1
|
Luo Y, Ma W, Kang Q, Pan H, Shi L, Ma J, Song J, Gong D, Kang K, Jin X. Atrial APD prolongation caused by the upregulation of RAGE and subsequent I NaL increase in diabetic patients. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40109091 DOI: 10.3724/abbs.2025018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Diabetes mellitus (DM) is a risk factor for the development of atrial fibrillation (AF). The action potential duration (APD) has been demonstrated to be prolonged in the atrium of diabetic mice. In contrast, the APD is generally shortened in AF patients. It is unclear what change occurs in the atrial APD of diabetic patients. In this study, we explore the APD change of atrial myocytes from diabetic patients and the underlying molecular mechanisms. The whole-cell patch-clamp technique is used to detect single-cell electrical activity in diabetic and nondiabetic human samples. The results show that both APD 50 and APD 90, the APD at 50% and 90% repolarization, are increased in diabetic patients compared with those in nondiabetic controls. The density of late sodium current ( I NaL) in the atrial myocytes of diabetic patients is greater than that in the myocytes of nondiabetic patients. The expression of receptor for advanced glycation end products (RAGE) is increased in the atria of diabetic patients. In cultured HL-1 cells, high glucose (HG) treatment increases I NaL, and the expression of RAGE prolongs APD. The siRNA-mediated knockdown of RAGE reduces the I NaL and shortens the APD. The APD is prolonged in the atria of diabetic patients because of the upregulation of RAGE and the subsequent increase in I NaL. Our findings provide novel insights into atrial electrical remodeling in diabetic patients.
Collapse
Affiliation(s)
- Yingchun Luo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wenbo Ma
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qi Kang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Han Pan
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ling Shi
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiudong Ma
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiahui Song
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Dongmei Gong
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuexin Jin
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
2
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Zhang Z, Zhang X, Meng L, Gong M, Li J, Shi W, Qiu J, Yang Y, Zhao J, Suo Y, Liang X, Wang X, Tse G, Jiang N, Li G, Zhao Y, Liu T. Pioglitazone Inhibits Diabetes-Induced Atrial Mitochondrial Oxidative Stress and Improves Mitochondrial Biogenesis, Dynamics, and Function Through the PPAR-γ/PGC-1α Signaling Pathway. Front Pharmacol 2021; 12:658362. [PMID: 34194324 PMCID: PMC8237088 DOI: 10.3389/fphar.2021.658362] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/06/2022] Open
Abstract
Background: Oxidative stress contributes to adverse atrial remodeling in diabetes mellitus. This remodeling can be prevented by the PPAR-γ agonist pioglitazone via its antioxidant and anti-inflammatory effects. In this study, we examined the molecular mechanisms underlying the protective effects of pioglitazone on atrial remodeling in a rabbit model of diabetes. Methods: Rabbits were randomly divided into control, diabetic, and pioglitazone-treated diabetic groups. Echocardiographic, hemodynamic, and electrophysiological parameters were measured. Serum PPAR-γ levels, serum and tissue oxidative stress and inflammatory markers, mitochondrial morphology, reactive oxygen species (ROS) production rate, respiratory function, and mitochondrial membrane potential (MMP) levels were measured. Protein expression of the pro-fibrotic marker TGF-β1, the PPAR-γ coactivator-1α (PGC-1α), and the mitochondrial proteins (biogenesis-, fusion-, and fission-related proteins) was measured. HL-1 cells were transfected with PGC-1α small interfering RNA (siRNA) to determine the underlying mechanisms of pioglitazone improvement of mitochondrial function under oxidative stress. Results: The diabetic group demonstrated a larger left atrial diameter and fibrosis area than the controls, which were associated with a higher incidence of inducible atrial fibrillation (AF). The lower serum PPAR-γ level was associated with lower PGC-1α and higher NF-κB and TGF-β1 expression. Lower mitochondrial biogenesis (PGC-1α, NRF1, and TFAM)-, fusion (Opa1 and Mfn1)-, and fission (Drp1)-related proteins were detected. Mitochondrial swelling, higher mitochondrial ROS, lower respiratory control rate, and lower MMP were observed. The pioglitazone group showed a reversal of structural remodeling and a lower incidence of inducible AF, which were associated with higher PPAR-γ and PGC-1α. The pioglitazone group had lower NF-κB and TGF-β1 expression levels, whereas biogenesis-, fusion-, and fission-related protein expression was higher. Further, mitochondrial structure and function were improved. In HL-1 cells, PGC-1α siRNA transfection blunted the effect of pioglitazone on Mn-SOD protein expression and MMP collapse in H2O2-treated cells. Conclusion: Diabetes mellitus induces adverse atrial structural, electrophysiological remodeling, and mitochondrial damage and dysfunction. Pioglitazone prevented these abnormalities through the PPAR-γ/PGC-1α pathway.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lei Meng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wen Shi
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiao Tong University, Shanxi, China
| | - Jiuchun Qiu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianping Zhao
- Department of Cardiology, Tianjin Hospital, Tianjin, China
| | - Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Wang H, Xu Y, Xu A, Wang X, Cheng L, Lee S, Tse G, Li G, Liu T, Fu H. PKCβ/NF-κB pathway in diabetic atrial remodeling. J Physiol Biochem 2020; 76:637-653. [PMID: 33085045 DOI: 10.1007/s13105-020-00769-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the hyperglycemia-induced increased expression of NF-κB/TGF-β was dependent upon protein kinase C-β (PKCβ) and tested the hypothesis that selective inhibition of PKCβ using ruboxistaurin (RBX) can reduce NF-κB/TGF-β expression and inhibit abnormal atrial remodeling in streptozotocin (STZ)-induced diabetic rats. The effects of PKCβ inhibition on NF-κB/TGF-β signal transduction pathway-mediated atrial remodeling were investigated in STZ-induced diabetic rats. Mouse atrial cardiomyocytes (HL-1 cells) were cultured in low- or high-glucose or mannitol conditions in the presence or absence of small interference RNA that targeted PKCβ. PKCβ inhibition using ruboxistaurin (RBX, 1 mg/kg/day) decreased the expression of NF-κBp65, p-IκB, P38MARK, TNF-α, TGF-β, Cav1.2, and NCX proteins and inducibility of atrial fibrillation (AF) in STZ-induced diabetic rats. Exposure of cardiomyocytes to high-glucose condition activated PKCβ and increased NF-κB/TGF-β expression. Suppression of PKCβ expression by small interference RNA decreased high-glucose-induced NF-κB and extracellular signal-related kinase activation in HL-1 cells. Pharmacological inhibition of PKCβ is an effective method to reduce AF incidence in diabetic rat models by preventing NF-κB/TGF-β-mediated atrial remodeling.
Collapse
Affiliation(s)
- Haili Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
- Beijing Capital International Airport Hospital, Beijing, People's Republic of China
| | - Yuanyuan Xu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Aiqing Xu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Xinghua Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Lijun Cheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Sharen Lee
- Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| | - Huaying Fu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
5
|
Șerban RC, Șuș I, Lakatos EK, Demjen Z, Ceamburu A, Fișcă PC, Somkereki C, Hadadi L, Scridon A. Chronic kidney disease predicts atrial fibrillation in patients with ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention. Acta Cardiol 2019; 74:472-479. [PMID: 30650039 DOI: 10.1080/00015385.2018.1521558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Atrial fibrillation (AF) often complicates ST-segment elevation myocardial infarction (STEMI). Predictors of AF in this setting include factors related to the acute phase of STEMI and pre-existing conditions. More recently, novel AF predictors have been identified in the general population. We aimed to assess the ability of such novel factors to predict STEMI-related AF.Methods: Data were collected from STEMI patients treated by primary PCI. Factors related to the acute phase of STEMI (Killip class, heart rate, blood pressure on admission, post-PCI TIMI flow), classic (age, hypertension, heart failure, previous myocardial infarction), and more novel (body mass index [BMI], diabetes, chronic kidney disease [CKD], chronic obstructive pulmonary disease [COPD]) AF predictors were evaluated. The ability of these novel factors to predict STEMI-related AF was assessed.Results: Of the 629 studied patients, 10.5% presented STEMI-related AF. AF patients had higher Killip class on admission (p < .0001) and lower post-PCI TIMI flow (p < .01), they were older (p < .0001) and more likely to have a history of heart failure (p = .02) and myocardial infarction (p = .04). BMI, history of diabetes and COPD were similar between patients with and without AF (all p > .05), but CKD was more common in AF patients (p < .0001). In multiple regression analysis, CKD remained a strong independent predictor of STEMI-related AF (p < .0001).Conclusion: Irrespective of other factors, CKD was associated with increased risk of STEMI-related AF. CKD could be used to identify patients who will develop AF in this setting and who would benefit from closer follow-up and more intensive prophylactic strategies.
Collapse
Affiliation(s)
- Răzvan Constantin Șerban
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Ioana Șuș
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Eva Katalin Lakatos
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Zoltan Demjen
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Alexandru Ceamburu
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Paul Ciprian Fișcă
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Cristina Somkereki
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Laszlo Hadadi
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Alina Scridon
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, Tîrgu Mureș, Romania
| |
Collapse
|
6
|
Mechanism of electrical remodeling of atrial myocytes and its influence on susceptibility to atrial fibrillation in diabetic rats. Life Sci 2019; 239:116903. [PMID: 31639397 DOI: 10.1016/j.lfs.2019.116903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
AIMS To explore the atrial electrical remodeling and the susceptibility of atrial fibrillation (AF) in diabetic rats. MATERIALS AND METHODS Zucker diabetic fatty (ZDF) rats were chosen as diabetic animal model, and age-matched non-diabetic littermate Zucker lean (ZL) rats as control. AF susceptibility was determined by electrophysiological examination. The current density of Ito, IKur and ICa-L were detected by whole-cell patch-clamp technique, and ion channel protein expression in atrial tissue and HL-1 cells treated with advanced glycation end products (AGE) was analyzed by western blotting. KEY FINDINGS Diabetic rats had significantly enlarged left atria and evenly thickened ventricular walls, hypertrophied cells and interstitial fibrosis in atrial myocardium, increased AF susceptibility, and prolonged AF duration after atrial burst stimulation. Compared with atrial myocytes isolated from ZL controls, atrial myocytes isolated from ZDF rats had prolonged action potential duration, decreased absolute value of resting membrane potential level and current densities of Ito, IKur and ICa-L. The ion channel protein (Kv4.3, Kv1.5 and Cav1.2) expression in atrium tissue of ZDF rats and HL-1 cells treated with high concentration AGE were significantly down-regulated, compared with controls. SIGNIFICANCE The atrial electrical remodeling induced by hyperglycemia contributed to the increased AF susceptibility in diabetic rats.
Collapse
|
7
|
Numerical simulation of haemodynamics of the descending aorta in the non-diabetic and diabetic rabbits. J Biomech 2019; 91:140-150. [DOI: 10.1016/j.jbiomech.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
|
8
|
Bohne LJ, Johnson D, Rose RA, Wilton SB, Gillis AM. The Association Between Diabetes Mellitus and Atrial Fibrillation: Clinical and Mechanistic Insights. Front Physiol 2019; 10:135. [PMID: 30863315 PMCID: PMC6399657 DOI: 10.3389/fphys.2019.00135] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/04/2019] [Indexed: 01/16/2023] Open
Abstract
A number of clinical studies have reported that diabetes mellitus (DM) is an independent risk factor for Atrial fibrillation (AF). After adjustment for other known risk factors including age, sex, and cardiovascular risk factors, DM remains a significant if modest risk factor for development of AF. The mechanisms underlying the increased susceptibility to AF in DM are incompletely understood, but are thought to involve electrical, structural, and autonomic remodeling in the atria. Electrical remodeling in DM may involve alterations in gap junction function that affect atrial conduction velocity due to changes in expression or localization of connexins. Electrical remodeling can also occur due to changes in atrial action potential morphology in association with changes in ionic currents, such as sodium or potassium currents, that can affect conduction velocity or susceptibility to triggered activity. Structural remodeling in DM results in atrial fibrosis, which can alter conduction patterns and susceptibility to re-entry in the atria. In addition, increases in atrial adipose tissue, especially in Type II DM, can lead to disruptions in atrial conduction velocity or conduction patterns that may affect arrhythmogenesis. Whether the insulin resistance in type II DM activates unique intracellular signaling pathways independent of obesity requires further investigation. In addition, the relationship between incident AF and glycemic control requires further study.
Collapse
Affiliation(s)
- Loryn J Bohne
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Dustin Johnson
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Robert A Rose
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Stephen B Wilton
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Anne M Gillis
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| |
Collapse
|
9
|
Meng L, Wong R, Tsui MY, Tse G, Li G, Liu T, Lip GYH. Urinary Biomarkers of Oxidative Stress in Atrial Fibrillation. THE OPEN BIOMARKERS JOURNAL 2018; 8:24-33. [DOI: 10.2174/1875318301808010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/08/2018] [Accepted: 11/12/2018] [Indexed: 10/11/2023]
Abstract
There is increasing evidence from molecular studies to support the role of inflammation and increased oxidative stress that produce structural and electrical atrial remodeling to produce Atrial Fbrillation (AF). Oxidative damage to cardiomyocytes yields chemical substances that are secreted in urine. These substances can serve as biomarkers that can be measured, potentially allowing clinicians to quantify oxidative damage to the heart.
Collapse
|
10
|
Korantzopoulos P, Letsas K, Fragakis N, Tse G, Liu T. Oxidative stress and atrial fibrillation: an update. Free Radic Res 2018; 52:1199-1209. [PMID: 30003814 DOI: 10.1080/10715762.2018.1500696] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Atrial remodelling involves electrophysiological and structural abnormalities that promote the development and perpetuation of atrial fibrillation. Experimental and clinical data indicate that oxidative stress is implicated in the pathophysiology of atrial remodelling. The mechanistic links between atrial remodelling and oxidative stress are complex with several underlying diseases and conditions may affect these pathways. Therefore, the development of antioxidant interventions in this setting remains difficult. Besides classical antioxidant compounds, several agents with pleiotropic effects, including anti-inflammatory and antioxidant, have been tested in experimental and clinical settings with variable results. Strategies applying conventional antioxidants in specific situations such as postoperative atrial fibrillation show beneficial effects, especially the two-step regimen of antioxidants combination. Of note, there are limited data on the development of strategies that target specific sources of reactive oxygen species implicated in atrial remodelling. Lifestyle, diet, and risk factors modification is a complementary promising approach. This updated review provides a concise and critical overview of all available data regarding oxidative stress and its modulation in atrial fibrillation. Future directions on this exciting field are also discussed.
Collapse
Affiliation(s)
| | - Konstantinos Letsas
- b Second Department of Cardiology, Laboratory of Cardiac Electrophysiology , "Evangelismos" General Hospital of Athens , Athens , Greece
| | - Nikolaos Fragakis
- c Third Department of Cardiology , Hippokration Hospital, Medical School, Aristotle University of Thessaloniki , Thessaloniki , Athens , Greece
| | - Gary Tse
- d Department of Medicine and Therapeutics , Chinese University of Hong Kong , Hong Kong , P. R. China
- e Li Ka Shing Institute of Health Sciences, Faculty of Medicine , Chinese University of Hong Kong , Hong Kong , China
| | - Tong Liu
- f Department of Cardiology , Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University , Tianjin , P. R. China
| |
Collapse
|
11
|
Fu X, Liu T, Xiong Z, Smaill BH, Stiles MK, Zhao J. Segmentation of histological images and fibrosis identification with a convolutional neural network. Comput Biol Med 2018; 98:147-158. [PMID: 29793096 DOI: 10.1016/j.compbiomed.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Abstract
Segmentation of histological images is one of the most crucial tasks for many biomedical analyses involving quantification of certain tissue types, such as fibrosis via Masson's trichrome staining. However, challenges are posed by the high variability and complexity of structural features in such images, in addition to imaging artifacts. Further, the conventional approach of manual thresholding is labor-intensive, and highly sensitive to inter- and intra-image intensity variations. An accurate and robust automated segmentation method is of high interest. We propose and evaluate an elegant convolutional neural network (CNN) designed for segmentation of histological images, particularly those with Masson's trichrome stain. The network comprises 11 successive convolutional - rectified linear unit - batch normalization layers. It outperformed state-of-the-art CNNs on a dataset of cardiac histological images (labeling fibrosis, myocytes, and background) with a Dice similarity coefficient of 0.947. With 100 times fewer (only 300,000) trainable parameters than the state-of-the-art, our CNN is less susceptible to overfitting, and is efficient. Additionally, it retains image resolution from input to output, captures fine-grained details, and can be trained end-to-end smoothly. To the best of our knowledge, this is the first deep CNN tailored to the problem of concern, and may potentially be extended to solve similar segmentation tasks to facilitate investigations into pathology and clinical treatment.
Collapse
Affiliation(s)
- Xiaohang Fu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand.
| | - Tong Liu
- Department of Cardiology, Second Hospital of Tianjin Medical University, and Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Tianjin, 300201, PR China
| | - Zhaohan Xiong
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand
| | - Bruce H Smaill
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand
| | | | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
12
|
Lee YT, Laxton V, Lin HY, Chan YWF, Fitzgerald-Smith S, To TLO, Yan BP, Liu T, Tse G. Animal models of atherosclerosis. Biomed Rep 2017; 6:259-266. [PMID: 28451383 PMCID: PMC5403338 DOI: 10.3892/br.2017.843] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a significant cause of morbidity and mortality globally. Many animal models have been developed to study atherosclerosis, and permit experimental conditions, diet and environmental risk factors to be carefully controlled. Pathophysiological changes can be produced using genetic or pharmacological means to study the harmful consequences of different interventions. Experiments using such models have elucidated its molecular and pathophysiological mechanisms, and provided platforms for pharmacological development. Different models have their own advantages and disadvantages, and can be used to answer different research questions. In the present review article, different species of atherosclerosis models are outlined, with discussions on the practicality of their use for experimentation.
Collapse
Affiliation(s)
- Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Victoria Laxton
- Intensive Care Department, Royal Brompton and Harefield NHS Trust, London SW3 6NP, UK
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yin Wah Fiona Chan
- School of Biological Sciences, University of Cambridge, Cambridge CB2 1AG, UK
| | | | - Tsz Ling Olivia To
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
13
|
Lee YT, Lin HY, Chan YWF, Li KHC, To OTL, Yan BP, Liu T, Li G, Wong WT, Keung W, Tse G. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis 2017; 16:12. [PMID: 28095860 PMCID: PMC5240327 DOI: 10.1186/s12944-016-0402-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/27/2016] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis represents a significant cause of morbidity and mortality in both the developed and developing countries. Animal models of atherosclerosis have served as valuable tools for providing insights on its aetiology, pathophysiology and complications. They can be used for invasive interrogation of physiological function and provide a platform for testing the efficacy and safety of different pharmacological therapies. Compared to studies using human subjects, animal models have the advantages of being easier to manage, with controllable diet and environmental risk factors. Moreover, pathophysiological changes can be induced either genetically or pharmacologically to study the harmful effects of these interventions. There is no single ideal animal model, as different systems are suitable for different research objectives. A good understanding of the similarities and differences to humans enables effective extrapolation of data for translational application. In this article, we will examine the different mouse models for the study and elucidation of the pathophysiological mechanisms underlying atherosclerosis. We also review recent advances in the field, such as the role of oxidative stress in promoting endoplasmic reticulum stress, mitochondrial dysfunction and mitochondrial DNA damage, which can result in vascular inflammation and atherosclerosis. Finally, novel therapeutic approaches to reduce vascular damage caused by chronic inflammation using microRNA and nano-medicine technology, are discussed.
Collapse
Affiliation(s)
- Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | | | | | - Olivia Tsz Ling To
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211 People’s Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211 People’s Republic of China
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR People’s Republic of China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| |
Collapse
|