1
|
Martins Rodrigues F, Terekhanova NV, Imbach KJ, Clauser KR, Esai Selvan M, Mendizabal I, Geffen Y, Akiyama Y, Maynard M, Yaron TM, Li Y, Cao S, Storrs EP, Gonda OS, Gaite-Reguero A, Govindan A, Kawaler EA, Wyczalkowski MA, Klein RJ, Turhan B, Krug K, Mani DR, Leprevost FDV, Nesvizhskii AI, Carr SA, Fenyö D, Gillette MA, Colaprico A, Iavarone A, Robles AI, Huang KL, Kumar-Sinha C, Aguet F, Lazar AJ, Cantley LC, Marigorta UM, Gümüş ZH, Bailey MH, Getz G, Porta-Pardo E, Ding L. Precision proteogenomics reveals pan-cancer impact of germline variants. Cell 2025; 188:2312-2335.e26. [PMID: 40233739 DOI: 10.1016/j.cell.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/29/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
We investigate the impact of germline variants on cancer patients' proteomes, encompassing 1,064 individuals across 10 cancer types. We introduced an approach, "precision peptidomics," mapping 337,469 coding germline variants onto peptides from patients' mass spectrometry data, revealing their potential impact on post-translational modifications, protein stability, allele-specific expression, and protein structure by leveraging the relevant protein databases. We identified rare pathogenic and common germline variants in cancer genes potentially affecting proteomic features, including variants altering protein abundance and structure and variants in kinases (ERBB2 and MAP2K2) impacting phosphorylation. Precision peptidome analysis predicted destabilizing events in signal-regulatory protein alpha (SIRPA) and glial fibrillary acid protein (GFAP), relevant to immunomodulation and glioblastoma diagnostics, respectively. Genome-wide association studies identified quantitative trait loci for gene expression and protein levels, spanning millions of SNPs and thousands of proteins. Polygenic risk scores correlated with distal effects from risk variants. Our findings emphasize the contribution of germline genetics to cancer heterogeneity and high-throughput precision peptidomics.
Collapse
Affiliation(s)
- Fernanda Martins Rodrigues
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kathleen J Imbach
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain; Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Translational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Yifat Geffen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Yo Akiyama
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tomer M Yaron
- Meyer Cancer Center, Department of Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Erik P Storrs
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Olivia S Gonda
- Department of Biology, Brigham Young University, Salt Lake City, UT, USA
| | - Adrian Gaite-Reguero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Akshay Govindan
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Emily A Kawaler
- Applied Bioinformatics Laboratories, New York University Langone Health, New York City, NY, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Berk Turhan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD, USA
| | - Kuan-Lin Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Urko M Marigorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew H Bailey
- Department of Biology, Brigham Young University, Salt Lake City, UT, USA.
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain; Barcelona Supercomputing Center (BSC), Barcelona, Spain.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Ravichandran S, Funchain P, Arbesman J. Characterizing melanoma in the setting of oculocutaneous albinism: an analysis of the literature. Arch Dermatol Res 2023; 315:2413-2417. [PMID: 35849167 DOI: 10.1007/s00403-022-02364-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Although it is established that individuals with albinism have increased risks for nonmelanoma skin cancers, melanomas occurring in the setting of albinism are rare. PubMed and Google Scholar were searched for individual case reports describing melanoma in individuals with oculocutaneous albinism (OCA). All published cases characterizing individuals with albinism and melanoma in the medical literature were gathered to evaluate any epidemiologic or histologic differences from melanomas arising in the general population. Frequencies of melanoma characteristics between the OCA literature cohort and general population were compared using Clopper-Pearson confidence intervals. From 1952 to 2018, at least 64 cases of melanoma in 56 individuals with albinism were reported in the global medical literature. The median age of diagnosis for melanoma in individuals with albinism was 41 years, and the median Breslow depth at diagnosis was 2.0 mm. The subtypes of melanoma were nodular in 33% and superficial spreading in 46% of these cases, respectively. Amelanotic melanomas comprised 65% of the cases in our OCA cohort; however, histologic subtypes were only available for fourteen of the amelanotic cases. Finally, 17% of melanomas in patients with albinism arose from preexisting lesions. Despite their rarity, melanomas arising in oculocutaneous albinism have distinct characteristics from melanomas arising in the general population. Clinicians should consider a differential diagnosis of melanoma for any potential skin malignancies in individuals with albinism.
Collapse
Affiliation(s)
- S Ravichandran
- Department of Dermatology, Cleveland Clinic Dermatology and Plastic Surgery Institute, 2049 E 100th St., Cleveland, OH, 44195, USA.
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, FL, USA.
| | - P Funchain
- Cleveland Clinic Department of Hematology and Medical Oncology, Cleveland, OH, USA
| | - J Arbesman
- Department of Dermatology, Cleveland Clinic Dermatology and Plastic Surgery Institute, 2049 E 100th St., Cleveland, OH, 44195, USA
| |
Collapse
|
3
|
Maas EJ, Wallingford CK, McGuire JJ, Rutjes C, Smit DJ, Betz-Stablein B, Sturm RA, Soyer HP, McInerney-Leo AM. Amelanotic/hypopigmented melanoma in a sibship with oculocutaneous albinism. J Dermatol 2022; 49:1183-1187. [PMID: 35894802 DOI: 10.1111/1346-8138.16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Oculocutaneous albinism (OCA) is a rare condition characterized by hypopigmentation. A female proband and her sister, both with primary amelanotic/hypopigmented melanoma, underwent three-dimensional total-body photography and dermoscopy. Both sisters had exome sequencing along with their brother, who had OCA but no history of melanoma. Imaging analysis was consistent with OCA in terms of individual typology angle scores, degree of sun damage, and high naevus counts. Exome data filtered for variants in known OCA and melanoma/naevi susceptibility genes (n = 98) found all siblings were compound heterozygous for TYR mutations (Arg402Ter and Val275Phe), previously reported as causative OCA variants. A rare missense variant in PARP1 (p.Pro377Ser) was solely present in the melanoma-unaffected brother, which is noteworthy as this was previously reported as potentially protective in a familial melanoma pedigree positive for CDKN2A mutations. Evaluation and confirmation of functional impact in larger cohorts could personalize melanoma screening in OCA.
Collapse
Affiliation(s)
- Ellie J Maas
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Courtney K Wallingford
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia.,Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jessica J McGuire
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Chantal Rutjes
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Darren J Smit
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Brigid Betz-Stablein
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia.,Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Aideen M McInerney-Leo
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Truderung OAH, Sagi JC, Semsei AF, Szalai C. Melanoma susceptibility: an update on genetic and epigenetic findings. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2021; 12:71-89. [PMID: 34853632 PMCID: PMC8611230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Malignant melanoma is one of the most highly ranked cancers in terms of years of life lost. Hereditary melanoma with its increased familial susceptibility is thought to affect up to 12% of all melanoma patients. In the past, only a few high-penetrance genes associated with familial melanoma, such as CDKN2A and CDK4, have been clinically tested. However, findings now indicate that melanoma is a cancer most likely to develop not only due to high-penetrance variants but also due to polygenic inheritance patterns, leaving no clear division between the hereditary and sporadic development of malignant melanoma. Various pathogenic low-penetrance variants were recently discovered through genome-wide association studies, and are now translated into polygenic risk scores. These can show superior sensitivity rates for the prediction of melanoma susceptibility and related mixed cancer syndromes than risk scores based on phenotypic traits of the patients, with odds ratios of up to 5.7 for patients in risk groups. In addition to describing genetic findings, we also review the first results of epigenetic research showing constitutional methylation changes that alter the susceptibility to cutaneous melanoma and its risk factors.
Collapse
Affiliation(s)
- Ole AH Truderung
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Judit C Sagi
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Agnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
- Heim Pal Children’s HospitalH-1089 Budapest, Hungary
| |
Collapse
|
5
|
Vergani E, Frigerio S, Dugo M, Devecchi A, Feltrin E, De Cecco L, Vallacchi V, Cossa M, Di Guardo L, Manoukian S, Peissel B, Ferrari A, Gallino G, Maurichi A, Rivoltini L, Sensi M, Rodolfo M. Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients. Genes (Basel) 2021; 12:1440. [PMID: 34573422 PMCID: PMC8469310 DOI: 10.3390/genes12091440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
The MITF-E318K variant has been implicated in genetic predisposition to cutaneous melanoma. We addressed the occurrence of MITF-E318K and its association with germline status of CDKN2A and MC1R genes in a hospital-based series of 248 melanoma patients including cohorts of multiple, familial, pediatric, sporadic and melanoma associated with other tumors. Seven MITF-E318K carriers were identified, spanning every group except the pediatric patients. Three carriers showed mutated CDKN2A, five displayed MC1R variants, while the sporadic carrier revealed no variants. Germline/tumor whole exome sequencing for this carrier revealed germline variants of unknown significance in ATM and FANCI genes and, in four BRAF-V600E metastases, somatic loss of the MITF wild-type allele, amplification of MITF-E318K and deletion of a 9p21.3 chromosomal region including CDKN2A and MTAP. In silico analysis of tumors from MITF-E318K melanoma carriers in the TCGA Pan-Cancer-Atlas dataset confirmed the association with BRAF mutation and 9p21.3 deletion revealing a common genetic pattern. MTAP was the gene deleted at homozygous level in the highest number of patients. These results support the utility of both germline and tumor genome analysis to define tumor groups providing enhanced information for clinical strategies and highlight the importance of melanoma prevention programs for MITF-E318K patients.
Collapse
Affiliation(s)
- Elisabetta Vergani
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| | - Simona Frigerio
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy; (M.D.); (A.D.); (L.D.C.); (M.S.)
| | - Andrea Devecchi
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy; (M.D.); (A.D.); (L.D.C.); (M.S.)
| | - Erika Feltrin
- CRIBI Biotechnology Center, Via Bassi 58/B, 35131 Padua, Italy;
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy; (M.D.); (A.D.); (L.D.C.); (M.S.)
| | - Viviana Vallacchi
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| | - Mara Cossa
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Lorenza Di Guardo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Siranoush Manoukian
- Unit of Medical Genetics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (S.M.); (B.P.)
| | - Bernard Peissel
- Unit of Medical Genetics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (S.M.); (B.P.)
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Gianfrancesco Gallino
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (G.G.); (A.M.)
| | - Andrea Maurichi
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (G.G.); (A.M.)
| | - Licia Rivoltini
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| | - Marialuisa Sensi
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy; (M.D.); (A.D.); (L.D.C.); (M.S.)
| | - Monica Rodolfo
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| |
Collapse
|
6
|
De Summa S, Lasorella A, Strippoli S, Giudice G, Guida G, Elia R, Nacchiero E, Azzariti A, Silvestris N, Guida M, Guida S, Tommasi S, Pinto R. The Genetic Germline Background of Single and Multiple Primary Melanomas. Front Mol Biosci 2021; 7:555630. [PMID: 33748184 PMCID: PMC7973206 DOI: 10.3389/fmolb.2020.555630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Melanoma has a complex molecular background and multiple genes are involved in its development and progression. The advent of next generation sequencing platforms has enabled the evaluation of multiple genes at a time, thus unraveling new insights into the genetics of melanoma. We investigated a set of germline mutations able to discriminate the development of multiple primary melanomas (MPM) vs. single site primary melanomas (SPM) using a targeted next generation sequencing panel. Materials and Methods: A total of 39 patients, 20 with SPM and 19 with MPM, were enrolled in our study. Next generation analysis was carried out using a custom targeted sequencing panel that included 32 genes known to have a role in several carcinogenic pathways, such as those involved in DNA repair, pigmentation, regulation of kinases, cell cycle control and senescence. Results: We found a significant correlation between PIK3CA:p.I391M and MPMs, compared to SPMs, p = 0.031 and a trend for the association between CYP1B1: p.N453S and SPMs, compared to MPMs (p = 0.096). We also found that both subgroups shared a spectrum of 9 alterations in 8 genes (CYP1B1: p.N453S, BAP1: p.C39fs, PIK3CA: p.I391M, CDKAL1: c.1226_1227TG, POLE: p.V1161fs, OCA2: p.R419Q, OCA2: p.R305W, MC1R: p.V60L, MGMT: p.L115F), which suggested that these genes may play a role in melanoma development. Conclusions: In conclusion, despite the small cohort of patients, we found that germline mutations, such as those of PIK3CAand CYP1B1, might contribute to the differential development of SPM and MPM.
Collapse
Affiliation(s)
- Simona De Summa
- Pharmacogenetics and Molecular Diagnostic Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Antonia Lasorella
- Pharmacogenetics and Molecular Diagnostic Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sabino Strippoli
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giuseppe Giudice
- Department of Plastic and Reconstructive Surgery, University of Bari, Bari, Italy
| | - Gabriella Guida
- Department of Basic Medical Science and Sense Organs, University of Bari, Bari, Italy
| | - Rossella Elia
- Department of Plastic and Reconstructive Surgery, University of Bari, Bari, Italy
| | - Eleonora Nacchiero
- Department of Plastic and Reconstructive Surgery, University of Bari, Bari, Italy
| | - Amalia Azzariti
- Pharmacology Laboratory IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.,Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| | - Michele Guida
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Stefania Guida
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Tommasi
- Pharmacogenetics and Molecular Diagnostic Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Rosamaria Pinto
- Pharmacogenetics and Molecular Diagnostic Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
7
|
Nathan V, Johansson PA, Palmer JM, Howlie M, Hamilton HR, Wadt K, Jönsson G, Brooks KM, Pritchard AL, Hayward NK. Germline variants in oculocutaneous albinism genes and predisposition to familial cutaneous melanoma. Pigment Cell Melanoma Res 2019; 32:854-863. [PMID: 31233279 DOI: 10.1111/pcmr.12804] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/28/2019] [Accepted: 06/15/2019] [Indexed: 11/30/2022]
Abstract
Approximately 1%-2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next-generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four-case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.
Collapse
Affiliation(s)
- Vaishnavi Nathan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Madeleine Howlie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hayley R Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Highlands and Islands, Inverness, Scotland
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Potjer TP, Bollen S, Grimbergen AJEM, van Doorn R, Gruis NA, van Asperen CJ, Hes FJ, van der Stoep N. Multigene panel sequencing of established and candidate melanoma susceptibility genes in a large cohort of Dutch non-CDKN2A/CDK4 melanoma families. Int J Cancer 2019; 144:2453-2464. [PMID: 30414346 PMCID: PMC6590189 DOI: 10.1002/ijc.31984] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 02/01/2023]
Abstract
Germline mutations in the major melanoma susceptibility gene CDKN2A explain genetic predisposition in only 10–40% of melanoma‐prone families. In our study we comprehensively characterized 488 melanoma cases from 451 non‐CDKN2A/CDK4 families for mutations in 30 established and candidate melanoma susceptibility genes using a custom‐designed targeted gene panel approach. We identified (likely) pathogenic variants in established melanoma susceptibility genes in 18 families (n = 3 BAP1, n = 15 MITF p.E318K; diagnostic yield 4.0%). Among the three identified BAP1‐families, there were no reported diagnoses of uveal melanoma or malignant mesothelioma. We additionally identified two potentially deleterious missense variants in the telomere maintenance genes ACD and TERF2IP, but none in the POT1 gene. MC1R risk variants were strongly enriched in our familial melanoma cohort compared to healthy controls (R variants: OR 3.67, 95% CI 2.88–4.68, p <0.001). Several variants of interest were also identified in candidate melanoma susceptibility genes, in particular rare (pathogenic) variants in the albinism gene OCA2 were repeatedly found. We conclude that multigene panel testing for familial melanoma is appropriate considering the additional 4% diagnostic yield in non‐CDKN2A/CDK4 families. Our study shows that BAP1 and MITF are important genes to be included in such a diagnostic test. What's new? Germline mutations in CDKN2A are major contributors to familial melanoma. These mutations, however, are responsible for only 10 to 40 percent of genetic susceptibility in melanoma‐prone families. In this study, 30 established and candidate melanoma susceptibility genes were investigated for associations with the disease in patients from 451 non‐CDKN2A/CDK4 melanoma families. From the candidate gene panel, (likely) pathogenic variants in BAP1 and MITF were identified in several families, and potentially deleterious variants were identified in the shelterin complex genes ACD and TERF2IP. These genes appear to play a significant role in familial melanoma predisposition and are therefore promising candidates for incorporation into comprehensive genetic tests.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Sander Bollen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | |
Collapse
|