1
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
2
|
Sun J, Gui Y, Zhou S, Zheng XL. Unlocking the secrets of aging: Epigenetic reader BRD4 as the target to combatting aging-related diseases. J Adv Res 2024; 63:207-218. [PMID: 37956861 PMCID: PMC11379999 DOI: 10.1016/j.jare.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada; Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada.
| |
Collapse
|
3
|
Bednarczyk M, Kociszewska K, Grosicka O, Grosicki S. The role of autophagy in acute myeloid leukemia development. Expert Rev Anticancer Ther 2023; 23:5-18. [PMID: 36563329 DOI: 10.1080/14737140.2023.2161518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Autophagy is a highly conservative self-degradative process. It aims at elimination-impaired proteins and cellular organelles. Previous research confirmed the autophagy role in cancer pathogenesis. AREAS COVERED This article discusses the role of autophagy in the development of AML. Autophagy seems to be a 'double-sword' mechanism, hence, either its suppression or induction could promote neoplasm growth. This mechanism could also be the aim of the 'molecular targeted therapy.' Chemo- and radiotherapy induce cellular stress in neoplasm cells with subsequent autophagy suppression. Simultaneously, it is claimed that the autophagy suppression increases chemosensitivity 'in neoplastic cells. Some agents, like bortezomib, in turn could promote autophagy process, e.g. in AML (acute myeloid leukemia). However, currently there are not many studies focusing on the role of autophagy in patients suffering for AML. In this review, we summarize the research done so far on the role of autophagy in the development of AML. EXPERT OPINION The analysis of autophagy genes expression profiling in AML could be a relevant factor in the diagnostic process and treatment 'individualization.' Autophagy modulation seems to be a relevant target in the oncological therapy - it could limit disease progression and increase the effectiveness of treatment.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Karolina Kociszewska
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Sebastian Grosicki
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Shi Y, Xue Y, Wang C, Yu L. Nucleophosmin 1: from its pathogenic role to a tantalizing therapeutic target in acute myeloid leukemia. Hematology 2022; 27:609-619. [PMID: 35621728 DOI: 10.1080/16078454.2022.2067939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nucleophosmin 1 (NPM1, also known as B23) is a multifunctional protein involved in a variety of cellular processes, including ribosomal maturation, centrosome replication, maintenance of genomic stability, cell cycle control, and apoptosis. NPM1 is the most commonly mutated gene in adult acute myeloid leukemia (AML) and is present in approximately 40% of all AML cases. The underlying mechanisms of mutant NPM1 (NPM1mut) in leukemogenesis remain unclear. This review summarizes the structure and physiological function of NPM1, mechanisms underlying the pathogenesis of NPM1-mutated AML, and the potential role of NPM1 as a therapeutic target. It is reported that dysfunctional NPM1 might cause AML pathogenesis via its role as a protein chaperone, inhibiting differentiation of leukemia stem cells and regulation of non-coding RNAs. Besides conventional chemotherapies, NPM1 is a promising therapeutic target against AML that warrants further investigation. NPM1-based therapeutic strategies include inducing nucleolar relocalisation of NPM1 mutants, interfering with NPM1 oligomerization, and NPM1 as an immune response target.
Collapse
Affiliation(s)
- Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuhao Xue
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
5
|
Bowry A, Piberger AL, Rojas P, Saponaro M, Petermann E. BET Inhibition Induces HEXIM1- and RAD51-Dependent Conflicts between Transcription and Replication. Cell Rep 2019; 25:2061-2069.e4. [PMID: 30463005 PMCID: PMC6280123 DOI: 10.1016/j.celrep.2018.10.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
BET bromodomain proteins are required for oncogenic transcription activities, and BET inhibitors have been rapidly advanced into clinical trials. Understanding the effects of BET inhibition on processes such as DNA replication will be important for future clinical applications. Here, we show that BET inhibition, and specifically inhibition of BRD4, causes replication stress through a rapid overall increase in RNA synthesis. We provide evidence that BET inhibition acts by releasing P-TEFb from its inhibitor HEXIM1, promoting interference between transcription and replication. Unusually, these transcription-replication conflicts do not activate the ATM/ATR-dependent DNA damage response but recruit the homologous recombination factor RAD51. Both HEXIM1 and RAD51 promote BET inhibitor-induced fork slowing but also prevent a DNA damage response. Our data suggest that BET inhibitors slow replication through concerted action of transcription and recombination machineries and shed light on the importance of replication stress in the action of this class of experimental cancer drugs.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ann Liza Piberger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
BET Inhibition Suppresses S100A8 and S100A9 Expression in Acute Myeloid Leukemia Cells and Synergises with Daunorubicin in Causing Cell Death. BONE MARROW RESEARCH 2018; 2018:5742954. [PMID: 29955397 PMCID: PMC6000862 DOI: 10.1155/2018/5742954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/08/2018] [Indexed: 01/19/2023]
Abstract
S100A8 and S100A9 are both members of the S100 family and have been shown to play roles in myeloid differentiation, autophagy, apoptosis, and chemotherapy resistance. In this study we demonstrate that the BET-bromodomain inhibitor JQ1 causes rapid suppression of S100A8 and S100A9 mRNA and protein in a reversible manner. In addition, we show that JQ1 synergises with daunorubicin in causing AML cell death. Daunorubicin alone causes a dose- and time-dependent increase in S100A8 and S100A9 protein levels in AML cell lines which is overcome by cotreatment with JQ1. This suggests that JQ1 synergises with daunorubicin in causing apoptosis via suppression of S100A8 and S100A9 levels.
Collapse
|
7
|
Han L, Zhao Q, Liang X, Wang X, Zhang Z, Ma Z, Zhao M, Wang A, Liu S. Ubenimex enhances Brd4 inhibition by suppressing HEXIM1 autophagic degradation and suppressing the Akt pathway in glioma cells. Oncotarget 2018; 8:45643-45655. [PMID: 28484091 PMCID: PMC5542215 DOI: 10.18632/oncotarget.17314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
Inhibition of Brd4 by JQ1 treatment showed potential in the treatment of glioma, however, some cases showed low sensitivity of JQ1. In addition, the pre-clinical analysis showed its limitation by demonstrating that transient treatment with JQ1 leads to aggressive tumor development. Thus, an improved understanding of the mechanisms underlying JQ1 is urgently required to design strategies to improve its efficiency, as well as overcome its limitation. HEXIM1 has been confirmed to have an important role in regulating JQ1 sensitivity. In our study, ubenimex, a classical anti-cancer drug showed potential in regulating the JQ1 sensitivity of glioma cells using the WST-1 proliferation assay. Further studies demonstrated that ubenimex inhibited autophagy and downregulated the autophagic degradation of HEXIM1. The role of HEXIM1 in regulating JQ1 sensitivity was verified by the HEXIM1 knockdown. Since ubenimex was verified as an Akt inhibitor, we further studied the role of Akt inhibition in regulating JQ1 sensitivity and migration of glioma cells. Data showed that ubenimex improved the efficiency of JQ1 treatment and suppressed migration both in the in vitro and in vivo xenografts models. The Akt agonist attenuated these effects, pointing to the role of Akt inhibition in JQ1 sensitivity and suppressed migration. Our findings suggest the potential of ubenimex adjuvant treatment to enhance JQ1 efficiency and attenuate parts of its side effect (enhancing tumor aggressive) by regulating the autophagic degradation of HEXIM1 and Akt inhibition.
Collapse
Affiliation(s)
- Liping Han
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China.,Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China.,Department of Neurology, Shandong Police Hospital, Jinan, Shandong, P.R. China
| | - Qingwei Zhao
- Department of Neurology, Shandong Police Hospital, Jinan, Shandong, P.R. China
| | - Xianhong Liang
- Department of Neurology, Shandong Police Hospital, Jinan, Shandong, P.R. China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Zhen Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Zhiguo Ma
- Department of Neurology, Shandong Police Hospital, Jinan, Shandong, P.R. China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, P.R China
| | - Aihua Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
8
|
Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S, Becher I, Muelbaier M, Wagner AJ, Strohmer K, Werner T, Melchert S, Petretich M, Rutkowska A, Vappiani J, Franken H, Steidel M, Sweetman GM, Gilan O, Lam EYN, Dawson MA, Prinjha RK, Grandi P, Bergamini G, Bantscheff M. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Cell 2018; 173:260-274.e25. [PMID: 29551266 PMCID: PMC5871718 DOI: 10.1016/j.cell.2018.02.030] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 02/07/2023]
Abstract
Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed “multiplexed proteome dynamics profiling” (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems. Multiplexed proteome dynamics profiling, mPDP, measures changes in proteostasis JQ1-PROTAC degrades a key mRNA export factor and blocks protein synthesis Raloxifene induces TMEM97 degradation dysregulating cholesterol homeostasis Characterization of proteins dependent on HSP90 constitutively or during synthesis
Collapse
Affiliation(s)
- Mikhail M Savitski
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Nico Zinn
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Daniel Poeckel
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Gade
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Marcel Muelbaier
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anne J Wagner
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Katrin Strohmer
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thilo Werner
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephanie Melchert
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Massimo Petretich
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anna Rutkowska
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Johanna Vappiani
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Holger Franken
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Michael Steidel
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gavain M Sweetman
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Rab K Prinjha
- Epinova DPU, Immuno-Inflammation Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Paola Grandi
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Giovanna Bergamini
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Marcus Bantscheff
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
9
|
Huang M, Zhu L, Garcia JS, Li MX, Gentles AJ, Mitchell BS. Brd4 regulates the expression of essential autophagy genes and Keap1 in AML cells. Oncotarget 2018; 9:11665-11676. [PMID: 29545928 PMCID: PMC5837743 DOI: 10.18632/oncotarget.24432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 01/10/2023] Open
Abstract
We have recently reported that activation of Brd4 is associated with the presence of autophagy in NPMc+ and MLL AML cells. In order to determine the mechanisms underlying this relationship, we have examined the role of Brd4 in regulating the expression of several genes that are central to the process of autophagy. We found that Brd4 binds to the promoters of ATG 3, 7 and CEBPβ, and expression of these genes is markedly reduced by inhibitors of Brd4, as well as by Brd4-shRNA and depletion of CEBPβ. Inhibitors of Brd4 also dramatically suppress the transcription of Keap1, thereby increasing the expression of anti-oxidant genes through the Nrf2 pathway and reducing the cytotoxicity induced by Brd4 inhibitors. Elimination of ATG3 or KEAP1 expression using CRISPR-cas9 mediated genomic editing markedly reduced autophagy. We conclude that Brd4 plays a significant role in autophagy activation through the direct transcriptional regulation of genes essential for it, as well as through the Keap1-Nrf2 axis in NPMc+ and MLL-fusion AML cells.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jacqueline S Garcia
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael X Li
- Department of Electrical Engineering and Computer Science, College of Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Andrew J Gentles
- Department of Medicine, Biomedical Informatics Research, Stanford University, Stanford, California, USA
| | - Beverly S Mitchell
- Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Ouyang L, Zhang L, Liu J, Fu L, Yao D, Zhao Y, Zhang S, Wang G, He G, Liu B. Discovery of a Small-Molecule Bromodomain-Containing Protein 4 (BRD4) Inhibitor That Induces AMP-Activated Protein Kinase-Modulated Autophagy-Associated Cell Death in Breast Cancer. J Med Chem 2017; 60:9990-10012. [PMID: 29172540 DOI: 10.1021/acs.jmedchem.7b00275] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Upon the basis of The Cancer Genome Atlas (TCGA) data set, we identified that several autophagy-related proteins such as AMP-activated protein kinase (AMPK) were remarkably downregulated in breast cancer. Combined with coimmunoprecipitation assay, we demonstrated that BRD4 might interact with AMPK. After analyses of the pharmacophore and WPF interaction optimization, we designed a small-molecule inhibitor of BRD4, 9f (FL-411) which was validated by cocrystal structure with BD1 of BRD4. Subsequently, 9f was discovered to induce ATG5-dependent autophagy-associated cell death (ACD) by blocking BRD4-AMPK interaction and thus activating AMPK-mTOR-ULK1-modulated autophagic pathway in breast cancer cells. Interestingly, the iTRAQ-based proteomics analyses revealed that 9f induced ACD pathways involved in HMGB1, VDAC1/2, and eEF2. Moreover, 9f displayed a therapeutic potential on both breast cancer xenograft mouse and zebrafish models. Together, these results demonstrate that a novel small-molecule inhibitor of BRD4 induces BRD4-AMPK-modulated ACD in breast cancer, which may provide a candidate drug for future cancer therapy.
Collapse
Affiliation(s)
- Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Leilei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Dahong Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| |
Collapse
|