1
|
Moukalled N, Abou Dalle I, El Cheikh J, Ye Y, Malarad F, Mohty M, Bazarbachi A. The emerging role of melflufen and peptide-conjugates in multiple myeloma. Curr Opin Oncol 2024; 36:583-592. [PMID: 39246181 DOI: 10.1097/cco.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW The past two decades have witnessed an impressive expansion in the treatment landscape of multiple myeloma, leading to significant improvements in progression-free; as well as overall survival. However, almost all patients still experience multiple relapses during their disease course, with biological and cytogenetic heterogeneity affecting response to subsequent treatments. The purpose of this review is to provide a historical background regarding the role of alkylating agents and an updated data regarding the use of peptide-drug conjugates such as melflufen for patients with multiple myeloma. RECENT FINDINGS The combination of daratumumab-melflufen-dexamethasone evaluated in the LIGHTHOUSE study showed a statistically significant improvement in progression-free survival compared to single-agent daratumumab (not reached vs. 4.9 months respectively; P = 0.0032), with improvement in overall response rate to 59% vs. 30% respectively; P = 0.03. SUMMARY There have been an interest in developing and utilizing peptide-drug conjugates such as melflufen for treatment of patients with multiple myeloma, especially in the relapsed setting given historical results with alkylating agents, the use of which has been limited by dose-related toxicities in a disease that remains largely incurable. Single agent melflufen initially showed promising results especially in specific subgroups of heavily pretreated patients before the decision to suspend all clinical trials evaluating this agent after results from the OCEAN phase 3 trial. Subsequent reported analyses especially for melflufen-based combinations appear promising and suggest a potential use of peptide-drug conjugates provided optimal patient selection, as well as identification of the best companion agent.
Collapse
Affiliation(s)
- Nour Moukalled
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Iman Abou Dalle
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean El Cheikh
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Florent Malarad
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
2
|
Flanagan K, Kumari R, Miettinen JJ, Haney SL, Varney ML, Williams JT, Majumder MM, Suvela M, Slipicevic A, Lehmann F, Nupponen NN, Holstein SA, Heckman CA. The Peptide-Drug Conjugate Melflufen Modulates the Unfolded Protein Response of Multiple Myeloma and Amyloidogenic Plasma Cells and Induces Cell Death. Hemasphere 2022; 6:e687. [PMID: 35243210 PMCID: PMC8884539 DOI: 10.1097/hs9.0000000000000687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Immunoglobulin light-chain (AL) amyloidosis is a rare disease caused by clonal plasma cell secretion of misfolded light chains that assemble as toxic amyloid fibrils, depositing in vital organs including the heart and kidneys, causing organ dysfunction. Plasma cell-directed therapeutics are expected to reduce production of toxic light chain by eliminating amyloidogenic cells in bone marrow, thereby diminishing amyloid fibril deposition and providing the potential for organ recovery. Melphalan flufenamide (melflufen) is a first-in-class peptide-drug conjugate that targets aminopeptidases and rapidly releases alkylating agents inside tumor cells. Melflufen is highly lipophilic, permitting rapid uptake by cells, where it is enzymatically hydrolyzed by aminopeptidases, resulting in intracellular accumulation of the alkylating agents, including melphalan. Previous data demonstrating sensitivity of myeloma cells to melflufen suggest that the drug might be useful in AL amyloidosis. We describe the effects of melflufen on amyloidogenic plasma cells in vitro and ex vivo, demonstrating enhanced cytotoxic effects in comparison to melphalan, as well as novel mechanisms of action through the unfolded protein response (UPR) pathway. These findings provide evidence that melflufen-mediated cytotoxicity extends to amyloidogenic plasma cells, and support the rationale for the evaluation of melflufen in patients with AL amyloidosis.
Collapse
Affiliation(s)
| | - Romika Kumari
- Institute for Molecular Medicine Finland - FIMM, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - Juho J. Miettinen
- Institute for Molecular Medicine Finland - FIMM, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - Staci L. Haney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michelle L. Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacob T. Williams
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Muntasir M. Majumder
- Institute for Molecular Medicine Finland - FIMM, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - Minna Suvela
- Institute for Molecular Medicine Finland - FIMM, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | | | | | | | - Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland - FIMM, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| |
Collapse
|
3
|
Byrgazov K, Lind T, Rasmusson AJ, Andersson C, Slipicevic A, Lehmann F, Gullbo J, Melhus H, Larsson R, Fryknäs M. Melphalan flufenamide inhibits osteoclastogenesis by suppressing proliferation of monocytes. Bone Rep 2021; 15:101098. [PMID: 34150958 PMCID: PMC8192817 DOI: 10.1016/j.bonr.2021.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/01/2022] Open
Abstract
Myeloma bone disease is a major complication in multiple myeloma affecting quality of life and survival. It is characterized by increased activity of osteoclasts, bone resorbing cells. Myeloma microenvironment promotes excessive osteoclastogenesis, a process of production of osteoclasts from their precursors, monocytes. The effects of two anti-myeloma drugs, melphalan flufenamide (melflufen) and melphalan, on the activity and proliferation of osteoclasts and their progenitors, monocytes, were assessed in this study. In line with previous research, differentiation of monocytes was associated with increased expression of genes encoding DNA damage repair proteins. Hence monocytes were more sensitive to DNA damage-causing alkylating agents than their differentiated progeny, osteoclasts. In addition, differentiated progeny of monocytes showed increased gene expression of immune checkpoint ligands which may potentially create an immunosuppressive microenvironment. Melflufen was ten-fold more active than melphalan in inhibiting proliferation of osteoclast progenitors. Furthermore, melflufen was also superior to melphalan in inhibition of osteoclastogenesis and bone resorption. These results demonstrate that melflufen may exert beneficial effects in patients with multiple myeloma such as reducing bone resorption and immunosuppressive milieu by inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
| | - Thomas Lind
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Annica J Rasmusson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Claes Andersson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | - Joachim Gullbo
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
4
|
Abstract
Melphalan flufenamide (melflufen, Pepaxto®) is a peptide conjugated alkylating drug developed by Oncopeptides for the treatment of multiple myeloma (MM) and amyloid light-chain amyloidosis. It is an ethyl ester of a lipophilic dipeptide consisting of melphalan and para-fluoro-L-phenylalanine. Due to its lipophilicity, melphalan flufenamide is rapidly transported across the cell membrane and almost immediately hydrolyzed by aminopeptidases in the cytoplasm to yield more hydrophilic alkylating molecules, such as melphalan and desethyl-melflufen. Like other nitrogen mustard drugs, melphalan flufenamide exerts antitumor activity through DNA crosslinking. In February 2021, melphalan flufenamide, in combination with dexamethasone, received its first approval in the USA for the treatment of adults with relapsed or refractory (r/r) MM who have received at least four prior lines of therapy and whose disease is refractory to at least one proteasome inhibitor (PI), one immunomodulatory agent, and one CD38-directed monoclonal antibody. A multinational clinical study of melphalan flufenamide in amyloid light-chain amyloidosis is underway across several countries, and preclinical studies for various haematological and solid cancers are underway. This article summarizes the milestones in the development of melphalan flufenamide leading to this first approval.
Collapse
|
5
|
Holstein SA, Hillengass J, McCarthy PL. Melflufen: A Next-Generation Nitrogen Mustard. J Clin Oncol 2021; 39:836-839. [PMID: 33439689 DOI: 10.1200/jco.20.03326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jens Hillengass
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
6
|
Luo T, Gao J, Lin N, Wang J. Effects of Two Kinds of Iron Nanoparticles as Reactive Oxygen Species Inducer and Scavenger on the Transcriptomic Profiles of Two Human Leukemia Cells with Different Stemness. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1951. [PMID: 33007950 PMCID: PMC7600526 DOI: 10.3390/nano10101951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Leukemia is a common and lethal disease. In recent years, iron-based nanomedicines have been developed as a new ferroptosis inducer to leukemia. However, the cytotoxicity of iron nanoparticles to leukemia cells at the transcriptomic level remains unclear. This study investigated the effects of two kinds of iron nanoparticles, 2,3-Dimercaptosuccinic acid (DMSA)-coated Fe3O4 nanoparticles (FeNPs) as a reactive oxygen species (ROS) inducer and Prussian blue nanoparticles (PBNPs) as an ROS scavenger, on the transcriptomic profiles of two leukemia cells (KG1a and HL60) by RNA-Seq. As a result, 470 and 1690 differentially expressed genes (DEGs) were identified in the FeNP-treated HL60 and KG1a cells, respectively, and 2008 and 2504 DEGs were found in the PBNP-treated HL60 and KG1a cells, respectively. Among them, 14 common upregulated and 4 common downregulated DEGs were found, these genes were representative genes that play key roles in lipid metabolism (GBA and ABCA1), iron metabolism (FTL, DNM1, and TRFC), antioxidation (NQO1, GCLM, and SLC7A11), vesicle traffic (MCTP2, DNM1, STX3, and BIN2), and innate immune response (TLR6, ADGRG3, and DDX24). The gene ontology revealed that the mineral absorption pathway was significantly regulated by PBNPs in two cells, whereas the lipid metabolism and HIF-1 signaling pathways were significantly regulated by FeNPs in two cells. This study established the gene signatures of two kinds of nanoparticles in two leukemia cells, which revealed the main biological processes regulated by the two kinds of iron nanoparticles. These data shed new insights into the cytotoxicity of iron nanoparticles that differently regulate ROS in leukemia cells with variant stemness.
Collapse
Affiliation(s)
| | | | | | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; (T.L.); (J.G.); (N.L.)
| |
Collapse
|
7
|
Mateos MV, Bladé J, Bringhen S, Ocio EM, Efebera Y, Pour L, Gay F, Sonneveld P, Gullbo J, Richardson PG. Melflufen: A Peptide-Drug Conjugate for the Treatment of Multiple Myeloma. J Clin Med 2020; 9:E3120. [PMID: 32992506 PMCID: PMC7601491 DOI: 10.3390/jcm9103120] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of new therapies that have led to improved outcomes for patients with multiple myeloma, most patients will eventually relapse. With triplet and even quadruplet combination therapies becoming standard in the first and second line, many patients will have few treatment options after second-line treatment. Melflufen (melphalan flufenamide) is a first-in-class peptide-drug conjugate (PDC) that targets aminopeptidases and rapidly releases alkylating agents into tumor cells. Once inside the tumor cells, melflufen is hydrolyzed by peptidases to release alkylator molecules, which become entrapped. Melflufen showed anti-myeloma activity in myeloma cells that were resistant to bortezomib and the alkylator melphalan. In early phase studies (O-12-M1 and HORIZON [OP-106]), melflufen plus dexamethasone has demonstrated encouraging clinical activity and a manageable safety profile in heavily pretreated patients with relapsed/refractory multiple myeloma, including those with triple-class refractory disease and extramedullary disease. The Phase III OCEAN study (OP-104) is further evaluating melflufen plus dexamethasone in patients with relapsed/refractory multiple myeloma. The safety profile of melflufen is characterized primarily by clinically manageable hematologic adverse events. Melflufen, with its novel mechanism of action, has the potential to provide clinically meaningful benefits to patients with relapsed/refractory multiple myeloma, including those with high unmet needs.
Collapse
Affiliation(s)
| | - Joan Bladé
- Hematology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer, Hospital Clinic, 08036 Barcelona, Spain;
| | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (S.B.); (F.G.)
| | - Enrique M Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain;
| | - Yvonne Efebera
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Luděk Pour
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500 Brno, Czech Republic;
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (S.B.); (F.G.)
| | - Pieter Sonneveld
- Erasmus MC Cancer Institute, 3075 EA Rotterdam, The Netherlands;
| | - Joachim Gullbo
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Paul G. Richardson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Schütt J, Sandoval Bojorquez DI, Avitabile E, Oliveros Mata ES, Milyukov G, Colditz J, Delogu LG, Rauner M, Feldmann A, Koristka S, Middeke JM, Sockel K, Fassbender J, Bachmann M, Bornhäuser M, Cuniberti G, Baraban L. Nanocytometer for smart analysis of peripheral blood and acute myeloid leukemia: a pilot study. NANO LETTERS 2020; 20:6572-6581. [PMID: 32786943 DOI: 10.1021/acs.nanolett.0c02300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We realize an ultracompact nanocytometer for real-time impedimetric detection and classification of subpopulations of living cells. Nanoscopic nanowires in a microfluidic channel act as nanocapacitors and measure in real time the change of the amplitude and phase of the output voltage and, thus, the electrical properties of living cells. We perform the cell classification in the human peripheral blood (PBMC) and demonstrate for the first time the possibility to discriminate monocytes and subpopulations of lymphocytes in a label-free format. Further, we demonstrate that the PBMC of acute myeloid leukemia and healthy samples grant the label free identification of the disease. Using the algorithm based on machine learning, we generated specific data patterns to discriminate healthy donors and leukemia patients. Such a solution has the potential to improve the traditional diagnostics approaches with respect to the overall cost and time effort, in a label-free format, and restrictions of the complex data analysis.
Collapse
Affiliation(s)
- Julian Schütt
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology, Budapesterstrasse 27, 01069 Dresden, Germany
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Diana Isabel Sandoval Bojorquez
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Elisabetta Avitabile
- Department of Chemistry and Pharmacy, University of Sassari, via muroni 23, 07100 Sassari, Italy
| | - Eduardo Sergio Oliveros Mata
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology, Budapesterstrasse 27, 01069 Dresden, Germany
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Gleb Milyukov
- Samsung R&D Institute Russia (SRR), 127018 Moscow, Russia
| | - Juliane Colditz
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari, via muroni 23, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Padua, via Ugo bassi 58, 35122 Padua, Italy
| | - Martina Rauner
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Stefanie Koristka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jan Moritz Middeke
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Katja Sockel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Jürgen Fassbender
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology, Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Larysa Baraban
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology, Budapesterstrasse 27, 01069 Dresden, Germany
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069 Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Technische Universität Dresden (TU Dresden), Dresden, Germany
| |
Collapse
|
9
|
Byrgazov K, Anderson C, Salzer B, Bozsaky E, Larsson R, Gullbo J, Lehner M, Lehmann F, Slipicevic A, Kager L, Fryknäs M, Taschner-Mandl S. Targeting aggressive osteosarcoma with a peptidase-enhanced cytotoxic melphalan flufenamide. Ther Adv Med Oncol 2020; 12:1758835920937891. [PMID: 32774473 PMCID: PMC7391428 DOI: 10.1177/1758835920937891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Low survival rates in metastatic high-grade osteosarcoma (HGOS) have remained stagnant for the last three decades. This study aims to investigate the role of aminopeptidase N (ANPEP) in HGOS progression and its targeting with a novel lipophilic peptidase-enhanced cytotoxic compound melphalan flufenamide (melflufen) in HGOS. Methods: Meta-analysis of publicly available gene expression datasets was performed to determine the impact of ANPEP gene expression on metastasis-free survival of HGOS patients. The efficacy of standard-of-care anti-neoplastic drugs and a lipophilic peptidase-enhanced cytotoxic conjugate melflufen was investigated in patient-derived HGOS ex vivo models and cell lines. The kinetics of apoptosis and necrosis induced by melflufen and doxorubicin were compared. Anti-neoplastic effects of melflufen were investigated in vivo. Results: Elevated ANPEP expression in diagnostic biopsies of HGOS patients was found to significantly reduce metastasis-free survival. In drug sensitivity assays, melflufen has shown an anti-proliferative effect in HGOS ex vivo samples and cell lines, including those resistant to methotrexate, etoposide, doxorubicin, and PARP inhibitors. Further, HGOS cells treated with melflufen displayed a rapid induction of apoptosis and this sensitivity correlated with high expression of ANPEP. In combination treatments, melflufen demonstrated synergy with doxorubicin in killing HGOS cells. Finally, Melflufen displayed anti-tumor growth and anti-metastatic effects in vivo. Conclusion: This study may pave the way for use of melflufen as an adjuvant to doxorubicin in improving the therapeutic efficacy for the treatment of metastatic HGOS.
Collapse
Affiliation(s)
| | - Claes Anderson
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Rolf Larsson
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | | | - Manfred Lehner
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | | | | | - Leo Kager
- Department of Pediatrics, St. Anna Children's Hospital, Medical University of Vienna and Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
10
|
First Results from a Screening of 300 Naturally Occurring Compounds: 4,6-dibromo-2-(2',4'-dibromophenoxy)phenol, 4,5,6-tribromo-2-(2',4'-dibromophenoxy)phenol, and 5-epi-nakijinone Q as Substances with the Potential for Anticancer Therapy. Mar Drugs 2019; 17:md17090521. [PMID: 31491907 PMCID: PMC6780284 DOI: 10.3390/md17090521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
There is a variety of antineoplastic drugs that are based on natural compounds from ecological niches with high evolutionary pressure. We used two cell lines (Jurkat J16 and Ramos) in a screening to assess 300 different naturally occurring compounds with regard to their antineoplastic activity. The results of the compounds 4,6-dibromo-2-(2′,4′-dibromophenoxy)phenol (P01F03), 4,5,6-tribromo-2-(2′,4′-dibromophenoxy)phenol (P01F08), and 5-epi-nakijinone Q (P03F03) prompted us to perform further research. Using viability and apoptosis assays on the cell lines of primary human leukemic and normal hematopoietic cells, we found that P01F08 induced apoptosis in the cell lines at IC50 values between 1.61 and 2.95 μM after 72 h. IC50 values of peripheral blood mononuclear cells (PBMNCs) from healthy donors were higher, demonstrating that the cytotoxicity in the cell lines reached 50%, while normal PBMNCs were hardly affected. The colony-forming unit assay showed that the hematopoietic progenitor cells were not significantly affected in their growth by P01F08 at a concentration of 3 μM. P01F08 showed a 3.2-fold lower IC50 value in primary leukemic cells [acute myeloid leukemia (AML)] compared to the PBMNC of healthy donors. We could confirm the antineoplastic effect of 5-epi-nakijinone Q (P03F03) on the cell lines via the induction of apoptosis but noted a similarly strong cytotoxic effect on normal PBMNCs.
Collapse
|
11
|
Wickström M, Nygren P, Larsson R, Harmenberg J, Lindberg J, Sjöberg P, Jerling M, Lehmann F, Richardson P, Anderson K, Chauhan D, Gullbo J. Melflufen - a peptidase-potentiated alkylating agent in clinical trials. Oncotarget 2017; 8:66641-66655. [PMID: 29029544 PMCID: PMC5630444 DOI: 10.18632/oncotarget.18420] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 04/17/2017] [Indexed: 12/02/2022] Open
Abstract
Aminopeptidases like aminopeptidase N (APN, also known as CD13) play an important role not only in normal cellular functioning but also in the development of cancer, including processes like tumor cell invasion, differentiation, proliferation, apoptosis, motility, and angiogenesis. An increased expression of APN has been described in several types of human malignancies, especially those characterized by fast-growing and aggressive phenotypes, suggesting APN as a potential therapeutic target. Melphalan flufenamide ethyl ester (melflufen, previously denoted J1) is a peptidase-potentiated alkylating agent. Melflufen readily penetrates membranes and an equilibrium is rapidly achieved, followed by enzymatic cleavage in aminopeptidase positive cells, which results in trapping of less lipophilic metabolites. This targeting effect results in very high intracellular concentrations of its metabolite melphalan and subsequent apoptotic cell death. This results in a potency increase (melflufen vs melphalan) ranging from 10- to several 100-fold in different in vitro models. Melflufen triggers a rapid, robust, and an irreversible DNA damage which may account for its ability to overcome melphalan-resistance in multiple myeloma cells. Furthermore, anti-angiogenic properties of melflufen have been described. Consequently, it is hypothesized that melflufen could provide better efficacy but no more toxicity than what is achieved with melphalan, an assumption so far supported by experiences from hollow fiber and xenograft studies in rodents as well as by clinical data from patients with solid tumors and multiple myeloma. This review summarizes the current preclinical and clinical knowledge of melflufen.
Collapse
Affiliation(s)
- Malin Wickström
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, Uppsala SE, Sweden.,Department of Women's and Children's Health, Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Peter Nygren
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, Uppsala SE, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, Uppsala SE, Sweden
| | | | - Jakob Lindberg
- Oncopeptides AB, Västra Trädgårdsgatan 15, Stockholm, Sweden
| | - Per Sjöberg
- Oncopeptides AB, Västra Trädgårdsgatan 15, Stockholm, Sweden
| | - Markus Jerling
- Oncopeptides AB, Västra Trädgårdsgatan 15, Stockholm, Sweden
| | | | - Paul Richardson
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenneth Anderson
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Dharminder Chauhan
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Joachim Gullbo
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, Uppsala SE, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Uppsala, Sweden
| |
Collapse
|