1
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
2
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
3
|
Daley JD, Mukherjee E, Tufino AC, Bailey N, Bhaskar S, Periyapatna N, MacFawn I, Kunning S, Hinck C, Bruno T, Olson AC, McAllister-Lucas LM, Hinck AP, Cooper K, Bao R, Cillo AR, Bailey KM. Immunocompetent murine model of Ewing sarcoma reveals role for TGFβ inhibition to enhance immune infiltrates in Ewing tumors during radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592974. [PMID: 38766091 PMCID: PMC11100684 DOI: 10.1101/2024.05.07.592974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ewing sarcoma (ES) is an aggressive cancer diagnosed in adolescents and young adults. The fusion oncoprotein (EWSR1::FLI1) that drives Ewing sarcoma is known to downregulate TGFBR2 expression (part of the TGFβ receptor). Because TGFBR2 is downregulated, it was thought that TGFβ likely plays an inconsequential role in Ewing biology. However, the expression of TGFβ in the Ewing tumor immune microenvironment (TIME) and functional impact of TGFβ in the TIME remains largely unknown given the historical lack of immunocompetent preclinical models. Here, we use single-cell RNAseq analysis of human Ewing tumors to show that immune cells, such as NK cells, are the largest source of TGFβ production in human Ewing tumors. We develop a humanized (immunocompetent) mouse model of ES and demonstrate distinct TME signatures and metastatic potential in these models as compared to tumors developed in immunodeficient mice. Using this humanized model, we study the effect of TGFβ inhibition on the Ewing TME during radiation therapy, a treatment that both enhances TGFβ activation and is used to treat aggressive ES. Utilizing a trivalent ligand TGFβ TRAP to inhibit TGFβ, we demonstrate that in combination with radiation, TGFβ inhibition both increases ES immune cell infiltration and decreases lung metastatic burden in vivo . The culmination of these data demonstrates the value of humanized models to address immunobiologic preclinical questions in Ewing sarcoma and suggests TGFβ inhibition as a promising intervention during radiation therapy to promote metastatic tumor control.
Collapse
|
4
|
Hosseini R, Hosseinzadeh N, Asef-Kabiri L, Akbari A, Ghezelbash B, Sarvnaz H, Akbari ME. Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Ther 2023; 30:1309-1322. [PMID: 37344681 DOI: 10.1038/s41417-023-00638-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Transforming growth factor-β (TGF-β) is a well-known cytokine that controls various processes in normal physiology and disease context. Strong preclinical and clinical literature supports the crucial roles of the TGF-β in several aspects of cancer biology. Recently emerging evidence reveals that the release of TGF-β from tumor/immune/stromal cells in small extracellular vesicles (sEVs) plays an important part in tumor development and immune evasion. Hence, this review aims to address the packaging, release, and signaling pathways of TGF-β carried in sEVs (sEV-TGF-β) in cancer, and to explore its underpinning roles in tumor development, growth, progression, metastasis, etc. We also highlight key progresses in deciphering the roles of sEV-TGF-β in subverting anti-tumor immune responses. The paper ends with a focus on the clinical significance of TGF-β carried in sEVs and draws attention to its diagnostic, therapeutic, and prognostic importance.
Collapse
Affiliation(s)
- Reza Hosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nashmin Hosseinzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Nepali PR, Kyprianou N. Anoikis in phenotypic reprogramming of the prostate tumor microenvironment. Front Endocrinol (Lausanne) 2023; 14:1160267. [PMID: 37091854 PMCID: PMC10113530 DOI: 10.3389/fendo.2023.1160267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Prostate cancer is one of the most common malignancies in males wherein 1 in 8 men are diagnosed with this disease in their lifetime. The urgency to find novel therapeutic interventions is associated with high treatment resistance and mortality rates associated with castration-resistant prostate cancer. Anoikis is an apoptotic phenomenon for normal epithelial or endothelial cells that have lost their attachment to the extracellular matrix (ECM). Tumor cells that lose their connection to the ECM can die via apoptosis or survive via anoikis resistance and thus escaping to distant organs for metastatic progression. This review discusses the recent advances made in our understanding of the signaling effectors of anoikis in prostate cancer and the approaches to translate these mechanistic insights into therapeutic benefits for reducing lethal disease outcomes (by overcoming anoikis resistance). The prostate tumor microenvironment is a highly dynamic landscape wherein the balance between androgen signaling, cell lineage changes, epithelial-mesenchymal transition (EMT), extracellular matrix interactions, actin cytoskeleton remodeling as well as metabolic changes, confer anoikis resistance and metastatic spread. Thus, these mechanisms also offer unique molecular treatment signatures, exploitation of which can prime prostate tumors to anoikis induction with a high translational significance.
Collapse
Affiliation(s)
- Prerna R. Nepali
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
7
|
Carss KJ, Deaton AM, Del Rio-Espinola A, Diogo D, Fielden M, Kulkarni DA, Moggs J, Newham P, Nelson MR, Sistare FD, Ward LD, Yuan J. Using human genetics to improve safety assessment of therapeutics. Nat Rev Drug Discov 2023; 22:145-162. [PMID: 36261593 DOI: 10.1038/s41573-022-00561-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human genetics research has discovered thousands of proteins associated with complex and rare diseases. Genome-wide association studies (GWAS) and studies of Mendelian disease have resulted in an increased understanding of the role of gene function and regulation in human conditions. Although the application of human genetics has been explored primarily as a method to identify potential drug targets and support their relevance to disease in humans, there is increasing interest in using genetic data to identify potential safety liabilities of modulating a given target. Human genetic variants can be used as a model to anticipate the effect of lifelong modulation of therapeutic targets and identify the potential risk for on-target adverse events. This approach is particularly useful for non-clinical safety evaluation of novel therapeutics that lack pharmacologically relevant animal models and can contribute to the intrinsic safety profile of a drug target. This Review illustrates applications of human genetics to safety studies during drug discovery and development, including assessing the potential for on- and off-target associated adverse events, carcinogenicity risk assessment, and guiding translational safety study designs and monitoring strategies. A summary of available human genetic resources and recommended best practices is provided. The challenges and future perspectives of translating human genetic information to identify risks for potential drug effects in preclinical and clinical development are discussed.
Collapse
Affiliation(s)
| | - Aimee M Deaton
- Amgen, Cambridge, MA, USA.,Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Alberto Del Rio-Espinola
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,GentiBio Inc., Cambridge, MA, USA
| | | | - Mark Fielden
- Amgen, Thousand Oaks, MA, USA.,Kate Therapeutics, San Diego, CA, USA
| | | | - Jonathan Moggs
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Frank D Sistare
- Merck & Co., West Point, PA, USA.,315 Meadowmont Ln, Chapel Hill, NC, USA
| | - Lucas D Ward
- Amgen, Cambridge, MA, USA. .,Alnylam Pharmaceuticals, Cambridge, MA, USA.
| | - Jing Yuan
- Amgen, Cambridge, MA, USA.,Pfizer, Cambridge, MA, USA
| |
Collapse
|
8
|
Ludwig N, Yerneni SS, Azambuja JH, Pietrowska M, Widłak P, Hinck CS, Głuszko A, Szczepański MJ, Kärmer T, Kallinger I, Schulz D, Bauer RJ, Spanier G, Spoerl S, Meier JK, Ettl T, Razzo BM, Reichert TE, Hinck AP, Whiteside TL. TGFβ + small extracellular vesicles from head and neck squamous cell carcinoma cells reprogram macrophages towards a pro-angiogenic phenotype. J Extracell Vesicles 2022; 11:e12294. [PMID: 36537293 PMCID: PMC9764108 DOI: 10.1002/jev2.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a major component of tumor-derived small extracellular vesicles (TEX) in cancer patients. Mechanisms utilized by TGFβ+ TEX to promote tumor growth and pro-tumor activities in the tumor microenvironment (TME) are largely unknown. TEX produced by head and neck squamous cell carcinoma (HNSCC) cell lines carried TGFβ and angiogenesis-promoting proteins. TGFβ+ TEX stimulated macrophage chemotaxis without a notable M1/M2 phenotype shift and reprogrammed primary human macrophages to a pro-angiogenic phenotype characterized by the upregulation of pro-angiogenic factors and functions. In a murine basement membrane extract plug model, TGFβ+ TEX promoted macrophage infiltration and vascularization (p < 0.001), which was blocked by using the TGFβ ligand trap mRER (p < 0.001). TGFβ+ TEX injected into mice undergoing the 4-nitroquinoline-1-oxide (4-NQO)-driven oral carcinogenesis promoted tumor angiogenesis (p < 0.05), infiltration of M2-like macrophages in the TME (p < 0.05) and ultimately tumor progression (p < 0.05). Inhibition of TGFβ signaling in TEX with mRER ameliorated these pro-tumor activities. Silencing of TGFβ emerges as a critical step in suppressing pro-angiogenic functions of TEX in HNSCC.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | | | - Juliana H. Azambuja
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Postgraduate Program in BiosciencesFederal University of Health Sciences of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Monika Pietrowska
- Maria Sklodowska‐Curie National Research Institute of OncologyGliwice BranchGliwicePoland
| | | | - Cynthia S. Hinck
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Alicja Głuszko
- Chair and Department of BiochemistryMedical University of WarsawWarsawPoland
| | - Mirosław J. Szczepański
- Chair and Department of BiochemistryMedical University of WarsawWarsawPoland
- Department of OtolaryngologyCentre of Postgraduate Medical EducationWarsawPoland
| | - Teresa Kärmer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Isabella Kallinger
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Steffen Spoerl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Johannes K. Meier
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | | | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Andrew P. Hinck
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Theresa L. Whiteside
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Departments of Immunology and OtolaryngologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Roles of TGF- β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24:e42. [PMID: 36345661 DOI: 10.1017/erm.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
10
|
Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator? Int J Biol Macromol 2022; 206:435-452. [PMID: 35202639 DOI: 10.1016/j.ijbiomac.2022.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a member of a family of secreted cytokines with vital biological functions in cells. The abnormal expression of TGF-β signaling is a common finding in pathological conditions, particularly cancer. Prostate cancer (PCa) is one of the leading causes of death among men. Several genetic and epigenetic alterations can result in PCa development, and govern its progression. The present review attempts to shed some light on the role of TGF-β signaling in PCa. TGF-β signaling can either stimulate or inhibit proliferation and viability of PCa cells, depending on the context. The metastasis of PCa cells is increased by TGF-β signaling via induction of EMT and MMPs. Furthermore, TGF-β signaling can induce drug resistance of PCa cells, and can lead to immune evasion via reducing the anti-tumor activity of cytotoxic T cells and stimulating regulatory T cells. Upstream mediators such as microRNAs and lncRNAs, can regulate TGF-β signaling in PCa. Furthermore, some pharmacological compounds such as thymoquinone and valproic acid can suppress TGF-β signaling for PCa therapy. TGF-β over-expression is associated with poor prognosis in PCa patients. Furthermore, TGF-β up-regulation before prostatectomy is associated with recurrence of PCa. Overall, current review discusses role of TGF-β signaling in proliferation, metastasis and therapy response of PCa cells and in order to improve knowledge towards its regulation, upstream mediators of TGF-β such as non-coding RNAs are described. Finally, TGF-β regulation and its clinical application are discussed.
Collapse
|
11
|
Scuderi SA, Casili G, Filippone A, Lanza M, Basilotta R, Giuffrida R, Munaò S, Colarossi L, Capra AP, Esposito E, Paterniti I. Beneficial effect of KYP-2047, a propyl-oligopeptidase inhibitor, on oral squamous cell carcinoma. Oncotarget 2021; 12:2459-2473. [PMID: 34917264 PMCID: PMC8664393 DOI: 10.18632/oncotarget.28147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell-carcinoma (OSCC) is a common cancer which arises from the alveolar ridge, buccal mucosa, and tongue. Among OSCC, the incidence of tongue squamous cell-carcinoma (TSCC) is growing all over the world. Oral carcinogenesis has been linked to genetic mutations, chromosomal aberrations and viral factors. Apoptosis and angiogenesis play a key role in the development of oral cancer. Therefore, it is very important discover new therapeutic strategies to counteract oral cancer progression. This study aimed to investigate the effect of KYP-2047 in an in vitro model of TSCC and in vivo CAL27-xenograft model. Our results demonstrated that KYP-2047 was able to reduce TSCCs cell viability at the concentrations of 50 μM and 100 μM. Additionally, KYP-2047 was able to increase Bax, Bad and caspase-3 expression, whereas Bcl-2 and p53 expression were reduced. Moreover, KYP-2047 significantly reduced vascular-endothelial-growth-factor (VEGF) and endothelial-nitric-oxide-synthase (eNOS) expression. In the vivo xenograft model, KYP-2047 at doses of 1 and 5 mg/kg significantly reduced tumor burden and tumor weight, decreasing also angiogenesis markers VEGF and eNOS. Moreover, KYP-2047 increased Bax and reduced Bcl2 expressions. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract tongue oral-cancer growth, thanks its abilities to modulate angiogenesis and apoptosis pathways.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
- These authors contributed equally to this work
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
- These authors contributed equally to this work
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | | | - Stefania Munaò
- Istituto Oncologico del Mediterraneo, Viagrande 95029, CT, Italy
| | | | - Anna Paola Capra
- Department of Clinical and Experimental Medicine, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| |
Collapse
|
12
|
Functionally diverse heteromeric traps for ligands of the transforming growth factor-β superfamily. Sci Rep 2021; 11:18341. [PMID: 34526551 PMCID: PMC8443706 DOI: 10.1038/s41598-021-97203-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/18/2021] [Indexed: 01/19/2023] Open
Abstract
Ligands of the transforming growth factor-β (TGF-β) superfamily are important targets for therapeutic intervention but present challenges because they signal combinatorially and exhibit overlapping activities in vivo. To obtain agents capable of sequestering multiple TGF-β superfamily ligands with novel selectivity, we generated soluble, heterodimeric ligand traps by pairing the extracellular domain (ECD) of the native activin receptor type IIB (ActRIIB) alternately with the ECDs of native type I receptors activin receptor-like kinase 4 (ALK4), ALK7, or ALK3. Systematic analysis of these heterodimeric constructs by surface plasmon resonance, and comparison with their homodimeric counterparts, revealed that each type I receptor partner confers a distinct ligand-binding profile to the heterodimeric construct. Additional characterization in cell-based reporter gene assays confirmed that the heterodimeric constructs possessed different profiles of signaling inhibition in vitro, which translated into altered patterns of pharmacological activity when constructs were administered systemically to wild-type mice. Our results detail a versatile platform for the modular recombination of naturally occurring receptor domains, giving rise to inhibitory ligand traps that could aid in defining the physiological roles of TGF-β ligand sets or be directed therapeutically to human diseases arising from dysregulated TGF-β superfamily signaling.
Collapse
|
13
|
Thompson-Elliott B, Johnson R, Khan SA. Alterations in TGFβ signaling during prostate cancer progression. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:318-328. [PMID: 34541030 PMCID: PMC8446771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
During prostate cancer progression, TGF-β acts as both a tumor suppressor and tumor promoter. TGF-β inhibits cell proliferation in normal and early-stage prostate cancer cells, but during later stages of the disease the cancer cells develop resistance to inhibitory effects on cell proliferation. In these cells, TGF-β promotes cancer progression due to its effects on epithelial to mesenchymal transition (EMT), cell migration and invasion, and immune suppression. The intracellular mechanisms involved in the development of resistance to TGF-β effects on cell proliferation are largely unknown. In this review, we summarized the roles of several intracellular proteins including PTEN, Id1 and JunD, which may play a role in this transition. The role of Ski/SnoN proteins in inhibition of Smad2/3 signaling is highlighted.
Collapse
Affiliation(s)
| | - Rarnice Johnson
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|
14
|
Kodama S, Podyma-Inoue KΑ, Uchihashi T, Kurioka K, Takahashi H, Sugauchi A, Takahashi K, Inubushi T, Kogo M, Tanaka S, Watabe T. Progression of melanoma is suppressed by targeting all transforming growth factor‑β isoforms with an Fc chimeric receptor. Oncol Rep 2021; 46:197. [PMID: 34296292 PMCID: PMC8317165 DOI: 10.3892/or.2021.8148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023] Open
Abstract
Melanoma is an aggressive type of cancer originating from the skin that arises from neoplastic changes in melanocytes. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine and is known to contribute to melanoma progression by inducing the epithelial-mesenchymal transition (EMT) program and creating an environment that favors tumor progression. There are three TGF-β isoforms, TGF-β1, TGF-β2 and TGF-β3, all of which engage in pro-tumorigenic activities by activating SMAD signaling pathways. All TGF-β isoforms activate signaling pathways by binding to their TGF-β type I (TβRI) and type II (TβRII) receptors. Thus, effective targeting of all TGF-β isoforms is of great importance. In the present study, chimeric proteins comprising the extracellular domains of TβRI and/or TβRII fused with the Fc portion of human immunoglobulin (IgG) were validated in the melanoma context. The Fc chimeric receptor comprising both TβRI and TβRII (TβRI-TβRII-Fc) effectively trapped all TGF-β isoforms. Conversely, TβRII-Fc chimeric receptor, that comprises TβRII only, was able to interact with TGF-β1 and TGF-β3 isoforms, but not with TGF-β2, which is a poor prognostic factor for melanoma patients. Accordingly, it was revealed that TβRI-TβRII-Fc chimeric receptor suppressed the EMT program in melanoma cells in vitro induced by any of the three TGF-β isoforms, as revealed by decreased expression of mesenchymal markers. Conversely, TβRII-Fc chimeric receptor inhibited the EMT program induced by TGF-β1 and TGF-β3. In addition, it was established that tumor growth in subcutaneous mouse melanoma was inhibited by TβRI-TβRII-Fc chimeric receptor indicating that Fc chimeric receptor could be applied to modify the tumor microenvironment (TME) of melanoma. Therefore, designing of Fc chimeric receptors targeting TGF-β signals that affect various components of the TME may result in the development of effective anti-melanoma agents.
Collapse
Affiliation(s)
- Shingo Kodama
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Katarzyna Α Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo 113‑8549, Japan
| | - Toshihiro Uchihashi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Kyoko Kurioka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Hitomi Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo 113‑8549, Japan
| | - Akinari Sugauchi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo 113‑8549, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Mikihiko Kogo
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Susumu Tanaka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo 113‑8549, Japan
| |
Collapse
|
15
|
The TGF-β Pathway: A Pharmacological Target in Hepatocellular Carcinoma? Cancers (Basel) 2021; 13:cancers13133248. [PMID: 34209646 PMCID: PMC8268320 DOI: 10.3390/cancers13133248] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Transforming Growth Factor-beta (TGF-β) superfamily members are essential for tissue homeostasis and consequently, dysregulation of their signaling pathways contributes to the development of human diseases. In the liver, TGF-β signaling participates in all the stages of disease progression from initial liver injury to hepatocellular carcinoma (HCC). During liver carcinogenesis, TGF-β plays a dual role on the malignant cell, behaving as a suppressor factor at early stages, but contributing to later tumor progression once cells escape from its cytostatic effects. Moreover, TGF-β can modulate the response of the cells forming the tumor microenvironment that may also contribute to HCC progression, and drive immune evasion of cancer cells. Thus, targeting the TGF-β pathway may constitute an effective therapeutic option for HCC treatment. However, it is crucial to identify biomarkers that allow to predict the response of the tumors and appropriately select the patients that could benefit from TGF-β inhibitory therapies. Here we review the functions of TGF-β on HCC malignant and tumor microenvironment cells, and the current strategies targeting TGF-β signaling for cancer therapy. We also summarize the clinical impact of TGF-β inhibitors in HCC patients and provide a perspective on its future use alone or in combinatorial strategies for HCC treatment.
Collapse
|
16
|
Ludwig N, Wieteska Ł, Hinck CS, Yerneni SS, Azambuja JH, Bauer RJ, Reichert TE, Hinck AP, Whiteside TL. Novel TGFβ Inhibitors Ameliorate Oral Squamous Cell Carcinoma Progression and Improve the Antitumor Immune Response of Anti-PD-L1 Immunotherapy. Mol Cancer Ther 2021; 20:1102-1111. [PMID: 33850003 DOI: 10.1158/1535-7163.mct-20-0944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 01/11/2023]
Abstract
TGFβ is a key regulator of oral squamous cell carcinoma (OSCC) progression, and its potential role as a therapeutic target has been investigated with a limited success. This study evaluates two novel TGFβ inhibitors as mono or combinatorial therapy with anti-PD-L1 antibodies (α-PD-L1 Ab) in a murine OSCC model. Immunocompetent C57BL/6 mice bearing malignant oral lesions induced by 4-nitroquinoline 1-oxide (4-NQO) were treated for 4 weeks with TGFβ inhibitors mRER (i.p., 50 μg/d) or mmTGFβ2-7m (10 μg/d delivered by osmotic pumps) alone or in combination with α-PD-L1 Abs (7× i.p. of 100 μg/72 h). Tumor progression and body weight were monitored. Levels of bioactive TGFβ in serum were quantified using a TGFβ bioassay. Tissues were analyzed by immunohistology and flow cytometry. Therapy with mRER or mmTGFβ2-7m reduced tumor burden (P < 0.05) and decreased body weight loss compared with controls. In inhibitor-treated mice, levels of TGFβ in tumor tissue and serum were reduced (P < 0.05), whereas they increased with tumor progression in controls. Both inhibitors enhanced CD8+ T-cell infiltration into tumors and mRER reduced levels of myeloid-derived suppressor cells (P < 0.001). In combination with α-PD-L1 Abs, tumor burden was not further reduced; however, mmTGFβ2-7m further reduced weight loss (P < 0.05). The collagen-rich stroma was reduced by using combinatorial TGFβ/PD-L1 therapies (P < 0.05), enabling an accelerated lymphocyte infiltration into tumor tissues. The blockade of TGFβ signaling by mRER or mmTGFβ2-7m ameliorated in vivo progression of established murine OSCC. The inhibitors promoted antitumor immune responses, alone and in combination with α-PD-L1 Abs.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Łukasz Wieteska
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Juliana H Azambuja
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany.,Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Gómez-Gil V. Therapeutic Implications of TGFβ in Cancer Treatment: A Systematic Review. Cancers (Basel) 2021; 13:379. [PMID: 33498521 PMCID: PMC7864190 DOI: 10.3390/cancers13030379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a pleiotropic cytokine that participates in a wide range of biological functions. The alterations in the expression levels of this factor, or the deregulation of its signaling cascade, can lead to different pathologies, including cancer. A great variety of therapeutic strategies targeting TGFβ, or the members included in its signaling pathway, are currently being researched in cancer treatment. However, the dual role of TGFβ, as a tumor suppressor or a tumor-promoter, together with its crosstalk with other signaling pathways, has hampered the development of safe and effective treatments aimed at halting the cancer progression. This systematic literature review aims to provide insight into the different approaches available to regulate TGFβ and/or the molecules involved in its synthesis, activation, or signaling, as a cancer treatment. The therapeutic strategies most commonly investigated include antisense oligonucleotides, which prevent TGFβ synthesis, to molecules that block the interaction between TGFβ and its signaling receptors, together with inhibitors of the TGFβ signaling cascade-effectors. The effectiveness and possible complications of the different potential therapies available are also discussed.
Collapse
Affiliation(s)
- Verónica Gómez-Gil
- Department of Biomedical Sciences (Area of Pharmacology), School of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
18
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
20
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
21
|
Takahashi K, Akatsu Y, Podyma-Inoue KA, Matsumoto T, Takahashi H, Yoshimatsu Y, Koinuma D, Shirouzu M, Miyazono K, Watabe T. Targeting all transforming growth factor-β isoforms with an Fc chimeric receptor impairs tumor growth and angiogenesis of oral squamous cell cancer. J Biol Chem 2020; 295:12559-12572. [PMID: 32631954 DOI: 10.1074/jbc.ra120.012492] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
Tumor progression is governed by various growth factors and cytokines in the tumor microenvironment (TME). Among these, transforming growth factor-β (TGF-β) is secreted by various cell types residing in the TME and promotes tumor progression by inducing the epithelial-to-mesenchymal transition (EMT) of cancer cells and tumor angiogenesis. TGF-β comprises three isoforms, TGF-β1, -β2, and -β3, and transduces intracellular signals via TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII). For the purpose of designing ligand traps that reduce oncogenic signaling in the TME, chimeric proteins comprising the ligand-interacting ectodomains of receptors fused with the Fc portion of immunoglobulin are often used. For example, chimeric soluble TβRII (TβRII-Fc) has been developed as an effective therapeutic strategy for targeting TGF-β ligands, but several lines of evidence indicate that TβRII-Fc more effectively traps TGF-β1 and TGF-β3 than TGF-β2, whose expression is elevated in multiple cancer types. In the present study, we developed a chimeric TGF-β receptor containing both TβRI and TβRII (TβRI-TβRII-Fc) and found that TβRI-TβRII-Fc trapped all TGF-β isoforms, leading to inhibition of both the TGF-β signal and TGF-β-induced EMT of oral cancer cells, whereas TβRII-Fc failed to trap TGF-β2. Furthermore, we found that TβRI-TβRII-Fc suppresses tumor growth and angiogenesis more effectively than TβRII-Fc in a subcutaneous xenograft model of oral cancer cells with high TGF-β expression. These results suggest that TβRI-TβRII-Fc may be a promising tool for targeting all TGF-β isoforms in the TME.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, and Pharmaceutical Group, Nippon Kayaku Co. Ltd., Tokyo, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Hitomi Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
22
|
Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, Porter LH, Niranjan B, Whitby ST, Lo J, Huang C, Schittenhelm RB, Anderson KE, Furic L, Wijayaratne PR, Matzaris M, Montgomery MK, Papargiris M, Norden S, Febbraio M, Risbridger GP, Frydenberg M, Nomura DK, Taylor RA. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med 2020; 11:11/478/eaau5758. [PMID: 30728288 DOI: 10.1126/scitranslmed.aau5758] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/17/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022]
Abstract
Metabolism alterations are hallmarks of cancer, but the involvement of lipid metabolism in disease progression is unclear. We investigated the role of lipid metabolism in prostate cancer using tissue from patients with prostate cancer and patient-derived xenograft mouse models. We showed that fatty acid uptake was increased in human prostate cancer and that these fatty acids were directed toward biomass production. These changes were mediated, at least partly, by the fatty acid transporter CD36, which was associated with aggressive disease. Deleting Cd36 in the prostate of cancer-susceptible Pten-/- mice reduced fatty acid uptake and the abundance of oncogenic signaling lipids and slowed cancer progression. Moreover, CD36 antibody therapy reduced cancer severity in patient-derived xenografts. We further demonstrated cross-talk between fatty acid uptake and de novo lipogenesis and found that dual targeting of these pathways more potently inhibited proliferation of human cancer-derived organoids compared to the single treatments. These findings identify a critical role for CD36-mediated fatty acid uptake in prostate cancer and suggest that targeting fatty acid uptake might be an effective strategy for treating prostate cancer.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia. .,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Ashlee K Clark
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Vanessa R Haynes
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia.,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Natalie Lister
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Richard Rebello
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4GJ, UK
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Birunthi Niranjan
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sarah T Whitby
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer Lo
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kimberley E Anderson
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkley, Berkeley, CA, USA
| | - Luc Furic
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Poornima R Wijayaratne
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Maria Matzaris
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Magdalene K Montgomery
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia.,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Melissa Papargiris
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sam Norden
- TissuPath, Mount Waverley, VIC 3149, Australia
| | - Maria Febbraio
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Frydenberg
- Department of Surgery, Faculty of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkley, Berkeley, CA, USA
| | - Renea A Taylor
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
23
|
Abstract
Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages of cancer, TGF-β can stimulate epithelial growth arrest and elicit a tumor suppressor function. However, in late stages of cancer, when the cytostatic effects of TGF-β in cancer cells are blocked, TGF-β signaling can act as tumor promoter by its ability to stimulate epithelial-to-mesenchymal transition of cancer cells, by stimulating angiogenesis, and by promoting evasion of immune responses. In this review, we will discuss the rationale and challenges of targeting TGF-β signaling in cancer and summarize the clinical status of TGF-β signaling inhibitors that interfere with TGFβ bioavailability, TGF-βreceptor interaction, or TGF-β receptor kinase function. Moreover, we will discuss targeting of TGF-β signaling modulators and downstream effectors as well as alternative approaches by using promising technologies that may lead to entirely new classes of drugs.
Collapse
Affiliation(s)
- Linh Khanh Huynh
- Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Christopher John Hipolito
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Peptide Core Facility, Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Peter Ten Dijke
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
24
|
Huynh LK, Hipolito CJ, ten Dijke P. A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules 2019; 9:biom9110743. [PMID: 31744193 PMCID: PMC6921009 DOI: 10.3390/biom9110743] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages of cancer, TGF-β can stimulate epithelial growth arrest and elicit a tumor suppressor function. However, in late stages of cancer, when the cytostatic effects of TGF-β in cancer cells are blocked, TGF-β signaling can act as tumor promoter by its ability to stimulate epithelial-to-mesenchymal transition of cancer cells, by stimulating angiogenesis, and by promoting evasion of immune responses. In this review, we will discuss the rationale and challenges of targeting TGF-β signaling in cancer and summarize the clinical status of TGF-β signaling inhibitors that interfere with TGF−β bioavailability, TGF-β/receptor interaction, or TGF-β receptor kinase function. Moreover, we will discuss targeting of TGF-β signaling modulators and downstream effectors as well as alternative approaches by using promising technologies that may lead to entirely new classes of drugs.
Collapse
Affiliation(s)
- Linh Khanh Huynh
- Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Christopher John Hipolito
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Peptide Core Facility, Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Peter ten Dijke
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-9271; Fax: +31-71-526-8270
| |
Collapse
|
25
|
Pollard BS, Suckow MA, Wolter WR, Starr JM, Eidelman O, Dalgard CL, Kumar P, Battacharyya S, Srivastava M, Biswas R, Wilkerson MD, Zhang X, Yang Q, Pollard HB. Digitoxin Inhibits Epithelial-to-Mesenchymal-Transition in Hereditary Castration Resistant Prostate Cancer. Front Oncol 2019; 9:630. [PMID: 31428571 PMCID: PMC6687970 DOI: 10.3389/fonc.2019.00630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Castration Resistant Prostate Cancer (CRPC) is thought to be driven by a collaborative mechanism between TNFα/NFκB and TGFβ signaling, leading to inflammation, Epithelial-to-Mesenchymal-Transition (EMT), and metastasis. Initially, TGFβ is a tumor suppressor, but in advanced metastatic disease it switches to being a tumor promoter. TGFBR2 may play a critical role in this collaboration, as its expression is driven by NFκB and it is the primary receptor for TGFβ. We have previously reported that the cardenolide drug digitoxin blocks TNFα/NFκB-driven proinflammatory signaling. We therefore hypothesized that digitoxin might break the collaborative process between NFκB and TGFβ by also inhibiting expression of TGFBR2. We therefore tested whether TGFβ-driven EMT and resulting metastases would be suppressed. Here we show, in vitro, that digitoxin inhibits NFκB-driven TGFBR2 expression, as well as Vimentin, while elevating E-cadherin expression. Digitoxin also significantly reduces HSPB1 mRNA and the HSPB1/RBFOX2 mRNA ratio in PC3 cells. In vivo, in a syngeneic, immune competent rat model of metastatic CRPC, we show that digitoxin also suppresses Tgfbr2 expression, as well as expression of other genes classically driven by NFκB, and of multiple EMT genes associated with metastasis. Concurrently, digitoxin suppresses tumor growth and metastasis in these animals, and prolongs survival. Gross tumor recurrence following tumor resection also appears prevented in ca 30% of cases. While the existence of a collaboration between NFκB and TGFβ to drive EMT and metastasis has previously been appreciated, we show here, for the first time, that chronic, low concentrations of digitoxin are able to block CRPC tumor progression, EMT and the ensuing metastatic disease.
Collapse
Affiliation(s)
| | - Mark A Suckow
- Lobund Institute, University of Notre Dame, Notre Dame, IN, United States
| | - William R Wolter
- Lobund Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Joshua M Starr
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Bethesda, MD, United States
| | - Parameet Kumar
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sharmistha Battacharyya
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew D Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Bethesda, MD, United States
| | - Xijun Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Bethesda, MD, United States
| | - Qingfeng Yang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Bethesda, MD, United States
| |
Collapse
|
26
|
Kim SK, Whitley MJ, Krzysiak TC, Hinck CS, Taylor AB, Zwieb C, Byeon CH, Zhou X, Mendoza V, López-Casillas F, Furey W, Hinck AP. Structural Adaptation in Its Orphan Domain Engenders Betaglycan with an Alternate Mode of Growth Factor Binding Relative to Endoglin. Structure 2019; 27:1427-1442.e4. [PMID: 31327662 DOI: 10.1016/j.str.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Betaglycan (BG) and endoglin (ENG), homologous co-receptors of the TGF-β family, potentiate the signaling activity of TGF-β2 and inhibin A, and BMP-9 and BMP-10, respectively. BG exists as monomer and forms 1:1 growth factor (GF) complexes, while ENG exists as a dimer and forms 2:1 GF complexes. Herein, the structure of the BG orphan domain (BGO) reveals an insertion that blocks the region that the endoglin orphan domain (ENGO) uses to bind BMP-9, preventing it from binding in the same manner. Using binding studies with domain-deleted forms of TGF-β and BGO, as well as small-angle X-ray scattering data, BGO is shown to bind its cognate GF in an entirely different manner compared with ENGO. The alternative interfaces likely engender BG and ENG with the ability to selectively bind and target their cognate GFs in a unique temporal-spatial manner, without interfering with one another or other TGF-β family GFs.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA; X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Christian Zwieb
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Chang-Hyeock Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Xiaohong Zhou
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Valentín Mendoza
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - William Furey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
27
|
Wang JK, Wang WJ, Cai HY, Du BB, Mai P, Zhang LJ, Ma W, Hu YG, Feng SF, Miao GY. MFAP2 promotes epithelial-mesenchymal transition in gastric cancer cells by activating TGF-β/SMAD2/3 signaling pathway. Onco Targets Ther 2018; 11:4001-4017. [PMID: 30034240 PMCID: PMC6047603 DOI: 10.2147/ott.s160831] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction Microfibril-associated protein 2 (MFAP2) is an extracellular matrix protein that interacts with fibrillin to modulate the function of microfibrils. MFAP2 has been reported to play a significant role in obesity, diabetes, and osteopenia, and has been shown to be upregulated in head and neck squamous cell carcinoma. However, the molecular function and prognostic value of MFAP2 have never been reported in gastric cancer (GC) or any other tumors. Methods The current study investigated the expression patterns, prognostic significance, functional role, and possible mechanisms of MFAP2 in GC. Results We demonstrated that MFAP2 was overexpressed in GC tissues, and its overexpression was significantly correlated with poor overall and disease-free survival in patients with GC. Moreover, we found that MFAP2 promoted the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) phenotype in GC cells. MFAP2 might modulate EMT of GC cells by activating the TGF-β/SMAD2/3 signaling pathway. Conclusion These findings provide novel evidence that MFAP2 plays a crucial role in the progression of GC. Therefore, MFAP2 may be a promising prognostic marker and a potent anticancer agent.
Collapse
Affiliation(s)
- Jian-Kai Wang
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China,
| | - Wen-Juan Wang
- Physical Examination Center, The Third People's Hospital of Gansu, Lanzhou, Gansu 730000, China
| | - Hong-Yi Cai
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China,
| | - Bin-Bin Du
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Ping Mai
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Li-Juan Zhang
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China,
| | - Wen Ma
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China,
| | - Yong-Guo Hu
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China,
| | - Shi-Fang Feng
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China,
| | - Guo-Ying Miao
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China,
| |
Collapse
|
28
|
Zhu H, Gu X, Xia L, Zhou Y, Bouamar H, Yang J, Ding X, Zwieb C, Zhang J, Hinck AP, Sun LZ, Zhu X. A Novel TGFβ Trap Blocks Chemotherapeutics-Induced TGFβ1 Signaling and Enhances Their Anticancer Activity in Gynecologic Cancers. Clin Cancer Res 2018; 24:2780-2793. [PMID: 29549162 DOI: 10.1158/1078-0432.ccr-17-3112] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/26/2018] [Accepted: 03/12/2018] [Indexed: 01/06/2023]
Abstract
Purpose: We investigated the mechanisms of how TGFβ pathway is activated by chemotherapeutics and whether a novel TGFβ trap called RER can block chemotherapeutics-induced TGFβ pathway activation and enhance their antitumor activity in gynecologic cancer.Patients and Methods: An unbiased bioinformatic analysis of differentially expressed genes in 31 ovarian cases due to chemotherapy was used to identify altered master regulators. Phosphorylated Smad2 was determined in 30 paired cervical cancer using IHC. Furthermore, the effects of chemotherapeutics on TGFβ signaling and function, and the effects of RER on chemotherapy-induced TGFβ signaling were determined in gynecologic cancer cells.Results: Chemotherapy-induced transcriptome alteration in ovarian cancer was significantly associated with TGFβ signaling activation. Chemotherapy was found to activate TGFβ signaling as indicated by phosphorylated Smad2 in paired cervical tumor samples (pre- and post-chemotherapy). Similar to TGFβ1, chemotherapeutics were found to stimulate Smad2/3 phosphorylation, cell migration, and markers related to epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC). These TGFβ-like effects were due to the stimulation of TGFβ1 expression and secretion, and could all be abrogated by TGFβ inhibitors including a novel TGFβ trap protein called RER both in vitro and in vivo Importantly, combination treatment with RER and cisplatin showed a higher tumor inhibitory activity than either agent alone in a xenograft model of ovarian cancer.Conclusions: Chemotherapeutics can stimulate TGFβ1 production and consequently enhance TGFβ signaling, EMT, and CSC features resulting in reduced chemo-sensitivity. Combination therapy with a TGFβ inhibitor should alleviate this unintended side effect of chemotherapeutics and enhance their therapeutic efficacy. Clin Cancer Res; 24(12); 2780-93. ©2018 AACR.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| | - Xiang Gu
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| | - Lu Xia
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Gynecology and Obstetrics, Xiangya Hospital and Xiangya School of Medicine, Central South University, Hunan, China
| | - You Zhou
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| | - Hakim Bouamar
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| | - Junhua Yang
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| | - Xiaofei Ding
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| | - Christian Zwieb
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| | - Jianan Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andrew P Hinck
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| | - Lu-Zhe Sun
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
29
|
Zhou C, Li J, Lin L, Shu R, Dong B, Cao D, Li Q, Wang Z. A targeted transforming growth factor-beta (TGF-β) blocker, TTB, inhibits tumor growth and metastasis. Oncotarget 2018; 9:23102-23113. [PMID: 29796175 PMCID: PMC5955403 DOI: 10.18632/oncotarget.24562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor beta (TGF-β) promotes cancer growth in late stage cancers. To inhibit the TGF-β pathway, we investigated a tumor-targeting TGF-β receptor blocker, TTB, and its role in tumor progress. The targeted TTB comprised of the extracellular domain of the TGF-β receptor II, the endoglin domain of TGF-β receptor III, and the human immuno-globin IgG1 constant fragment (Fc). To enhance tumor microenvironment targeting, a RGD peptide was fused at the N-terminal of TTB. The targeted TTB exhibited potent TGF-β neutralization activities, and inhibited cancer cell migration and invasion as well as colony formation. In xenograft models, the TTB had potent tumor inhibition activities. The TTB also attenuated the TGF-β1-induced Smad2 phosphorylation and epithelial to mesenchymal transformation (EMT), and suppressed breast cancer metastasis. Thus, the TTB is an effective TGF-β blocker with a potential for blocking excessive TGF-β induced pathogenesis in vivo.
Collapse
Affiliation(s)
- Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rui Shu
- Ying Rui Inc., Guangzhou, Guangdong, 510009, China
| | - Bin Dong
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510009, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
30
|
Chruścik A, Gopalan V, Lam AKY. The clinical and biological roles of transforming growth factor beta in colon cancer stem cells: A systematic review. Eur J Cell Biol 2017; 97:15-22. [PMID: 29128131 DOI: 10.1016/j.ejcb.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-β) is a multipurpose cytokine, which plays a role in many cellular functions such as proliferation, differentiation, migration, apoptosis, cell adhesion and regulation of epithelial to mesenchymal transition. Despite many studies having observed the effect that TGF-β plays in colorectal cancer, its role in the colorectal stem cell population has not been widely observed. METHOD This systematic review will analyse the role of TGF-β in the stem cell population of colorectal cancer. RESULTS The effects on the stem cell phenotype are through the downstream proteins involved in activation of the TGF-β pathway. Its involvement in the initiation of the epithelial to mesenchymal transition (EMT), the effect of colorectal invasion and metastasis regulated through the Smad protein involvement in the EMT, initiation of angiogenesis, promotion of metastasis of colorectal cancer to the liver and its ability to cross-talk with other pathways. CONCLUSION TGF-β is a key player in angiogenesis, tumour growth and metastasis in colon cancer.
Collapse
Affiliation(s)
- Anna Chruścik
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|