusing on the liver, a tissue with a dramatic increase in ECPA during development, we found that ECPA represents a powerful biomarker that could distinguish liver tumors from normal liver samples consistently across 11 independent patient cohorts and outperforms any index based on single genes. Our study reveals an important principle underlying cancer evolution and suggests the global amino acid usage as a system-level biomarker for cancer diagnosis.
Collapse
Affiliation(s)
- Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Mortezaei Z. Computational methods for analyzing RNA-sequencing contaminated samples and its impact on cancer genome studies. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Carolina de Souza-Guerreiro T, Meng X, Dacheux E, Firczuk H, McCarthy J. Translational control of gene expression noise and its relationship to ageing in yeast. FEBS J 2020; 288:2278-2293. [PMID: 33090724 DOI: 10.1111/febs.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S preinitiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidic device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.
Collapse
Affiliation(s)
| | - Xiang Meng
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Estelle Dacheux
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - John McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Guan X, Xu Y, Zheng J. Long non‑coding RNA PCAT6 promotes the development of osteosarcoma by increasing MDM2 expression. Oncol Rep 2020; 44:2465-2474. [PMID: 33125146 PMCID: PMC7610325 DOI: 10.3892/or.2020.7813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a severe malignant tumor. Several studies indicated that lncRNA prostate cancer-associated transcript 6 (PCAT6) promoted the development of multiple types of cancers. Studies have also revealed that MDM2 could aggravate tumor symptoms inhibiting P53 expression. However, whether lncRNA PCAT6 could affect the proliferation and metastasis of osteosarcoma cells by regulating P53 expression is unclear. The present study established lncRNA PCAT6-overexpressing osteosarcoma cells. Cell Counting Kit-8, wound healing and Transwell assays were performed to detect the change in proliferation, migration and invasion of these cells, respectively. Subsequently, E3 ubiquitin-protein ligase Mdm2 (MDM2), P53 and P21 expression were determined using western blotting. Finally, MDM2 expression was inhibited and the proliferation, migration and invasion of these cells was determined again. The present study found that the proliferation, migration and invasion of osteosarcoma cells increased following overexpression of lncRNA PCAT6. MDM2 expression was upregulated while the levels of P53 and P21 decreased following overexpression of lncRNA PCAT6. However, the proliferation, migration and invasion of osteosarcoma cells were inhibited following MDM2 knockdown. Additionally, P53 and P21 was rescued following MDM2 knockdown. To conclude, lncRNA PCAT6 promoted the proliferation, migration and invasion of osteosarcoma cells by promoting the expression of MDM2 and suppressing the expression of P53 and P21.
Collapse
Affiliation(s)
- Xiliang Guan
- Department of Orthopaedic Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Jufen Zheng
- The Department of Bone, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| |
Collapse
|
10
|
Huang J, Zhang Y, Ma Q, Zhang Y, Wang M, Zhou Y, Xing Z, Jin M, Hu L, Kong X. Natural Selection on Exonic SNPs Shapes Allelic Expression Imbalance (AEI) Adaptability in Lung Cancer Progression. Front Genet 2020; 11:665. [PMID: 32670357 PMCID: PMC7327089 DOI: 10.3389/fgene.2020.00665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/01/2020] [Indexed: 01/28/2023] Open
Abstract
Tumors are driven by a sequence of genetic and epigenetic alterations. Previous studies have mostly focused on the roles of somatic mutations in tumorigenesis, but how germline variants act is largely unknown. In this study, we hypothesized that allelic expression imbalance (AEI) participated in the process of germline variants on tumorigenesis. We screened single-nucleotide polymorphisms (SNPs) as representative germline variants. By using 127 patients’ RNA sequencing data from paired lung cancer and adjacent normal tissues from public databases, we analyzed the effects of the functional consequence of SNPs, function and conservativeness on genes with AEI. We found that natural selection can affect AEI. Functional adaptability of genes with a high frequency of AEI and a correlation of the incidence of AEI with conservativeness were observed in both adjacent tissues and tumor tissues. Moreover, we observed a higher incidence of AEI in genes with non-synonymous SNPs than in those with synonymous SNPs. However, we also found that AEI was affected by allele expression noise, especially in tumor tissues, which led to an increased proportion of AEI, weakened the effect of natural selection and eliminated the influence of the functional consequence of SNPs on AEI. We unveiled a previously unknown adaptive regulatory mechanism in which the effect of natural selection on SNPs can be reflected in allelic expression, which provides insight into a better understanding of cancer evolution.
Collapse
Affiliation(s)
- Jinfei Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingyang Ma
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuhang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - You Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihao Xing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiling Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Landian Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Zurawa-Janicka D, Kobiela J, Slebioda T, Peksa R, Stanislawowski M, Wierzbicki PM, Wenta T, Lipinska B, Kmiec Z, Biernat W, Lachinski AJ, Sledzinski Z. Expression of HTRA Genes and Its Association with Microsatellite Instability and Survival of Patients with Colorectal Cancer. Int J Mol Sci 2020; 21:E3947. [PMID: 32486357 PMCID: PMC7312515 DOI: 10.3390/ijms21113947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
HtrA proteases regulate cellular homeostasis and cell death. Their dysfunctions have been correlated with oncogenesis and response to therapeutic treatment. We investigated the relation between HtrA1-3 expression and clinicopathological, and survival data, as well as the microsatellite status of tumors. Sixty-five colorectal cancer patients were included in the study. The expression of HTRA1-3 was estimated at the mRNA and protein levels by quantitative PCR and immunoblotting. Microsatellite status was determined by high-resolution-melting PCR. We found that the HTRA1 mRNA level was higher in colorectal cancer tissue as compared to the unchanged mucosa, specifically in primary lesions of metastasizing cancer. The levels of HtrA1 and HtrA2 proteins were reduced in tumor tissue when compared to unchanged mucosa, specifically in primary lesions of metastasizing disease. Moreover, a decrease in HTRA1 and HTRA2 transcripts' levels in cancers with a high level of microsatellite instability compared to microsatellite stable ones has been observed. A low level of HtrA1 or/and HtrA2 in cancer tissue correlated with poorer patient survival. The expression of HTRA1 and HTRA2 changes during colorectal carcinogenesis and microsatellite instability may be, at least partially, associated with these changes. The alterations in the HTRA1/2 genes' expression are connected with metastatic potential of colorectal cancer and may affect patient survival.
Collapse
Affiliation(s)
- Dorota Zurawa-Janicka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.W.); (B.L.)
| | - Jarek Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (J.K.); (A.J.L.); (Z.S.)
| | - Tomasz Slebioda
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (T.S.); (M.S.); (P.M.W.); (Z.K.)
| | - Rafal Peksa
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (R.P.); (W.B.)
| | - Marcin Stanislawowski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (T.S.); (M.S.); (P.M.W.); (Z.K.)
| | - Piotr Mieczyslaw Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (T.S.); (M.S.); (P.M.W.); (Z.K.)
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.W.); (B.L.)
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.W.); (B.L.)
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (T.S.); (M.S.); (P.M.W.); (Z.K.)
| | - Wojciech Biernat
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (R.P.); (W.B.)
| | - Andrzej Jacek Lachinski
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (J.K.); (A.J.L.); (Z.S.)
| | - Zbigniew Sledzinski
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (J.K.); (A.J.L.); (Z.S.)
| |
Collapse
|
12
|
Somarelli JA, Gardner H, Cannataro VL, Gunady EF, Boddy AM, Johnson NA, Fisk JN, Gaffney SG, Chuang JH, Li S, Ciccarelli FD, Panchenko AR, Megquier K, Kumar S, Dornburg A, DeGregori J, Townsend JP. Molecular Biology and Evolution of Cancer: From Discovery to Action. Mol Biol Evol 2020; 37:320-326. [PMID: 31642480 PMCID: PMC6993850 DOI: 10.1093/molbev/msz242] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer progression is an evolutionary process. During this process, evolving cancer cell populations encounter restrictive ecological niches within the body, such as the primary tumor, circulatory system, and diverse metastatic sites. Efforts to prevent or delay cancer evolution-and progression-require a deep understanding of the underlying molecular evolutionary processes. Herein we discuss a suite of concepts and tools from evolutionary and ecological theory that can inform cancer biology in new and meaningful ways. We also highlight current challenges to applying these concepts, and propose ways in which incorporating these concepts could identify new therapeutic modes and vulnerabilities in cancer.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Heather Gardner
- Sackler School of Graduate Biomedical Sciences, Tufts University, Medford, MA
| | | | - Ella F Gunady
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Amy M Boddy
- Department of Anthropology, University of California, Santa Barbara, CA
| | | | | | - Stephen G Gaffney
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | | | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- King’s College London, London, United Kingdom
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen’s University, Kingston, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Kate Megquier
- Broad Institute, Massachusettes Institute of Technology and Harvard University
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, and Department of Biology, Temple University, Philadelphia, PA
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| |
Collapse
|
13
|
Abstract
Herein we propose an ambitious confrontation of the current coral reef crisis through the establishment of a "Coral Hospital." In an analogous manner to a human hospital, "sick" corals will first be diagnosed either in situ or in the hospital's diagnostic "clinic" such that the root cause of illness can be discerned (e.g., disease, high temperatures, or pollutant stress). Then, corals will be "treated" (when necessary) and allowed to "convalesce" in precisely controlled coral husbandry facilities. Upon "rehabilitation," the recovered corals will be returned to their home reef (if this reef was not found to have degraded), or, alternatively, to a site featuring oceanographic conditions favoring a high level of health, as determined by husbandry experiments performed in other hospital "wards." When possible, diagnostic data from the sick corals (i.e., the underlying cause of sickness) will be used to guide environmental remediation schemes aimed at promoting coral resilience in the ocean. If the home reef improves to an appreciable extent during the time the corals are "hospitalized," these corals could be replanted there upon rehabilitation. Regardless of the site of outplanting, recuperated corals will be monitored over time to validate the "quality of care" in the hospital. In the event that the home reefs suffer to such an extent that environmental mitigation is no longer possible, coral gametes will be collected and cryopreserved such that they may be fertilized, reared in officinarum, and later reseeded once/if global marine conditions again permit coral survival.
Collapse
Affiliation(s)
- Anderson B Mayfield
- 1Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Checheng, Taiwan
| | - Sujune Tsai
- 2Department of Post-Modern Agriculture, Ming-Dao University, Beidou, Taiwan
| | - Chiahsin Lin
- 1Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Checheng, Taiwan.,3Graduate Institute of Marine Biology, National Dong-Hwa University, Checheng, Taiwan
| |
Collapse
|
14
|
Abstract
Gene regulatory network that determines the cellular functions exhibits stochastic fluctuations, or "noise," in different layers. Noise has begun to be appreciated for many previously unrecognized functions in important cellular activities. In fact, molecular noise is unavoidable in both microbial and eukaryotic cells, the feedback system is established evolutionally to reduce noise or optimize the noise for cellular homeostasis. The small noncoding RNAs, particularly, microNRAs, post-transcriptionally and negatively regulate gene expressions. MicroRNAs function as a novel layer to buffer noise level, and stabilize mRNA and protein level to maintain normal cellular function. Furthermore, the changing of microRNA expression levels may increase the stochastic fluctuation leading to abnormal cellular function, even diseases.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California in San Francisco, 600 16th Street Mission Bay/Genentech Hall, Room N212, San Francisco, CA, 94143, USA.
| |
Collapse
|
15
|
Zhao L, Fong AHW, Liu N, Cho WCS. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. J Biomed Sci 2018; 25:16. [PMID: 29455649 PMCID: PMC5817810 DOI: 10.1186/s12929-018-0417-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer, with diverse molecular characteristics and clinical outcomes. This study aims to dissect the molecular heterogeneity of NPC, followed by the construction of a microRNA (miRNA)-based prognostic model for prediction of distant metastasis. METHODS We retrieved two NPC datasets: GSE32960 and GSE70970 as training and validation cohorts, respectively. Consensus clustering was employed for cluster discovery, and support vector machine was used to build a classifier. Finally, Cox regression analysis was applied to constructing a prognostic model for predicting risk of distant metastasis. RESULTS Three NPC subtypes (immunogenic, classical and mesenchymal) were identified that are molecularly distinct and clinically relevant, of which mesenchymal subtype (~ 36%) is associated with poor prognosis, characterized by suppressing tumor suppressor miRNAs and the activation of epithelial--mesenchymal transition. Out of the 25 most differentially expressed miRNAs in mesenchymal subtype, miR-142, miR-26a, miR-141 and let-7i have significant prognostic power (P < 0.05). CONCLUSIONS We proposed for the first time that NPC can be stratified into three subtypes. Using a panel of 4 miRNAs, we established a prognostic model that can robustly stratify NPC patients into high- and low- risk groups of distant metastasis.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Alvin H. W. Fong
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|