1
|
López-Martínez M, Armengol MP, Pey I, Farré X, Rodríguez-Martínez P, Ferrer M, Porrini E, Luis-Lima S, Díaz-Martín L, Rodríguez-Rodríguez AE, Cruz-Perera C, Alcalde M, Navarro-Díaz M. Integrated miRNA-mRNA Analysis Reveals Critical miRNAs and Targets in Diet-Induced Obesity-Related Glomerulopathy. Int J Mol Sci 2024; 25:6437. [PMID: 38928144 PMCID: PMC11204096 DOI: 10.3390/ijms25126437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to investigate obesity-related glomerulopathy (ORG) at cellular, structural, and transcriptomic levels. Thirty Wistar rats were randomized into two groups: 15 rats were fed with a standard diet (SD-rats), and 15 rats were fed with a high-fat diet (HFD-rats). After 10 weeks, the weight, kidney function, histological features, and transcriptomic changes were assessed. HFD-rats gained significantly more weight (55.8% vs. 29.2%; p < 0.001) and albuminuria (10,384.04 ng/mL vs. 5845.45 ng/mL; p < 0.001) compared to SD-rats. HFD-rats exhibited early stages of ORG, with predominant mesangial matrix increase and podocyte hypertrophy (PH). These lesions correlated with differentially expressed (DE) genes and miRNAs. Functional analysis showed that miR-205, which was DE in both the kidneys and urine of HFD-rats, negatively regulated the PTEN gene, promoting lipid endocytosis in podocytes. The downregulation of PTEN was proved through a higher PTEN/nephrin ratio in the SD-rats and the presence of lipid vacuoles in HFD-podocytes. This study has found a specific targetome of miRNAs and gene expression in early stages of ORG. Also, it emphasizes the potential value of miR-205 as a urinary biomarker for detecting podocyte injury in ORG, offering a tool for early diagnosis, and opening new avenues for future therapeutic research of obesity-related glomerulopathy.
Collapse
Affiliation(s)
- Marina López-Martínez
- CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, 08035 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08913 Barcelona, Spain
| | - Maria Pilar Armengol
- Genomic Platform, Germans Trias i Pujol’s Research Institute, Badalona, 08916 Barcelona, Spain
| | - Irina Pey
- Genomic Platform, Germans Trias i Pujol’s Research Institute, Badalona, 08916 Barcelona, Spain
| | - Xavier Farré
- Genomic Platform, Germans Trias i Pujol’s Research Institute, Badalona, 08916 Barcelona, Spain
| | | | - Mireia Ferrer
- Statistics and Bioinformatics Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Esteban Porrini
- Laboratory of Renal Function (LFR), Faculty of Medicine, University of La Laguna, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain (L.D.-M.)
- Instituto de Tecnologías Biomédicas (ITB), Faculty of Medicine, University of La Laguna, La Laguna, 38320 Tenerife, Spain
| | - Sergio Luis-Lima
- Laboratory of Renal Function (LFR), Faculty of Medicine, University of La Laguna, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain (L.D.-M.)
- Department of Laboratory Medicine, Complejo Hospitalario Universitario de Canarias, La Laguna, 38320 Tenerife, Spain
| | - Laura Díaz-Martín
- Laboratory of Renal Function (LFR), Faculty of Medicine, University of La Laguna, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain (L.D.-M.)
| | - Ana Elena Rodríguez-Rodríguez
- Research Unit, Hospital Universitario de Canarias, La Laguna, 38320 Tenerife, Spain
- Fundación General de la Universidad, University of La Laguna,38320 Tenerife, Spain
| | - Coriolano Cruz-Perera
- Laboratory of Renal Function (LFR), Faculty of Medicine, University of La Laguna, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain (L.D.-M.)
| | - Marta Alcalde
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Pharmaco and Device Epidemiology Group, CSM, NDORMS, University of Oxford, Oxford OX1 3PT, UK
| | - Maruja Navarro-Díaz
- Genomic Platform, Germans Trias i Pujol’s Research Institute, Badalona, 08916 Barcelona, Spain
- Nephrology Department, Sant Joan Despí Moisès Broggi Hospital, Sant Joan Despí, 08970 Barcelona, Spain
| |
Collapse
|
2
|
Zhang C, Wu Y, Yue Q, Zhang X, Hao Y, Liu J. RETRACTED ARTICLE: MiR-28-5p Promotes Osteosarcoma Development by Suppressing URGCP Expression. Biochem Genet 2024; 62:574. [PMID: 36995530 DOI: 10.1007/s10528-023-10369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Chuanlin Zhang
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yuhuai Wu
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Qiaoning Yue
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Xiguang Zhang
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yinglu Hao
- Department of Cardiology, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Nieer Road, Yuxi, 653100, Yunnan, China.
| | - Jianping Liu
- Department of Epidemiology, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Nieer Road, Yuxi, 653100, Yunnan, China.
| |
Collapse
|
3
|
Yu Q, Shi X, Wang H, Zhang S, Hu S, Cai T. A Novel Prognostic Signature of comprising Nine NK Cell signatures Based on Both Bulk RNA Sequencing and Single-Cell RNA Sequencing for Hepatocellular Carcinoma. J Cancer 2023; 14:2209-2223. [PMID: 37576389 PMCID: PMC10414035 DOI: 10.7150/jca.85873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) has limited prognostic prediction due to its heterogeneity. Understanding the role of natural killer (NK) cells in HCC is vital for prognosis and immunotherapy guidance. We aimed to identify NK cell marker genes through scRNA-seq and develop a prognostic signature for HCC. Methods: We analyzed scRNA-seq data (GSE149614) from 10 patients and bulk RNA-seq data from 786 patients with clinicopathological information. NK cell marker genes were identified using clustering and marker finding functions. A predictive risk signature was constructed using LASSO-COX algorithm. Functional annotations and immune cell infiltration analysis were performed, and the nomogram's performance was evaluated. Results: We identified 79 NK cell marker genes associated with NK cell-mediated cytotoxicity, apoptosis, and immune response. The multigene signature significantly correlated with overall survival (OS) in TCGA-LIHC cohort and was validated in other cohorts. Low-risk patients exhibited higher immune cell infiltration, including CD8+ T cells. The risk signature was an independent prognostic factor for OS (HR > 1, p < 0.001). The nomogram combining the risk signature and clinical predictors demonstrated robust prognostic ability. Conclusion: We developed a nine-gene signature prognostic model based on NK cell marker genes to accurately assess the prognostic risk of HCC. This model can be a valuable tool for personalized evaluation post-surgery. Our study underscores the potential of NK cells in HCC prognosis and highlights the importance of scRNA-seq analysis in identifying prognostic markers.
Collapse
Affiliation(s)
- Qi Yu
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo 315010, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315032, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Xuefeng Shi
- Department of Pulmonary and Critical Care Medicine, Qinghai provincial people's hospital, Xining 81000, China
| | - Hongjian Wang
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign 61820, USA
| | - Shun Zhang
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo 315010, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Cai
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo 315010, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315032, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
4
|
Alipoor SD, Chang H. Exosomal miRNAs in the Tumor Microenvironment of Multiple Myeloma. Cells 2023; 12:cells12071030. [PMID: 37048103 PMCID: PMC10092980 DOI: 10.3390/cells12071030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells in the bone marrow and is characterized by the clonal proliferation of B-cells producing defective monoclonal immunoglobulins. Despite the latest developments in treatment, drug resistance remains one of the major challenges in the therapy of MM. The crosstalk between MM cells and other components within the bone marrow microenvironment (BME) is the major determinant of disease phenotypes. Exosomes have emerged as the critical drivers of this crosstalk by allowing the delivery of informational cargo comprising multiple components from miniature peptides to nucleic acids. Such material transfers have now been shown to perpetuate drug-resistance development and disease progression in MM. MicroRNAs(miRNAs) specifically play a crucial role in this communication considering their small size that allows them to be readily packed within the exosomes and widespread potency that impacts the developmental trajectory of the disease inside the tumor microenvironment (TME). In this review, we aim to provide an overview of the current understanding of the role of exosomal miRNAs in the epigenetic modifications inside the TME and its pathogenic influence on the developmental phenotypes and prognosis of MM.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran P5X9+7F9, Iran
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
- Correspondence:
| |
Collapse
|
5
|
Hosseini SF, Javanshir-Giv S, Soleimani H, Mollaei H, Sadri F, Rezaei Z. The importance of hsa-miR-28 in human malignancies. Biomed Pharmacother 2023; 161:114453. [PMID: 36868012 DOI: 10.1016/j.biopha.2023.114453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
MicroRNA production in tumorigenesis is dysregulated by a variety of processes, such as proliferation and removal of microRNA genes, aberrant transcriptional regulation of microRNAs, disrupted epigenetic alterations, and failures in the miRNA biogenesis machinery. Under some circumstances, miRNAs may act as tumorigenic and maybe anti-oncogenes. Tumor aspects such as maintaining proliferating signals, bypassing development suppressors, delaying apoptosis, stimulating metastasis and invasion, and promoting angiogenesis have been linked to dysfunctional and dysregulated miRNAs. MiRNAs have been found as possible biomarkers for human cancer in a great deal of research, which requires additional evaluation and confirmation. It is known that hsa-miR-28 can function as an oncogene or tumor suppressor in many malignancies, and it does this by modulating the expression of several genes and the downstream signaling network. MiR-28-5p and miR-28-3p, which originate from the same RNA hairpin precursor miR-28, have essential roles in a variety of cancers. This review outlines the function and mechanisms of miR-28-3p and miR-28-5p in human cancers and illustrates the miR-28 family's potential utility as a diagnostic biomarker for prognosis and early detection of cancers.
Collapse
Affiliation(s)
- Seyede Fatemeh Hosseini
- Faculty Member, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Setareh Javanshir-Giv
- Faculty of Medicine, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hanieh Soleimani
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
6
|
Razi Soofiyani S, Minaei Beirami S, Hosseini K, Mohammadi Nasr M, Ranjbar M, Forouhandeh H, Tarhriz V, Sadeghi M. Revisiting Inhibition Effects of miR-28 as a Metastasis Suppressor in Gastrointestinal Cancers. Microrna 2023; 12:131-142. [PMID: 37073155 DOI: 10.2174/2211536612666230413125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/09/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023]
Abstract
MicroRNAs are critical epigenetic regulators that can be used as diagnostic, prognostic, and therapeutic biomarkers for the treatment of various diseases, including gastrointestinal cancers, among a variety of cellular and molecular biomarkers. MiRNAs have also shown oncogenic or tumor suppressor roles in tumor tissue and other cell types. Studies showed that the dysregulation of miR-28 is involved in cell growth and metastasis of gastrointestinal cancers. MiR-28 plays a key role in controlling the physiological processes of cancer cells including growth and proliferation, migration, invasion, apoptosis, and metastasis. Therefore, miR-28 expression patterns can be used to distinguish patient subgroups. Based on the previous studies, miR-28 expression can be a suitable biomarker to detect tumor size and predict histological grade metastasis. In this review, we summarize the inhibitory effects of miR-28 as a metastasis suppressor in gastrointestinal cancers. miR-28 plays a role as a tumor suppressor in gastrointestinal cancers by regulating cancer cell growth, cell differentiation, angiogenesis, and metastasis. As a result, using it as a prognostic, diagnostic, and therapeutic biomarker in the treatment of gastrointestinal cancers can be a way to solve the problems in this field.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Mohammadi Nasr
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences. Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences. Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
miR-28-5p's Targeting of GAGE12I Inhibits Proliferation, Migration, and Invasion of Gastric Cancer in Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6946051. [PMID: 36212971 PMCID: PMC9546678 DOI: 10.1155/2022/6946051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
GAGE12I is a tumor metastasis-promoting factor, which can induce gastric cancer cells to invade and migrate. We investigated the effect of miR-28-5p targeting GAGE12I on proliferation, invasion, and migration of human gastric cancer cell lines SGC-7901, AGS, and MGC-803. The expression levels of miR-28-5p and GAGE12I were detected by real-time PCR and western blot, respectively. Cell proliferation, migration, and invasion were measured by MTT and Transwell chamber. The interaction between miR-28-5p and GAGE12I was investigated by bioinformatics analysis and luciferase assay. Results showed that the expression of miR-28-5p in human gastric cancer cell lines was lower than that in normal gastric epithelial cells (P < 0.05). Overexpression of miR-28-5p suppressed cell proliferation, invasion, and migration (P < 0.05). GAGE12I was confirmed as a target of miR-28-5p. Cell proliferation, invasion, and migration were decreased in cells transfected with shGAGE12I compared with those of the scrambled group (P < 0.05). Collectively, miR-28-5p negatively regulated GAGE12I and reduced the proliferation, invasion, and migration of gastric cancer cells.
Collapse
|
8
|
Zhao Y, Ye G, Wang Y, Luo D. MiR-4461 Inhibits Tumorigenesis of Renal Cell Carcinoma by Targeting PPP1R3C. Cancer Biother Radiopharm 2022; 37:503-514. [PMID: 32915648 DOI: 10.1089/cbr.2020.3846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common and malignant tumors in the urinary system. The aim of this research was to investigate the mechanism and clinical significance of miR-4461 in the RCC progression. Materials and Methods: Twenty-eight (28) paired RCC tissue samples and adjacent nontumor tissue samples, as well as RCC cell lines were used to measure the expression of miR-4461 and protein phosphatase 1 regulatory subunit 3C (PPP1R3C) transcript by real-time quantitative PCR. The target relationship between miR-4461 and PPP1R3C was predicted by TargetScan and further verified by dual-luciferase reporter gene assay and RNA pull-down assay. Cell Counting Kit-8 (CCK-8) assay and BrdU ELISA assay were performed to measure RCC cell viability and proliferation. In addition, caspase-3 activity assay and cell adhesion assay were implemented to measure RCC cell apoptosis and adhesion. Results: MiR-4461 was lowly expressed both in RCC tissues and cells, while upregulated PPP1R3C was tested in RCC tissues and cells. In addition, miR-4461 was validated to directly target PPP1R3C, thereby negatively regulating PPP1R3C. Particularly, miR-4461 exerted a clear inhibitory effect on the malignant phenotypes of RCC cells by binding and inhibiting PPP1R3C. Conclusion: MiR-4461, which served as a tumor suppressor, inhibited RCC progression by targeting and downregulating PPP1R3C.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - Gang Ye
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - You Wang
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - Dan Luo
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
9
|
Effects of hsa-miR-28-5p on Adriamycin Sensitivity in Diffuse Large B-Cell Lymphoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4290994. [PMID: 35873635 PMCID: PMC9300279 DOI: 10.1155/2022/4290994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Background Adriamycin (doxorubicin) is an important traditional drug that exhibits cytotoxicity in Diffuse Large B-cell Lymphoma (DLBCL). Doxorubicin affects the DLBCL cells at all stages of their cell cycle. Combined with our previous results, this study discovered that the overexpression of hsa-miR-28-5p inhibited the proliferation, promoted apoptosis, and triggered cell cycle arrest at the S-phase in DLBCL cells. However, the effect of (Homo sapiens, hsa)-microRNA (miR)-28-5p on doxorubicin sensitivity in DLBCL has not been investigated. This study aims to reveal the effects of hsa-miR-28-5p on doxorubicin sensitivity at the level of DLBCL cells. Methods To determine the optimal concentration of doxorubicin, different concentrations of doxorubicin were used to treat DLBCL cells. CCK-8 assay was used to detect the proliferation of DLBCL cells. The hsa-miR-28-5p-mimic NC and hsa-miR-28-5p mimic were transfected to doxorubicin-mediated DLBCL cells. Simultaneously, blank control groups were set up. The cells were cultured and transfected for 24 h. Next, each group was administered with different concentrations of doxorubicin and cultured again for 24 h to observe the effects of hsa-miR-28-5p on doxorubicin sensitivity at different times. The proliferation, early apoptosis, and late apoptosis in DLBCL cells were determined using soft agar colony-forming assay, mitochondrial membrane potential assay, and caspase-3 activity assay, respectively. The apoptosis and cell cycle were explored using Annexin V-PE/7-AAD and PI/RNase staining buffer, respectively. We speculated that PD-L1 might be involved in the effect of hsa-miR-28-5p on the sensitivity of adriamycin (doxorubicin) in the DLBCL cells. Hence, we performed immunohistochemistry (IHC) to determine PD-L1 expression within formalin-fixed paraffin-embedded (FFPE) samples from 52 DLBCL cases. Results The optimal concentration of doxorubicin targeting DLBCL cells was found to be 3.028 μmol/l. The effect of doxorubicin on DLBCL cells was time- and concentration-dependent. hsa-miR-28-5p mimic + doxorubicin remarkably decreased proliferation of DLBCL. DLBCL cell apoptosis rate was the highest in hsa-miR-28-5p mimic + doxorubicin group. Apart from that, hsa-miR-28-5p mimic plus doxorubicin had the best effect in promoting DLBCL cell apoptosis. After the intervention of hsa-miR-28-5p mimic + doxorubicin on DLBCL cells, the cell cycle was arrested in the S-phase and DNA synthesis was blocked. hsa-miR-28-5p mimic + doxorubicin could regulate the cycle of DLBCL cells. As a result, overexpression of hsa-miR-28-5p combined with doxorubicin is possibly involved in the development of DLBCL by affecting the proliferation, apoptosis, and cycle of DLBCL cells. PD-L1 showed an association with the prognosis of DLBCL patients. Combining with the literature, this suggested hsa-miR-28-5p may influence DLBCL occurrence and therapeutic effect by regulating the PD-L1 level. Conclusion The combination of hsa-miR-28-5p mimic and doxorubicin may be considered more effective in inhibiting growth, arresting the cell cycle, and promoting cell apoptosis of DLBCL cells compared to using doxorubicin alone. The effects of doxorubicin on DLBCL cells were found to be time- and concentration-dependent. The overexpression of hsa-miR-28-5p enhanced the effect of doxorubicin on DLBCL cells, which may be attributed to the regulation of PD-L1 levels.
Collapse
|
10
|
Chen T, Wang H, Yan H. miR-28-5p inhibits cholangiocarcinoma progression and predicts good prognosis of patients. Cell Cycle 2022; 21:2079-2090. [PMID: 35670491 DOI: 10.1080/15384101.2022.2085359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most common hepatic and biliary malignancies. The overall five-year survival rate for cholangiocarcinoma is less than 15%. miR-28-5p has been reported to participate the development of various human cancer types. But whether miR-28-5p is associated with the clinical course of CCA patients has not been clarified. Herein, we observed that miR-28-5p was reduced in CCA tissues and predicts the poor prognosis of CCA patients. Treatment with the demethylating agent 5-aza-2'-deoxycytidine (5-AZA) restored miR-28-5p expression in CCA cell lines. Furthermore, up-regulated miR-28-5p inhibited CCA cells growth and metastasis. Mechanistically, miR-28-5p suppressed CCA cells growth and metastasis via directly targeting CD44 molecular. Specific CD44 special siRNA abrogated the discrepancy of the proliferation and metastasis capacity between miR-28-5p-overexpression CCA cells and their control cells, which further confirmed that CD44 was required in miR-28-5p-inhibited CCA cell growth and metastasis.
Collapse
Affiliation(s)
- Tingsong Chen
- Department of Cancer Intervention, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Hao Wang
- Department of Cancer Intervention, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Hongzhu Yan
- Department of Pathology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| |
Collapse
|
11
|
The Current Status of SSRP1 in Cancer: Tribulation and Road Ahead. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3528786. [PMID: 35463672 PMCID: PMC9020922 DOI: 10.1155/2022/3528786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022]
Abstract
Methods We search PubMed and Web of Sciences with keywords “SSRP1” and “Cancer.” Only English literature was included, and conference papers and abstract were all excluded. Results Transcription factors are classified into three groups based on their DNA binding motifs: simple helix-loop-helix (bHLH), classical zinc fingers (ZF-TFs), and homeodomains. The tumor-suppressive miR-497 (microRNA-497) acted as an undesirable regulator of SSRP1 upregulation, which led to tumor growth. The siRNA (small interfering RNA) knockdown of SSRP1 hindered cell proliferation along with incursion and glioma cell migration. Through the AKT (also known as protein kinase B) signaling pathway, SSRP1 silencing affected cancer apoptosis and cell proliferation. Conclusion The MAPK (mitogen-activated protein kinase) signaling pathway's phosphorylation was suppressed when SSRP1 was depleted. The effect of curaxins on p53 and NF-B (nuclear factor-κB), and their toxicity to cancer cells, is attributable to the FACT (facilitates chromatin transcription) complex's chromatin trapping.
Collapse
|
12
|
Lee MG, Lee YK, Huang SC, Chang CL, Ko CY, Lee WC, Chen TY, Tzou SJ, Huang CY, Tai MH, Lin YW, Kung ML, Tsai MC, Chen YL, Chang YC, Wen ZH, Huang CC, Chu TH. DLK2 Acts as a Potential Prognostic Biomarker for Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis. Genes (Basel) 2022; 13:genes13040629. [PMID: 35456435 PMCID: PMC9030291 DOI: 10.3390/genes13040629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common RCC subtype with a high mortality. It has been reported that delta-like 1 homologue (DLK1) participates in the tumor microenvironmental remodeling of ccRCC, but the relationship between delta-like 2 homologue (DLK2, a DLK1 homologue) and ccRCC is still unclear. Thus, this study aims to investigate the role of DLK2 in the biological function and disease prognosis of ccRCC using bioinformatics analysis. The TNMplot database showed that DLK2 was upregulated in ccRCC tissues. From the UALCAN analysis, the overexpression of DLK2 was associated with advanced stage and high grade in ccRCC. Moreover, the Kaplan-Meier plotter (KM Plotter) database showed that DLK2 upregulation was associated with poor survival outcome in ccRCC. By the LinkedOmics analysis, DLK2 signaling may participated in the modulation of ccRCC extracellular matrix (ECM), cell metabolism, ribosome biogenesis, TGF-β signaling and Notch pathway. Besides, Tumor Immune Estimation Resource (TIMER) analysis showed that the macrophage and CD8+ T cell infiltrations were associated with good prognosis in ccRCC patients. Finally, DLK2 overexpression was associated with the reduced macrophage recruitments and the M1–M2 polarization of macrophage in ccRCC tissues. Together, DLK2 may acts as a novel biomarker, even therapeutic target in ccRCC. However, this study lacks experimental validation, and further studies are required to support this viewpoint.
Collapse
Affiliation(s)
- Man-Gang Lee
- Department of Surgery, Division of Urology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Department of Surgery, Division of Urology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Shih-Chung Huang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (C.-L.C.); (C.-Y.K.); (S.-J.T.)
| | - Chen-Lin Chang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (C.-L.C.); (C.-Y.K.); (S.-J.T.)
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chou-Yuan Ko
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (C.-L.C.); (C.-Y.K.); (S.-J.T.)
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Wen-Chin Lee
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Tung-Yuan Chen
- Department of Surgery, Division of Colorectal Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Shiow-Jyu Tzou
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (C.-L.C.); (C.-Y.K.); (S.-J.T.)
- Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Cheng-Yi Huang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (C.-Y.H.); (M.-H.T.)
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (C.-Y.H.); (M.-H.T.)
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Wei Lin
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Ming-Chao Tsai
- Department of Internal Medicine, Division of Hepato-Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Yung-Lung Chen
- Section of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung 80424, Taiwan;
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence: (C.-C.H.); (T.-H.C.); Tel.: +886-7-731-7123 (ext. 2557) (C.-C.H.); +886-7-749-6751 (ext. 726201) (T.-H.C.)
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Correspondence: (C.-C.H.); (T.-H.C.); Tel.: +886-7-731-7123 (ext. 2557) (C.-C.H.); +886-7-749-6751 (ext. 726201) (T.-H.C.)
| |
Collapse
|
13
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
14
|
Molecular Mechanisms of Resistance to Immunotherapy and Antiangiogenic Treatments in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13235981. [PMID: 34885091 PMCID: PMC8656474 DOI: 10.3390/cancers13235981] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immunogenic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized the treatment landscape. This approach has achieved a substantial improvement in life expectancy and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from this success as most patients will finally progress to these therapies and, even worse, approximately 5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research have been conducted to decode the biological basis underlying the resistance mechanisms regarding angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular alterations to understand the resistance pathways related to the treatment with TKI and immune checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that are currently under research to overcome these resistance alterations in preclinical studies and early phase clinical trials.
Collapse
|
15
|
Wang Y, Tong D, Sun Y, Sun H, Liu F, Zou M, Luo R, Peng X. DF-1 cells prevent MG-HS infection through gga-miR-24-3p/RAP1B mediated decreased proliferation and increased apoptosis. Res Vet Sci 2021; 141:164-173. [PMID: 34749101 DOI: 10.1016/j.rvsc.2021.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022]
Abstract
Mycoplasma gallisepticum (MG) is a major poultry pathogen that can induce Chronic Respiratory Disease (CRD) in chickens, causing serious economic losses in the poultry industry worldwide. Increasing evidence suggests that microRNAs (miRNAs) act as a vital role in resisting microbial pathogenesis and maintaining cellular mechanism. Our previous miRNAs sequencing data showed gga-miR-24-3p expression level was significantly increased in MG-infected chicken lungs. The aim of this study is to reveal the cellular mechanism behind the MG-HS infection. We found that gga-miR-24-3p was significantly upregulated and Ras-related protein-B (RAP1B) was downregulated in chicken fibroblast cells (DF-1) with MG infection. Dual luciferase reporting assay and rescue assay confirmed that RAP1B was the target gene of gga-miR-24-3p. Meanwhile, overexpressed gga-miR-24-3p increased the levels of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), and significantly inhibited cell proliferation as well as promoted MG-infected DF-1 cell apoptosis, whereas inhibition of gga-miR-24-3p had the opposite effect. More importantly, the results of overexpression and knockdown of target gene RAP1B demonstrated that the presence of RAP1B promoted cell proliferation and it saved the reduced or increased cell proliferation caused by overexpression or inhibition of gga-miR-24-3p. Furthermore, the overexpression of gga-miR-24-3p could significantly inhibit the expression of MG-HS adhesion protein. Taken together, these findings demonstrate that DF-1 cells can resist MG-HS infection through gga-miR-24-3p/RAP1B mediated decreased proliferation and increased apoptosis, which provides a new mechanism of resistance to MG infection in vitro.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Deng Tong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Huanling Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Fule Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ronglong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| |
Collapse
|
16
|
Luan XF, Wang L, Gai XF. The miR-28-5p-CAMTA2 axis regulates colon cancer progression via Wnt/β-catenin signaling. J Cell Biochem 2021; 122:945-957. [PMID: 31709644 DOI: 10.1002/jcb.29536] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Colon cancer is the third most commonly diagnosed cancer with high morbidity and mortality. Calmodulin-binding transcription activator 2 (CAMTA2) belongs to the calmodulin-binding transcription activator protein family. The functional role of CAMTA2 in colon cancer development remains unclear. Our research found out that CAMTA2 was high-level expressed in colon cancer, and the upregulated CAMTA2 expression was markedly correlated with poor survival. Functional experiments showed that knockdown of CAMTA2 repressed colon cancer cell proliferation/migration in vitro and attenuated proliferation in vivo. In additional, CAMTA2 expression was controlled by miR-28-5p via posttranscriptional regulation and miR-28-5p expression was reversely correlated with CAMTA2 expression in colon cancer. Moreover, enforced miR-28-5p expression downregulated the expression of CAMTA2 significantly and the restoration of CAMTA2 expression abolished the inhibitory effect of miR-28-5p on colon cancer cell proliferation and metastasis. Mechanistically, overexpression of miR-28-5p suppressed Wnt/β-catenin signaling and the inhibitory could be partly abolished by overexpression of CAMTA2. In summary, our findings reveal that miR-28-5p/CAMTA2 axis plays a critical role in human colon cancer, which might be a promising diagnosis and therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Xiao-Feng Luan
- Department of General Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Lei Wang
- Department of General Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Xue-Feng Gai
- Department of General Surgery, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
17
|
Cui G, Wang C, Lin Z, Feng X, Wei M, Miao Z, Sun Z, Wei F. Prognostic and immunological role of Ras-related protein Rap1b in pan-cancer. Bioengineered 2021; 12:4828-4840. [PMID: 34346294 PMCID: PMC8806554 DOI: 10.1080/21655979.2021.1955559] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ras-related Protein Rap1b, a GTP-binding protein belonging to the proximal RAS, which affects tumor progression through regulating tumor cell proliferation, invasion and participates in the functions of various immune cells. However, the potential roles and mechanisms of Rap1b in tumor progression and immunology remains unclear. In this study, we systematically analyzed the pan-cancer expression and prognostic correlation of Rap1b based on GTEX, CCLE, Oncomine, PrognoScan, Kaplan–Meier plotters and TCGA databases. The potential correlations of Rap1b with immune infiltration were revealed via TIMER and TCGA database. SangerBox database was used to analyzed the correlations between Rap1b expression and immune checkpoint (ICP), tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repairs (MMRs) and DNA methylation. The results indicated that the expression level of Rap1b varies in different tumors. Meanwhile, the expression level of Rap1b strongly correlated with prognosis in patients with tumors, higher expression of Rap1b usually was linked to poor prognosis in different datasets. Rap1b was correlated closely with tumor immunity and interacted with various immune cells in different types of cancers. In addition, there were significant positive correlations between Rap1b expression and ICP, TMB, MSI, MMRs and DNA methylation. In conclusion, the results of pan-cancer analysis showed that the abnormal Rap1b expression was related to poor prognosis and tumor immune infiltration in different cancers. Furthermore, Rap1b gene may be used as a potential biomarker of clinical tumor prognosis.
Collapse
Affiliation(s)
- Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Can Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyan Lin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Muxin Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiguang Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Wei
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res 2021; 40:186. [PMID: 34099013 PMCID: PMC8183071 DOI: 10.1186/s13046-021-01961-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) have been the mainstay of treatment for patients with advanced renal cell carcinoma (RCC). Despite its early promising results in decreasing or delaying the progression of RCC in patients, VEGF-TKIs have provided modest benefits in terms of disease-free progression, as 70% of the patients who initially respond to the treatment later develop drug resistance, with 30% of the patients innately resistant to VEGF-TKIs. In the past decade, several molecular and genetic mechanisms of VEGF-TKI resistance have been reported. One of the mechanisms of VEGF-TKIs is inhibition of the classical angiogenesis pathway. However, recent studies have shown the restoration of an alternative angiogenesis pathway in modulating resistance. Further, in the last 5 years, immune checkpoint inhibitors (ICIs) have revolutionized RCC treatment. Although some patients exhibit potent responses, a non-negligible number of patients are innately resistant or develop resistance within a few months to ICI therapy. Hence, an understanding of the mechanisms of VEGF-TKI and ICI resistance will help in formulating useful knowledge about developing effective treatment strategies for patients with advanced RCC. In this article, we review recent findings on the emerging understanding of RCC pathology, VEGF-TKI and ICI resistance mechanisms, and potential avenues to overcome these resistance mechanisms through rationally designed combination therapies.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
| | - Mark Myers
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | | | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia.
- Federation University Australia, Ballarat, Victoria, 3350, Australia.
- The Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, 3052, Australia.
| |
Collapse
|
19
|
Chen F, Han J, Wang D. Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9:e11454. [PMID: 34123589 PMCID: PMC8164840 DOI: 10.7717/peerj.11454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is a pathological process with severe complications such as paraplegia and paralysis. Aberrant miRNA expression is involved in the development of SCII. Differences in the experimenters, filtering conditions, control selection, and sequencing platform may lead to different miRNA expression results. This study systematically analyzes the available SCII miRNA expression data to explore the key differently expressed miRNAs (DEmiRNAs) and the underlying molecular mechanism in SCII. A systematic bioinformatics analysis was performed on 23 representative rat SCII miRNA datasets from PubMed. The target genes of key DEmiRNAs were predicted on miRDB. The DAVID and TFactS databases were utilized for functional enrichment and transcription factor binding analyses. In this study, 19 key DEmiRNAs involved in SCII were identified, 9 of which were upregulated (miR-144-3p, miR-3568, miR-204, miR-30c, miR-34c-3p, miR-155-3p, miR-200b, miR-463, and miR-760-5p) and 10 downregulated (miR-28-5p, miR-21-5p, miR-702-3p, miR-291a-3p, miR-199a-3p, miR-352, miR-743b-3p, miR-125b-2-3p, miR-129-1-3p, and miR-136). KEGG enrichment analysis on the target genes of the upregulated DEmiRNAs revealed that the involved pathways were mainly the cGMP-PKG and cAMP signaling pathways. KEGG enrichment analysis on the target genes of the downregulated DEmiRNAs revealed that the involved pathways were mainly the Chemokine and MAPK signaling pathways. GO enrichment analysis indicated that the target genes of the upregulated DEmiRNAs were markedly enriched in biological processes such as brain development and the positive regulation of transcription from RNA polymerase II promoter. Target genes of the downregulated DEmiRNAs were mainly enriched in biological processes such as intracellular signal transduction and negative regulation of cell proliferation. According to the transcription factor analysis, the four transcription factors, including SP1, GLI1, GLI2, and FOXO3, had important regulatory effects on the target genes of the key DEmiRNAs. Among the upregulated DEmiRNAs, miR-3568 was especially interesting. While SCII causes severe neurological deficits of lower extremities, the anti-miRNA oligonucleotides (AMOs) of miR-3568 improve neurological function. Cleaved caspase-3 and Bax was markedly upregulated in SCII comparing to the sham group, and miR-3568 AMO reduced the upregulation. Bcl-2 expression levels showed a opposite trend as cleaved caspase-3. The expression of GATA6, GATA4, and RBPJ decreased after SCII and miR-3568 AMO attenuated this upregulation. In conclusion, 19 significant DEmiRNAs in the pathogenesis of SCII were identified, and the underlying molecular mechanisms were validated. The DEmiRNAs could serve as potential intervention targets for SCII. Moreover, inhibition of miR-3568 preserved hind limb function after SCII by reducing apoptosis, possibly through regulating GATA6, GATA4, and RBPJ in SCII.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Jie Han
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| |
Collapse
|
20
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
21
|
Zhang F, Yuan X, Sun H, Yin X, Gao Y, Zhang M, Jia Z, Yu M, Ying S, Xia H, Ju L, Xiao Y, Tao H, Lou J, Zhu L. A nontoxic dose of chrysotile can malignantly transform Met-5A cells, in which microRNA-28 has inhibitory effects. J Appl Toxicol 2021; 41:1879-1892. [PMID: 33890321 DOI: 10.1002/jat.4174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Chrysotile, which is classified as a class I carcinogen by the International Agency for Research on Cancer (IARC), has extensive application in the industry and can lead to lung or other cancers. However, whether chrysotile causes malignant mesothelioma and its molecular mechanism remain debatable. Thus, this study aimed to demonstrate the mesothelioma-inducing potential of chrysotile at the mesothelial cellular level and the function of microRNA-28 in malignantly transformed mesothelial MeT-5A cells. MeT-5A cells malignantly transformed by a nontoxic dose of chrysotile were named Asb-T, and miR-28 expression was downregulated in Asb-T cells. Restoration of miR-28 expression inhibited the proliferation, migration and invasion of Asb-T cells. We verified that IMPDH is a putative target of miR-28. The expression of IMPDH was significantly higher in Asb-T MeT-5A cells than in control cells, whereas the opposite trend was observed with miR-28 overexpression. Additionally, inhibition of IMPDH had similar effects as miR-28 overexpression. After miR-28 was elevated or IMPDH was inhibited, Ras activation was reduced, and its downstream pathways (the Erk and Akt signalling pathways) were inhibited. Surprisingly, the content of miR-28 in the blood of mesothelioma patients was higher than that in control subjects. Overall, nontoxic doses of chrysotile can cause malignant transformation of MeT-5A cells. Moreover, miR-28 inhibits the proliferation, migration and invasion of Asb-T MeT-5A cells, negatively regulates the expression of IMPDH through the Ras signalling pathway and may be an important therapeutic target.
Collapse
Affiliation(s)
- Fangfang Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Xiuyuan Yuan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hongjing Sun
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhong Yin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Gao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Jia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Shibo Ying
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Li Ju
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yun Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - He Tao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lijin Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
22
|
Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B. Int J Mol Sci 2021; 22:ijms22052501. [PMID: 33801503 PMCID: PMC7958859 DOI: 10.3390/ijms22052501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.
Collapse
|
23
|
Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. MicroRNA Signature in Renal Cell Carcinoma. Front Oncol 2020; 10:596359. [PMID: 33330087 PMCID: PMC7734191 DOI: 10.3389/fonc.2020.596359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) includes 2.2% of all diagnosed cancers and 1.8% of cancer-related mortalities. The available biomarkers or screening methods for RCC suffer from lack of sensitivity or high cost, necessitating identification of novel biomarkers that facilitate early diagnosis of this cancer especially in the susceptible individuals. MicroRNAs (miRNAs) have several advantageous properties that potentiate them as biomarkers for cancer detection. Expression profile of miRNAs has been assessed in biological samples from RCC patients. Circulatory or urinary levels of certain miRNAs have been proposed as markers for RCC diagnosis or follow-up. Moreover, expression profile of some miRNAs has been correlated with response to chemotherapy, immunotherapy or targeted therapeutic options such as sunitinib. In the current study, we summarize the results of studies that assessed the application of miRNAs as biomarkers, therapeutic targets or modulators of response to treatment modalities in RCC patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Zamora-Fuentes JM, Hernández-Lemus E, Espinal-Enríquez J. Gene Expression and Co-expression Networks Are Strongly Altered Through Stages in Clear Cell Renal Carcinoma. Front Genet 2020; 11:578679. [PMID: 33240325 PMCID: PMC7669746 DOI: 10.3389/fgene.2020.578679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Clear cell renal carcinoma (ccRC) is a highly heterogeneous and progressively malignant disease. Analyzing ccRC progression in terms of modifications at the molecular and genetic level may help us to develop a broader understanding of its patho-physiology and may give us a glimpse toward improved therapeutics. In this work, by using TCGA data, we studied the molecular progression of the four main ccRC stages (i, ii, iii, iv) in two different yet complementary approaches: (a) gene expression and (b) gene co-expression. For (a) we analyzed the differential gene expression between each stage and the control non-cancer group. We compared the progression molecular signature between stages, and observed those genes that change their expression patterns through progression stages. For (b) we constructed and analyzed co-expression networks for the four ccRC progression stages, as well as for the control phenotype, to observe whether and how the co-expression landscape changes with progression. We separated genomic interactions into intra-chromosome (cis-) and inter-chromosome (trans-). Finally, we intersected those networks and performed functional enrichment analysis. All calculations were made over different network sizes, from the top 100 edges to top 1,000,000. We show that differential expression is quite similar between ccRC progression stages. However, interestingly, two genes, namely SLC6A19 and PLG show a significant progressive decrease in their expression according to ccRC stage, meanwhile two other genes, SAA2-SAA4 and CXCL13 show progressive increase. Despite the high similarity between gene expression profiles, all networks are substantially different between them in terms of their topological features. Control network has a larger proportion of trans- interactions, meanwhile for any stage, the amount of cis- interactions is higher, independent of the network cut-off. The majority of interactions in any network are phenotype-specific. Only 189 interactions are shared between the five networks, and 533 edges are ccRC-specific, independent of the stage. The small resulting connected components in both cases are formed by genes with the same differential expression trend, and are associated with important biological processes, such as cell cycle or immune system, suggesting that activity of these categories follows the differential expression trend. With this approach we have shown that, even if the expression program is similar during ccRC progression, the co-expression programs strongly differ. More research is needed to understand the delicate interplay between expression and co-expression, but this is a first approach to enclose both approaches in an integrative view aimed at a deeper understanding in gene regulation in tumor evolution.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
25
|
Barth DA, Drula R, Ott L, Fabris L, Slaby O, Calin GA, Pichler M. Circulating Non-coding RNAs in Renal Cell Carcinoma-Pathogenesis and Potential Implications as Clinical Biomarkers. Front Cell Dev Biol 2020; 8:828. [PMID: 33042985 PMCID: PMC7523432 DOI: 10.3389/fcell.2020.00828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy-the determination of circulating cells, proteins, DNA or RNA from biofluids through a "less invasive" approach-has emerged as a novel approach in all cancer entities. Circulating non-(protein) coding RNAs including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and YRNAs can be passively released by tissue or cell damage or actively secreted as cell-free circulating RNAs, bound to lipoproteins or carried by exosomes. In renal cell carcinoma (RCC), a growing body of evidence suggests circulating non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and YRNAs as promising and easily accessible blood-based biomarkers for the early diagnosis of RCC as well as for the prediction of prognosis and treatment response. In addition, circulating ncRNAs could also play a role in RCC pathogenesis and progression. This review gives an overview over the current study landscape of circulating ncRNAs and their involvement in RCC pathogenesis as well as their potential utility as future biomarkers in RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rares Drula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Leonie Ott
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
26
|
Ma L, Zhang Y, Hu F. miR‑28‑5p inhibits the migration of breast cancer by regulating WSB2. Int J Mol Med 2020; 46:1562-1570. [PMID: 32945370 PMCID: PMC7447326 DOI: 10.3892/ijmm.2020.4685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) play an important role in the tumorigenesis and progression of breast cancer. However, the function of miR‑28‑5p in breast cancer migration has yet to be determined. In the present study, Human MicroRNA Expression Database (HMED) analysis revealed that the expression level of miR‑28‑5p was significantly lower in breast cancer tissue than in normal breast tissue. Kaplan-‑Meier plotter (KMPLOT) analysis revealed that the low expression level of miR‑28‑5p was associated with a poor survival in breast cancer. In addition, reverse transcription‑quantitative PCR (RT‑qPCR) revealed that the expression of miR‑28‑5p was significantly lower in breast cancer cell lines compared with that in human mammary epithelial cells (HMECs). Moreover, transfection with miR‑28‑5p mimics suppressed the migration of MCF‑7 cells, whereas an miR‑28‑5p inhibitor exerted the opposite effect. Gene chip assay identified 648 differentially expressed genes (DEGs) in cells overexpressing miR‑28‑5p. The DEGs are enriched in the 'focal adhesion' and 'pathway in cancer' pathways. The expression levels of Ras‑related protein Rap‑1b (RAP1B), WD repeat and SOCS box containing 2 (WSB2) and vascular endothelial growth factor A (VEGFA) were confirmed by RT‑qPCR. Furthermore, transfection with miR‑28‑5p mimics decreased WSB2 expression, whereas the miR‑28‑5p inhibitor increased the expression of WSB2, at both the transcriptional and translational levels. miR‑28‑5p targets the 3'UTR of WSB2, and the binding site is conserved in multiple species, with a consensus motif of 5'‑AGCUCCUU‑3'. Moreover, WSB2 overexpression promoted the migration of MCF‑7 cells which had been inhibited by miR‑28‑5p. UALCAN analysis revealed that WSB2 was significantly upregulated in primary breast tumor tissue, and a high expression level of WSB2 was associated with a poor survival in breast cancer. Furthermore, immunohistochemistry revealed that the expression of WSB2 was markedly higher in breast cancer tissue compared with that in adjacent normal breast tissue. Taken together, the findings of the present study demonstrate that miR‑28‑5p inhibits the migration of breast cancer cells by regulating WSB2 expression, and the miR‑28‑5p/WSB2 axis may be a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Liang Ma
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yunfeng Zhang
- Department of Life Sciences, Tangshan Normal University, Tangshan, Hebei 063000, P.R. China
| | - Fen Hu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
27
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
28
|
Starzyńska T, Karczmarski J, Paziewska A, Kulecka M, Kuśnierz K, Żeber-Lubecka N, Ambrożkiewicz F, Mikula M, Kos-Kudła B, Ostrowski J. Differences between Well-Differentiated Neuroendocrine Tumors and Ductal Adenocarcinomas of the Pancreas Assessed by Multi-Omics Profiling. Int J Mol Sci 2020; 21:E4470. [PMID: 32586046 PMCID: PMC7352720 DOI: 10.3390/ijms21124470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Most pancreatic neuroendocrine tumors (PNETs) are indolent, while pancreatic ductal adenocarcinomas (PDACs) are particularly aggressive. To elucidate the basis for this difference and to establish the biomarkers, by using the deep sequencing, we analyzed somatic variants across coding regions of 409 cancer genes and measured mRNA/miRNA expression in nine PNETs, eight PDACs, and four intestinal neuroendocrine tumors (INETs). There were 153 unique somatic variants considered pathogenic or likely pathogenic, found in 50, 57, and 24 genes in PDACs, PNETs, and INETs, respectively. Ten and 11 genes contained a pathogenic mutation in at least one sample of all tumor types and in PDACs and PNETs, respectively, while 28, 34, and 11 genes were found to be mutated exclusively in PDACs, PNETs, and INETs, respectively. The mRNA and miRNA transcriptomes of PDACs and NETs were distinct: from 54 to 1659 differentially expressed mRNAs and from 117 to 250 differentially expressed miRNAs exhibited high discrimination ability and resulted in models with an area under the receiver operating characteristics curve (AUC-ROC) >0.9 for both miRNA and mRNA. Given the miRNAs high stability, we proposed exploring that class of RNA as new pancreatic tumor biomarkers.
Collapse
Affiliation(s)
- Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Katarzyna Kuśnierz
- Department of Gastrointestinal Surgery, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, ENETS Center of Excelence, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
29
|
LncRNA MCM3AP-AS1 promotes breast cancer progression via modulating miR-28-5p/CENPF axis. Biomed Pharmacother 2020; 128:110289. [PMID: 32485570 DOI: 10.1016/j.biopha.2020.110289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the commonly occurred cancers among women and poses a huge threat against female health. Abnormal expression of lncRNA has been confirmed to be an important inducer of cancer. By searching GEO and TCGA database, we found that CENPF was upregulated in breast cancer tissues. Through RT-qPCR, CENPF was found to be upregulated in breast cancer cells. Functional experiments revealed that CENPF had positive effect on the cellular functions, including proliferation, migration and invasion. Subsequently, CENPF was confirmed to combine with miR-28-5p, and its expression was suppressed by miR-28-5p. Furthermore, it was found that miR-28-5p bound to MCM3AP-AS1, and MCM3AP-AS1 expressed at a high level in breast cancer cells. Besides, MCM3AP-AS1 was confirmed as a cytoplasmic RNA. In addition, there was a positive expression correlation between MCM3AP-AS1 and CENPF. Therefore, MCM3AP-AS1 was confirmed to regulate CENPF via competitively binding to miR-28-5p. At last, rescue assays demonstrated that knockdown of CENPF restored miR-28-5p repression-induced cellular processes in MCM3AP-AS1-silenced cells. In vivo assay revealed that MCM3AP-AS1 could hasten tumor growth in breast cancer by targeting CENPF. All results indicated that MCM3AP-AS1/miR-28-5p/CENPF axis accelerates breast cancer progression.
Collapse
|
30
|
Clinical Significance and Prognostic Value of miR-28-5p in Colon Cancer. DISEASE MARKERS 2020; 2020:3159831. [PMID: 32566038 PMCID: PMC7256711 DOI: 10.1155/2020/3159831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Background The association of miR-28-5p with colon cancer remains to be elucidated. This study aimed to determine the clinical significance and prognostic value of miR-28-5p in colon cancer. Methods We retrospectively analyzed the data of miR-28-5p in colon adenocarcinoma data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and the data was divided into cancer group and normal group, respectively. Forty colon cancer tissues and adjacent normal tissues were collected and tested by qRT-PCR methods. The difference of the miR-28-5p expression between colon cancer and normal tissues was compared. The clinical significance of miR-28-5p in colon cancer and the association with the survival were determined. The predictive value of miR-28-5p in clinical features was determined using receiver operating characteristic curve. The target genes of miR-28-5p were identified, and the functional of target genes was performed using bioinformatics analysis. Results : The expression of miR-28-5p was increased in colon cancer tissues compared with normal controls (p = 0.037). The expression of miR-28-5p was significantly increased in tissues with distant metastases compared with that without distant metastases (p = 0.026). Patients with high expression of miR-28-5p have a shorter survival time than those with low expression (p = 0.004). Cox analysis showed that miR-28-5p was an independent predictor for the survival of patients (p = 0.014). Combination of miR-28-5p with TNM stage and clinical stage can improve the prognostic value for the patients (p < 0.05). miR-28-5p has a moderate predictive value in predicting the TNM stage and clinical stage (T stage: AUC = 0.515; N stage: AUC = 0.523, M stage: AUC = 0.572; clinical stage: AUC = 0.539). 711 potential target genes of miR-28-5p were screened; their function and pathways were identified. Conclusions : This study demonstrated that miR-28-5p was increased in colon cancer and can be an independent indicator for the overall survival in patients with colon cancer.
Collapse
|
31
|
Guo Z, Lv X, Jia H. MiR-186 represses progression of renal cell cancer by directly targeting CDK6. Hum Cell 2020; 33:759-767. [PMID: 32266659 DOI: 10.1007/s13577-020-00357-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022]
Abstract
The function of miR-186 in the progression of renal cell carcinoma (RCC) remains poorly investigated. Our study aims to identify the molecular mechanism underlying miR-186-regulated proliferation, migration and invasion of RCC. Firstly, our data confirmed that miR-186 was significantly reduced and CDK6 was obviously increased in RCC tissues and cells. MiR-186 or CDK6 was associated with advanced TNM stage, lymph node metastasis and poor prognosis. MiR-186 significantly inhibited cell proliferation, migration, invasion and in vivo tumor growth, induced apoptosis, and blocked cell cycle progression in G0/G1 phase. MiR-186 also induced Bax expression and inhibited the expressions of Bcl-2, cyclin D1 and epithelial-mesenchymal transition (EMT)-related genes. Additionally, CDK6 expression was downregulated by miR-186 via binding to its 3'-untranslated region (3'-UTR). Moreover, ectopic expression of CDK6 could partially abrogate the inhibitory effect of miR-186. In conclusion, miR-186 suppresses proliferation, migration and invasion of RCC by inhibiting CDK6 expression.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Urology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250033, Shandong, China
| | - Xianbao Lv
- Department of Urology, Chengwu People's Hospital, Heze, 274200, Shandong, China
| | - Haiyan Jia
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Shandong University, No.11, Central Wuying Hill Road, Jinan, 250031, Shandong, China.
| |
Collapse
|
32
|
Hu JC, Zhu TP, Gui YC, Tan ZB, Wei RQ, Hu BL, Xu JW. miR-28-5p inhibits carcinogenesis in colon cancer cells and is necessary for erastin-induced ferroptosis. Transl Cancer Res 2020; 9:2931-2940. [PMID: 35117649 PMCID: PMC8798659 DOI: 10.21037/tcr-20-1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ferroptosis is a newly discovered type of regulated cell death, the underlying mechanisms of which need to be further illuminated. The regulatory activity of miR-28-5p in ferroptosis in colon cancer cells is currently unclear. This study set out to investigate the effect of miR-28-5p on ferroptosis in colon cancer cells and determine its underlying mechanism. METHODS Biochemical Kits were used to measure iron concentration, malondialdehyde (MDA) concentration, glutathione (GSH) concentration and glutathione peroxidase (GPX) vitality. Cell counting kit 8 (CCK8) assays were conducted to evaluate cell viability. Flow cytometry was conducted to assess apoptosis. Transwell™ assays were used to measure the migratory and invasive abilities of HCT116 cells. Western blotting was used to measure the protein relative expression of NEDD4 binding protein 1 (N4BP1). Quantitative real-time polymerase chain reaction (RT-PCR) was used to measure the RNA relative expression of N4BP1 and miR-28-5p. RESULTS Ferroptosis was induced in HCT116 cells by erastin in a dose- and time-dependent manner, which caused significant inhibition of proliferation, migration, and invasion in HCT116 cells; however, there was no obvious effect on apoptosis. miR-28-5p expression was decreased in colon cancer cells compared with the normal colon cells but was upregulated in erastin-treated HTC116 cells. Additionally, when overexpressed via the transfection of miR-28-5p mimics, miR-28-5p had an inhibitive effect on proliferation, migration, and invasion, while promoting apoptosis, in HCT116 cells. erastin-induced ferroptosis was also increased by miR-28-5p overexpression. Compared with normal colon cells, following erastin treatment, NEDD4 binding protein 1 (N4BP1) expression was increased in colon cancer cells and further decreased in HTC116 cells. miR-28-5p overexpression also inhibited N4BP1 mRNA and protein expression in HTC116 cells. CONCLUSIONS miR-28-5p plays an important role in ferroptosis by targeting N4BP1 and could serve as a potential therapeutic approach for colon cancer.
Collapse
Affiliation(s)
- Jin-Cui Hu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ting-Pei Zhu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yu-Chang Gui
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhi-Biao Tan
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ru-Qiong Wei
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jian-Wen Xu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
33
|
Affiliation(s)
- Xianxun Sun
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
- College of Life ScienceJiang Han University Wuhan 430056 China
| | - Zongqiang Cui
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
| |
Collapse
|
34
|
Cui F, Zhou Q, Xiao K, Qian H. MicroRNA‑28 promotes the proliferation of non‑small‑cell lung cancer cells by targeting PTEN. Mol Med Rep 2020; 21:2589-2596. [PMID: 32236614 DOI: 10.3892/mmr.2020.11033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/03/2020] [Indexed: 11/06/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the fundamental form of lung cancer and the leading cause of cancer‑related mortality in humans. Numerous studies have identified a role for microRNAs (miRs) in cell proliferation, invasion and metastasis in numerous types of cancer, including lung cancer. In the present study, the functional roles and molecular mechanisms of miR‑28 in NSCLC tumorigenesis were investigated. Reverse transcription‑quantitative PCR (RT‑qPCR) was used to measure miR‑28 expression levels in NSCLC tumor tissues and cell lines. A dual‑luciferase assay was performed to observe the direct interaction between miR‑28 and PTEN in A549 cells. Furthermore, the effect of miR‑28 on the mRNA and protein expression levels of PTEN was examined by RT‑qPCR and western blotting, respectively. A Cell Counting kit‑8 assay was performed to identify the relationship between the miR‑28/PTEN axis and tumor cell proliferation using cells infected with lentivirus (LV)‑anti‑miR‑28 or LV‑anti‑miR‑28 + short hairpin RNA‑PTEN. miR‑28 expression was upregulated in NSCLC tumor tissues and cell lines compared with the control groups. PTEN was identified as the downstream gene of miR‑28 in NSCLC and was negatively regulated by miR‑28. In addition, miR‑28 knockdown suppressed the proliferation of A549 and H292 cells. Cells infected with LV‑anti‑miR‑28 + short hairpin RNA‑PTEN promoted tumor cell proliferation in A549 and H292 cells compared with cells infected with LV‑anti‑miR‑28. Taken together, the present study suggested that miR‑28 might serve as the promoter in the development of NSCLC by targeting PTEN. Therefore, the miR‑28/PTEN axis may serve as a potential diagnostic and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Fenghe Cui
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qian Zhou
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Kuang Xiao
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Haiyun Qian
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
35
|
Xu JH, Zhao WY, Fang QQ, Wang XF, Zhang DD, Hu YY, Zheng B, Tan WQ. Long Noncoding RNA LUADT1 Is Upregulated in Melanoma and May Sponge miR-28-5p to Upregulate RAP1B. Cancer Biother Radiopharm 2020; 35:307-312. [PMID: 32191497 DOI: 10.1089/cbr.2019.3149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Long noncoding RNA (lncRNA) LUADT1 is a known oncogenic lncRNA in lung cancer. This study aimed to explore the roles of LUADT1 in melanoma. Materials and Methods: Sixty pairs of melanoma and nontumor tissues were obtained from 60 melanoma patients (37 men and 23 women, 38-68 years, 52.1 ± 4.9 years) at the First Affiliated Hospital of Zhejiang University School of Medicine. Gene expression was analyzed by quantitative polymerase chain reaction and western blot. Cell transfections were performed to analyze gene expression. Results: We found that LUADT1 was upregulated in melanoma and high levels of LUADT1 predicted poor survival. RNA interaction prediction showed that LUADT1 can form base pairing with miR-28-5p. In melanoma cells, LUADT1 overexpression mediated the upregulated Ras-related protein Rap-1b (RAP1B). Cell proliferation assay showed that LUADT1 and RAP1B overexpression mediated the increased proliferation rate of melanoma cells. In addition, miR-28-5p overexpression played opposite roles attenuating the effects of LUADT1 overexpression on both RAP1B expression and cancer cell proliferation. Conclusions: LUADT1 in melanoma and may sponge miR-28-5p to upregulate RAP1B, thereby promoting cancer cell proliferation.
Collapse
Affiliation(s)
- Ji-Hua Xu
- Department of Hand Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China
| | - Xiao-Feng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China
| | - Ding-Ding Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China
| | - Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China
| | - Bin Zheng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China
| | - Wei-Qiang Tan
- Department of Hand Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, P.R. China
| |
Collapse
|
36
|
Fazio S, Berti G, Russo F, Evangelista M, D’Aurizio R, Mercatanti A, Pellegrini M, Rizzo M. The miR-28-5p Targetome Discovery Identified SREBF2 as One of the Mediators of the miR-28-5p Tumor Suppressor Activity in Prostate Cancer Cells. Cells 2020; 9:cells9020354. [PMID: 32028704 PMCID: PMC7072282 DOI: 10.3390/cells9020354] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
miR-28-5p is downregulated in some tumor tissues in which it has been demonstrated to have tumor suppressor (TS) activity. Here, we demonstrate that miR-28-5p acts as a TS in prostate cancer (PCa) cells affecting cell proliferation/survival, as well as migration and invasion. Using the miRNA pull out assay and next generation sequencing, we collected the complete repertoire of miR-28-5p targets, obtaining a data set (miR-28-5p targetome) of 191 mRNAs. Filtering the targetome with TargetScan 7, PITA and RNA22, we found that 61% of the transcripts had miR-28-5p binding sites. To assign a functional value to the captured transcripts, we grouped the miR-28-5p targets into gene families with annotated function and showed that six transcripts belong to the transcription factor category. Among them we selected SREBF2, a gene with an important role in PCa. We validated miR-28-5p/SREBF2 interaction, demonstrating that SREBF2 inhibition affects almost all the tumor processes altered by miR-28-5p re-expression, suggesting that SREBF2 is an important mediator of miR-28-5p TS activity. Our findings support the identification of the targetome of cancer-related miRNAs as a tool to discover genes and pathways fundamental for tumor development, and potential new targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Sofia Fazio
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
- Centre Méditerranéen de Médecin Moléculaire INSERM U1065, Université Côte d’Azur, 06204 Nice, France
| | - Gabriele Berti
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Francesco Russo
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Monica Evangelista
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Romina D’Aurizio
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
| | - Alberto Mercatanti
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Marco Pellegrini
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
| | - Milena Rizzo
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
- Tuscan Tumor Institute (ITT), 50139 Firenze, Italy
- Correspondence: ; Tel.: +39-050-315-3107; Fax: +39-050-315-3327
| |
Collapse
|
37
|
Yang X, Xing G, Liu S, Li B, He Y, Wang F. LncRNA LOXL1-AS1 promotes endometrial cancer progression by sponging miR-28-5p to upregulate RAP1B expression. Biomed Pharmacother 2020; 125:109839. [PMID: 32006897 DOI: 10.1016/j.biopha.2020.109839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Increasing lncRNAs are found to be involved in the biological process of multiple cancer types. Herein, we aimed to reveal the role of LOXL1-AS1 in endometrial cancer (EC) progression. METHODS Tumor and corresponding normal tissues were obtained from EC patients. Si-LOXL1-AS1 and miR-28-5p inhibitor were transfected to downregulate the expressions of LOXL1-AS1 and miR-28-5p, while miR-28-5p mimics were used to upregulate the miR-28-5p expression. CCK-8 and colony assays were applied to estimate the cell proliferation. Flow cytometry was performed to measure the cell apoptosis. Wound healing and transwell assays were conducted to assess the cell migration and invasion abilities. Informatics analysis was used to explore the relationship among LOXL1-AS1, miR-28-5p and RAP1B. RESULTS LOXL1-AS1 was found markedly up-regulated in EC tissues and cell lines. LOXL1-AS1 knockdown displayed evident suppression in cell proliferation, migration and invasion, as well as promotion in cell apoptosis. Moreover, the LOXL1-AS1 induced regulatory effects on EC cells were partially reversed by miR-28-5p inhibitor. Mechanistically, LOXL1-AS1 competitively bond to miR-28-5p, resulting in upregulation of RAP1B. Additionally, in vivo study confirmed the findings discovered in vitro. CONCLUSIONS In summary, LOXL1-AS1 exerted oncogenic roles in EC progression by sponging miR-28-5p and thereby upregulating RAP1B. This finding might provide potential targets for EC therapy.
Collapse
Affiliation(s)
- Xiaoliang Yang
- Department of Reproductive Medicine, Luoyang Center Hospital Affiliated to Zhengzhou University, China
| | - Guanlin Xing
- Department of Reproductive Medicine, Luoyang Center Hospital Affiliated to Zhengzhou University, China
| | - Shengxian Liu
- Department of Reproductive Medicine, Luoyang Center Hospital Affiliated to Zhengzhou University, China
| | - Bingyi Li
- Department of Reproductive Medicine, Luoyang Center Hospital Affiliated to Zhengzhou University, China
| | - Yuhui He
- Department of Reproductive Medicine, Luoyang Center Hospital Affiliated to Zhengzhou University, China
| | - Fang Wang
- Department of Reproductive Medicine, Luoyang Center Hospital Affiliated to Zhengzhou University, China.
| |
Collapse
|
38
|
Identification of microRNAs that Regulate the MAPK Pathway in Human Cumulus Cells from PCOS Women with Insulin Resistance. Reprod Sci 2020; 27:833-844. [PMID: 32046427 DOI: 10.1007/s43032-019-00086-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynaecological endocrine disorders, and more than 60% of PCOS patients have varying degrees of insulin resistance (IR). The regulatory role of microRNAs (miRNAs) at post-transcriptional levels in human cumulus cells relating to IR in PCOS remains unclear. In this case-control study, 26 PCOS patients with IR (PCOS-IR) and 24 patients without IR (PCOS-control) were enrolled. We determined the differentially expressed miRNA and mRNA using next-generation sequencing technology, and these miRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (PCR). These miRNA regulating pathways (e.g., MAPK pathway) were analysed by bioinformatics analysis, and the Rap1b was demonstrated to be targeted by miR-612 based on quantitative real-time PCR, western blot and luciferase activity assay. A total of 59 known miRNAs and 617 differentially expressed genes were identified that differentially expressed between PCOS-IR and PCOS-control cumulus cells. Moreover, the potential regulating roles of miRNAs and their targeting genes in pathophysiology of IR and PCOS were analysed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and several key processes were enriched, such as MAPK activity. Furthermore, Rap1b, a regulator of the MAPK pathway, was demonstrated to be suppressed directly by miR-612 in PCOS-IR cumulus cells based on negative expression correlation validation, dual luciferase activity assay and reduction of Rap1b expression after miR-612 mimics transfection. Our results suggested that miRNAs and their targeted pathways in ovarian cumulus cells may play important roles in the aetiology and pathophysiology of PCOS with IR.
Collapse
|
39
|
Marengo B, Pulliero A, Izzotti A, Domenicotti C. miRNA Regulation of Glutathione Homeostasis in Cancer Initiation, Progression and Therapy Resistance. Microrna 2020; 9:187-197. [PMID: 31849293 PMCID: PMC7366003 DOI: 10.2174/2211536609666191218103220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Glutathione (GSH) is the most abundant antioxidant that contributes to regulating the cellular production of Reactive Oxygen Species (ROS) which, maintained at physiological levels, can exert a function of second messengers in living organisms. In fact, it has been demonstrated that moderate amounts of ROS can activate the signaling pathways involved in cell growth and proliferation, while high levels of ROS induce DNA damage leading to cancer development. Therefore, GSH is a crucial player in the maintenance of redox homeostasis and its metabolism has a role in tumor initiation, progression, and therapy resistance. Our recent studies demonstrated that neuroblastoma cells resistant to etoposide, a common chemotherapeutic drug, show a partial monoallelic deletion of the locus coding for miRNA 15a and 16-1 leading to a loss of these miRNAs and the activation of GSH-dependent responses. Therefore, the aim of this review is to highlight the role of specific miRNAs in the modulation of intracellular GSH levels in order to take into consideration the use of modulators of miRNA expression as a useful strategy to better sensitize tumors to current therapies.
Collapse
Affiliation(s)
- Barbara Marengo
- Address correspondence to this author at the Department of Experimental Medicine, University of Genoa, Genoa, Italy; Tel: +39 010 3538831; Fax: +39 010 3538836; E-mail:
| | | | | | | |
Collapse
|
40
|
Characterization of a five-microRNA signature as a prognostic biomarker for esophageal squamous cell carcinoma. Sci Rep 2019; 9:19847. [PMID: 31882677 PMCID: PMC6934627 DOI: 10.1038/s41598-019-56367-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
This study aims to identify a miRNAs signature for predicting overall survival (OS) in esophageal squamous cell carcinoma (ESCC) patients. MiRNA expression profiles and corresponding clinical information of 119 ESCC patients were obtained from NCBI GEO and used as the training set. Differentially expressed miRNAs (DEmiRNAs) were screened between early-stage and late-stage samples. Cox regression analysis, recursive feature elimination (RFE)-support vector machine (SVM) algorithm, and LASSO Cox regression model were used to identify prognostic miRNAs and consequently build a prognostic scoring model. Moreover, promising target genes of these prognostic miRNAs were predicted followed by construction of miRNA-target gene networks. Functional relevance of predicted target genes of these prognostic miRNAs in ESCC was analyzed by performing function enrichment analyses. There were 46 DEmiRNAs between early-stage and late-stage samples in the training set. A risk score model based on five miRNAs was built. The five-miRNA risk score could classify the training set into a high-risk group and a low-risk group with significantly different OS time. Risk stratification ability of the five-miRNA risk score was successfully validated on an independent set from the Cancer Genome Atlas (TCGA). Various biological processes and pathways were identified to be related to these miRNAs, such as Wnt signaling pathway, inflammatory mediator regulation of TRP channels pathway, and estrogen signaling pathway. The present study suggests a pathological stage-related five-miRNA signature that may have clinical implications in predicting prognosis of ESCC patients.
Collapse
|
41
|
Wan J, Guo AA, Chowdhury I, Guo S, Hibbert J, Wang G, Liu M. TRPM7 Induces Mechanistic Target of Rap1b Through the Downregulation of miR-28-5p in Glioma Proliferation and Invasion. Front Oncol 2019; 9:1413. [PMID: 31921670 PMCID: PMC6928690 DOI: 10.3389/fonc.2019.01413] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/28/2019] [Indexed: 01/29/2023] Open
Abstract
Objectives: Our previous findings demonstrate that channel-kinase transient receptor potential (TRP) ion channel subfamily M, member 7 (TRPM7) is critical in regulating human glioma cell migration and invasion. Since microRNAs (miRNAs) participate in complex regulatory networks that may affect almost every cellular and molecular process during glioma formation and progression, we explored the role of miRNAs in human glioma progression by comparing miRNA expression profiles due to differentially expressed TRPM7. Methods: First, we performed miRNA microarray analysis to determine TRPM7's miRNA targets upon TRPM7 silencing in A172 cells and validated the miRNA microarray data using A172, U87MG, U373MG, and SNB19 cell lines by stem-loop RT-qPCRs. We next determined whether TRPM7 regulates glioma cell proliferation and migration/invasion through different functional domains by overexpressing wild-type human TRPM7 (wtTRPM7), two mutants with TRPM7's α-kinase domain deleted (Δkinase-DK), or a point mutation in the ATP binding site of the α-kinase domain (K1648R-KR). In addition, we determined the roles of miR-28-5p in glioma cell proliferation and invasion by overexpressing or under expressing miR-28-5p in vitro. Lastly, we determined whether a Ras-related small GTP-binding protein (Rap1b) is a target of miR-28-5p in glioma tumorigenesis. Results: The miRNA microarray data revealed a list of 16 downregulated and 10 upregulated miRNAs whose transcripts are significantly changed by TRPM7 knock-down. Cell invasion was significantly reduced in two TRPM7 mutants with inactive kinase domain, Δkinase, and K1648R transfected glioma cells. miR-28-5p overexpression suppressed glioma cells' proliferation and invasion, and miR-28-5p under expression led to a significant increase in glioma cell proliferation and migration/invasion compared to that of the controls. miR-28-5p suppressed glioma cell proliferation and migration by targeting Rap1b. Co-transfection of siRap1b with miR28-5p inhibitor reduced the glioma cell proliferation and invasion, caused by the latter. Conclusions: These results indicate that TRPM7's channel activity is required for glioma cell growth while the kinase domain is required for cell migration/invasion. TRPM7 regulates miR-28-5p expression, which suppresses cell proliferation and invasion in glioma cells by targeting Rap1b signaling.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, United States,University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Jacqueline Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Guangdi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu
| |
Collapse
|
42
|
Di Meo A, Batruch I, Brown MD, Yang C, Finelli A, Jewett MA, Diamandis EP, Yousef GM. Searching for prognostic biomarkers for small renal masses in the urinary proteome. Int J Cancer 2019; 146:2315-2325. [PMID: 31465112 DOI: 10.1002/ijc.32650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Renal cell carcinoma (RCC) is frequently diagnosed incidentally as an early-stage small renal mass (SRM; pT1a, ≤4 cm). Overtreatment of patients with benign or clinically indolent SRMs is increasingly common and has resulted in a recent shift in treatment recommendations. There are currently no available biomarkers that can accurately predict clinical behavior. Therefore, we set out to identify early biomarkers of RCC progression. We employed a quantitative label-free liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) proteomics approach and targeted parallel-reaction monitoring to identify and validate early, noninvasive urinary biomarkers for RCC-SRMs. In total, we evaluated 115 urine samples, including 33 renal oncocytoma (≤4 cm) cases, 30 progressive and 26 nonprogressive clear cell RCC (ccRCC)-SRM cases, in addition to 26 healthy controls. We identified six proteins, which displayed significantly elevated expression in clear cell RCC-SRMs (ccRCC-SRMs) relative to healthy controls. Proteins C12ORF49 and EHD4 showed significantly elevated expression in ccRCC-SRMs compared to renal oncocytoma (≤4 cm). Additionally, proteins EPS8L2, CHMP2A, PDCD6IP, CNDP2 and CEACAM1 displayed significantly elevated expression in progressive relative to nonprogressive ccRCC-SRMs. A two-protein signature (EPS8L2 and CCT6A) showed significant discriminatory ability (areas under the curve: 0.81, 95% CI: 0.70-0.93) in distinguishing progressive from nonprogressive ccRCC-SRMs. Patients (Stage I-IV) with EPS8L2 and CCT6A mRNA alterations showed significantly shorter overall survival (p = 1.407 × 10-6 ) compared to patients with no alterations. Our in-depth proteomic analysis identified novel biomarkers for early-stage RCC-SRMs. Pretreatment characterization of urinary proteins may provide insight into early RCC progression and could potentially help assign patients to appropriate management strategies.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ihor Batruch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Marshall D Brown
- Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Chuance Yang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Antonio Finelli
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael A Jewett
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - George M Yousef
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Wang C, Ding M, Zhu YY, Hu J, Zhang C, Lu X, Ge J, Wang JJ, Zhang C. Circulating miR-200a is a novel molecular biomarker for early-stage renal cell carcinoma. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0023-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Zhu G, Wang Z, Mijiti M, Du G, Li Y, Dangmurenjiafu G. MiR-28-5p promotes human glioblastoma cell growth through inactivation of FOXO1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2972-2980. [PMID: 31934134 PMCID: PMC6949703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Glioblastomais is one of the main universal, primary brain cancers, in adults, that has an extremely poor clinical prognosis and a median living period of 12-15 months, accounting for nearly 3-4% of all cancer-related deaths. MicroRNAs (miRNAs) play key roles in cancer pathogenesis by binding the specific and complementary sequences of the 3'UTR of target mRNAs to regulate protein synthesis. Therefore, recognizing functional miRNAs and the fundamental molecular mechanisms will offer novel evidences for the progress of targeted malignancy interferences. Our current study intended to explore the function of miR-28-5p in the promotion of the glioblastoma. METHODS Human glioblastoma tissues, paired nearby normal/non-tumor tissues were accumulated from our hospital. Human glioblastoma SNB19 cells were infected by miR-28-5p mimics or miR-28-5p siRNA by lentivirus. Tumor spheres formation was used to evaluate the growth ability. MTT examine was applied for measuring viability. BrdU cell proliferation assay was applied to uncover the proliferation ability of SNB19 glioblastoma cells. Real-time PCR was conducted to identify miRNA expression. Western blot analysis was employed to measure protein expression. Dual-luciferase FOXO1-3'UTR reporter was used to determine the ability of miR-28-5p to regulate FOXO1. RESULTS Expression of miR-28-5p was explored to be increased in both human glioblastoma tissues and cell lines. Up-regulated miR-28-5p expression promotes tumor spheres formation, cell viability, and proliferation ability of glioblastoma cells. FOXO1 was found to be the target of miR-28-5p and the activity of FOXO1 was down-regulated by miR-28-5p in glioblastoma cells. CONCLUSIONS MiR-28-5p is an oncogene and promotes the occurrence of glioblastoma by directly targeting the FOXO1.
Collapse
Affiliation(s)
- Guohua Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Maimaitili Mijiti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Guojia Du
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Yandong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Geng Dangmurenjiafu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| |
Collapse
|
45
|
Lv Y, Yang H, Ma X, Wu G. Strand-specific miR-28-3p and miR-28-5p have differential effects on nasopharyngeal cancer cells proliferation, apoptosis, migration and invasion. Cancer Cell Int 2019; 19:187. [PMID: 31360121 PMCID: PMC6642532 DOI: 10.1186/s12935-019-0915-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) play crucial roles in varieties of cancers, particularly in tumorigenesis, progression, and migration. Dysregulation of miR-28 was reported to occur in various types of human malignancies. In humans, two different mature miRNA sequences are excised from opposite arms of the stem-loop pre-miR-28, hsa-miR-28-3p and hsamiR-28-5p. However, the expression and distinct role of miR-28-3p and miR-28-5p in nasopharyngeal carcinoma (NPC) remain undetermined. Methods The expressions of miR-28-3p/-5p in human NPC tissues were tested by quantitative real-time PCR. miR-28-3p/-5p were overexpressed by mimics and silenced by inhibitors. The roles of miR-28-3p/-5p in NPC development were studied using cultured HONE-1 cells. Results The mRNA expression levels of miR-28-3p and -5p were significantly decreased in NPC tissues in comparison with adjacent normal tissues. Overexpression of miR-28-5p suppressed NPC cell proliferation and induced cell cycle arrest and apoptosis, while miR-28-3p promoted NPC cell migration and invasion. The miRNAs effected on different signal pathways: miR-28-5p altered expression of cyclin D1 and influenced the PI3K/AKT signaling pathway. In contrast, miR-28-3p downregulated Nm23-H1 and accelerated the process of EMT. Conclusion miR-28-3p and -5p were both downregulated in NPC tissues but had distinct biological effects in NPC cells. They may serve as potential prognostic markers and therapeutic targets for NPC.
Collapse
Affiliation(s)
- Yan Lv
- 1Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Huijun Yang
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Xingkai Ma
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Geping Wu
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| |
Collapse
|
46
|
Meng L, Yang H, Jin C, Quan S. miR‑28‑5p suppresses cell proliferation and weakens the progression of polycystic ovary syndrome by targeting prokineticin‑1. Mol Med Rep 2019; 20:2468-2475. [PMID: 31322191 DOI: 10.3892/mmr.2019.10446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/30/2019] [Indexed: 11/05/2022] Open
Abstract
Prokineticin‑1 (PROK1) serves important roles in the pathogenesis of polycystic ovary syndrome (PCOS); however, the association between microRNA (miR)‑28‑5p and PROK1 remains unclear. In the present study, the roles of miR‑28‑5p and PROK1, and their interaction in PCOS were investigated. Rat ovary granule cells were transfected with miR‑28‑5p mimics, and PROK1 expression levels were measured by reverse transcription‑quantitative PCR and western blotting. A dual‑luciferase reporter assay was performed to determine the association between miR‑28‑5p and PROK1. Additionally, pcDNA‑PROK1 was co‑transfected into rat ovary granule cells with miR‑28‑5p mimics. Cell proliferation, apoptosis, cell cycle and the expression of signaling proteins were investigated using Cell Counting Kit‑8 assays, 5‑ethynyl‑2'‑deoxyuridine staining, flow cytometry and western blotting, respectively. PROK1 expression was suppressed in rat ovary granule cells by miR‑28‑5p mimics, but upregulated following transfection with miR‑28‑5p inhibitors. The dual‑luciferase reporter assay revealed that miR‑28‑5p binds to the 3'‑untranslated region of PROK1. Proliferation activity was increased in PROK1‑overexpressing cells; this effect was eliminated by co‑transfection with miR‑28‑5p mimics. PROK1‑overexpressing rat ovary granule cells exhibited significantly suppressed cell apoptosis and a decreased number of cells in G1; miR‑28‑5p mimics reversed these effects. Western blotting revealed that the PI3K/AKT/mTOR signaling pathway was activated by PROK1. The present results suggested that miR‑28‑5p attenuated the progression of PCOS by targeting PROK1, which may promote the pathogenesis of PCOS via the PI3K/AKT/mTOR pathway, indicating that the miR‑28‑5p/PROK1 axis may be a potential therapeutic target for patients with PCOS.
Collapse
Affiliation(s)
- Lyuhe Meng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Congcong Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Song Quan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
47
|
Wang P, Gu J, Wang K, Shang J, Wang W. miR-206 inhibits thyroid cancer proliferation and invasion by targeting RAP1B. J Cell Biochem 2019; 120:18927-18936. [PMID: 31245877 DOI: 10.1002/jcb.29213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/30/2019] [Indexed: 01/18/2023]
Abstract
Thyroid cancer (TC) is one of the primary tumors arisen from endocrine system. The purpose of this study was to investigate the underlying mechanism by which RAP1B (Ras-related protein Rap-1b) modulates microRNA (miR)-206 related effects on TC cells. Expression of miR-206 and RAP1B was analyzed in cells and tissues. miR-206 mimics or inhibitors and RAP1B vector were used in functional experiments to investigate the effects of miR-206 and RAP1B on cell activities including proliferation, migration, and invasion. Luciferase assay was performed to explore the association between miR-206 and RAP1B. The influence of miR-206 on tumorigenesis of TC cells was investigated using an ex vivo model. Our results demonstrated the reduce of miR-206 in TC tissues and cell lines in which RAP1B was increased. Overexpression of miR-206 significantly inhibited the functional capacities of TPC-1 cells including proliferation, invasion, and migration, most likely, through reducing the expression of RAP1B. Xenograft experiment showed that increased miR-206 could effectively inhibit the tumorigenesis of TC cells. Our study showed that miR-206 negatively regulated cell activities of proliferation, invasion, and migration in TC via suppressing RAP1B expression, suggesting that miR-206 exerts a vital role in TC.
Collapse
Affiliation(s)
- Peng Wang
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang, China
| | - Jialei Gu
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang, China
| | - Kejing Wang
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang, China
| | - Jinbiao Shang
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang, China
| | - Wendong Wang
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang, China
| |
Collapse
|
48
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
49
|
Tsiakanikas P, Kontos CK, Kerimis D, Papadopoulos IN, Scorilas A. High microRNA-28-5p expression in colorectal adenocarcinoma predicts short-term relapse of node-negative patients and poor overall survival of patients with non-metastatic disease. Clin Chem Lab Med 2019; 56:990-1000. [PMID: 29688883 DOI: 10.1515/cclm-2017-0430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/17/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) may function either as oncogenes or tumor suppressors and are heavily involved in the initiation and progression of cancer, and in metastasis of tumor cells. MicroRNA-28-5p (miR-28-5p) targets several cancer-related genes and is hence involved in cell proliferation, migration, invasion and epithelial-mesenchymal transition. In this study, we investigated the potential diagnostic and prognostic significance of miR-28-5p expression in colorectal adenocarcinoma, the most frequent type of colorectal cancer (CRC). METHODS Therefore, we isolated total RNA from 182 colorectal adenocarcinoma specimens and 86 paired non-cancerous colorectal mucosae. After polyadenylation of 2 μg total RNA and its reverse transcription using an oligo-dT-adapter primer, we quantified miR-28-5p levels using an in-house-developed reverse-transcription real-time quantitative polymerase chain reaction (RT-qPCR) method, based on the SYBR Green chemistry. RESULTS Comparison of miR-28-5p levels among 86 pairs of colorectal tumors and their adjacent non-cancerous mucosae uncovered the downregulation of miR-28-5p expression in the majority of malignant colorectal tumors. More importantly, high miR-28-5p expression predicts poor disease-free survival (DFS) and overall survival (OS) of colorectal adenocarcinoma patients. Multivariate Cox regression analysis revealed that miR-28-5p overexpression is a significant predictor of poor prognosis in colorectal adenocarcinoma, independent of tumor size, histological grade, TNM staging, radiotherapy and chemotherapy. Interestingly, strong miR-28-5p expression retains its predictive potential regarding relapse among patients with negative regional lymph nodes, and predicts poor OS in patients diagnosed with non-metastatic colorectal adenocarcinoma. CONCLUSIONS High miR-28-5p expression predicts poor DFS and OS of colorectal adenocarcinoma patients, independently of clinicopathological prognosticators and standard patient treatment, including radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kerimis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece, Phone: +30 2107274306, Fax: +30 2107274158
| |
Collapse
|
50
|
Jeddi F, Alipour S, Najafzadeh N, Dadashpour M, Pouremamali F, Sadeghi MR, Samadi N, Soozangar N, Khamaneh AM. Reduced Levels of miR-28 and miR-200a Act as Predictor Biomarkers of Aggressive Clinicopathological Characteristics in Gastric Cancer Patients. Galen Med J 2019; 8:e1329. [PMID: 34466494 PMCID: PMC8344053 DOI: 10.31661/gmj.v8i0.1329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
Background: MicroRNAs (miRNAs) play critical roles in different pathological processes including cancer development and progression. To find novel molecular diagnostic and prognostic markers and promising therapeutic tools for gastric cancer (GC), we aimed to investigate the relationship of the expression levels of miR–28–5p or miR–200a–3p with the clinicopathological criteria and to explore their impacts on the progression of human GC. Materials and Methods: Quantitative RT–PCR was performed to analyze miR–28 and miR–200a expression in 60 GC and 60 non–GC tissue samples. Result: Our results revealed that the expressions of miR–200a and miR–28 were significantly downregulated in GC in comparison with non– GC tissues. Tumors with low miR–28 expression had larger tumor size, more advanced histological grade, and a higher incidence of lymph node and distal metastasis than the tumors with high miR–28 expressions. Furthermore, receiver operating characteristic (ROC) analyses demonstrate that the expression of miR–28 is a predictive biomarker allows predicting the histological grade, tumor size, and occurrence of nodal and distal metastases. We also found a significant inverse association between miR–200a expression and the rate of lymph node metastasis (p = 0.010, r = –0.334). Conclusion: Our findings suggest that the miR–28 and miR–200a have tumor–suppressor functions and may be considered as potential biomarkers for gastric cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Farhad Jeddi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Soozangar
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Correspondence to: Narges Soozangar, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran Telephone Number: +989166910356 Email Address :
| | - Amir Mahdi Khamaneh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|