1
|
Izzo D, Ascione L, Guidi L, Marsicano RM, Koukoutzeli C, Trapani D, Curigliano G. Innovative payloads for ADCs in cancer treatment: moving beyond the selective delivery of chemotherapy. Ther Adv Med Oncol 2025; 17:17588359241309461. [PMID: 39759830 PMCID: PMC11694294 DOI: 10.1177/17588359241309461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a transformative approach in cancer therapy by enhancing tumor targeting and minimizing systemic toxicity compared to traditional chemotherapy. Initially developed with chemotherapy agents as payloads, ADCs have now incorporated alternative payloads, such as immune-stimulating agents, natural toxins, and radionuclides, to improve therapeutic efficacy and specificity. A significant advancement in ADC technology is the integration of Proteolysis Targeting Chimeras (PROTACs), which enable the precise degradation of cellular targets involved in tumorigenesis. This strategy enhances the specificity and precision of cancer therapies, addressing key mechanisms in cancer cell survival. Moreover, incorporating radioactive isotopes into ADCs is an emerging strategy aimed at further improving therapeutic outcomes. By delivering localized radiation, this approach offers the potential to enhance the efficacy of treatment and expand the therapeutic arsenal. Despite these innovations, challenges remain, including dysregulated immune activation, severe adverse effects, and intrinsic immunogenicity of some agents. These emerging issues highlight the ongoing need for optimization in ADC therapy. This review summarizes the latest developments in ADC technology, focusing on novel payloads, PROTAC integration, and the potential for combining ADCs with other therapeutic modalities to refine cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Davide Izzo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Liliana Ascione
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Guidi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Renato Maria Marsicano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Liu M, Yuan M, Ma Y, Wang J, Cheng X, Shi Y, Shang J, He M, Bai L, Du L, Tang H. Wild-Type and rtA181T/sW172* Mutant Strains of Hepatitis B Virus Drive Hepatocarcinogenesis via Distinct GRP78-Mediated ER Stress Pathways. J Med Virol 2025; 97:e70151. [PMID: 39749680 DOI: 10.1002/jmv.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/14/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Glucose-regulated protein 78 kDa (GRP78), a key marker of endoplasmic reticulum stress (ERS), is upregulated in hepatocellular carcinoma (HCC) tissues, but its role in hepatitis B virus (HBV)-induced tumorigenesis remains unclear. This study aimed to investigate the contribution of GRP78 to HBV-associated tumor development and explore the ERS pathways involved. The results showed that increased GRP78 expression in patients with HBV-related HCC was associated with a poor prognosis within the first 2 years following diagnosis. Furthermore, using wild-type HBV strain and the oncogenic HBV rtA181T/sW172* mutant, this study demonstrated that the HBV-induced GRP78 expression correlated with elevated reactive oxygen species (ROS) levels. Moreover, GRP78 expression enhanced hepatocyte proliferation and resistance to apoptosis. In wild-type HBV-infected hepatocytes, GRP78 suppressed apoptosis by inhibiting the PERK/p38 pathway. In contrast, the HBV rtA181T/sW172* mutation led to increased GRP78 expression and inhibition of cell apoptosis through activation of the IRE-1α/XBP1/BCL-2 pathway. In conclusion, GRP78 plays a pivotal role in HBV-induced hepatocarcinogenesis by modulating distinct ERS pathways. Targeting these pathways may aid in the therapeutic management of HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yuanji Ma
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayi Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xing Cheng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Shang
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Min He
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Li G, Wang C, Jin B, Sun T, Sun K, Wang S, Fan Z. Advances in smart nanotechnology-supported photodynamic therapy for cancer. Cell Death Discov 2024; 10:466. [PMID: 39528439 PMCID: PMC11554787 DOI: 10.1038/s41420-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer has emerged as a formidable challenge in the 21st century, impacting society, public health, and the economy. Conventional cancer treatments often exhibit limited efficacy and considerable side effects, particularly in managing the advanced stages of the disease. Photodynamic therapy (PDT), a contemporary non-invasive therapeutic approach, employs photosensitizers (PS) in conjunction with precise light wavelengths to selectively target diseased tissues, inducing the generation of reactive oxygen species and ultimately leading to cancer cell apoptosis. In contrast to conventional therapies, PDT presents a lower incidence of side effects and greater precision in targeting. The integration of intelligent nanotechnology into PDT has markedly improved its effectiveness, as evidenced by the remarkable synergistic antitumor effects observed with the utilization of multifunctional nanoplatforms in conjunction with PDT. This paper provides a concise overview of the principles underlying PS and PDT, while also delving into the utilization of nanomaterial-based PDT in the context of cancer treatment.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Dalian, China
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Binghui Jin
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Tao Sun
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Dalian, China
| | - Kang Sun
- Department of Digestive Endoscopy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China.
| |
Collapse
|
4
|
Kim S, Park J, Han J, Jang KL. Hepatitis B Virus X Protein Induces Reactive Oxygen Species Generation via Activation of p53 in Human Hepatoma Cells. Biomolecules 2024; 14:1201. [PMID: 39456134 PMCID: PMC11505488 DOI: 10.3390/biom14101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV), particularly through the HBx protein, induces oxidative stress during liver infections. This study reveals that HBx increases reactive oxygen species (ROS) via two distinct mechanisms. The first mechanism is p53-independent, likely involving mitochondrial dysfunction, as demonstrated by elevated ROS levels in p53-deficient Hep3B cells and p53-knocked-down HepG2 cells after HBx expression or HBV infection. The increase in ROS persisted even when p53 transcriptional activity was inhibited by pifithrin-α (PFT-α), a p53 inhibitor. The second mechanism is p53-dependent, wherein HBx activates p53, which then amplifies ROS production through a feedback loop involving ROS and p53. The ability of HBx to elevate ROS levels was higher in HepG2 than in Hep3B cells. Knocking down p53 in HepG2 cells lowered ROS levels, while ectopic p53 expression in Hep3B cells raised ROS. HBx-activated p53 downregulated catalase and upregulated manganese-dependent superoxide dismutase, contributing to ROS amplification. The transcriptional activity of p53 was crucial for these effects, as cells with a p53 R175H mutation or those treated with PFT-α generated less ROS. Additionally, HBx variants with Ser-101 increased p53 and ROS levels, whereas variants with Pro-101 did not. These dual mechanisms of HBx-induced ROS generation are likely significant in the pathogenesis of HBV and may contribute to liver diseases, including hepatocellular carcinoma.
Collapse
Affiliation(s)
- Seungyeon Kim
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (S.K.); (J.P.); (J.H.)
| | - Jimin Park
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (S.K.); (J.P.); (J.H.)
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (S.K.); (J.P.); (J.H.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (S.K.); (J.P.); (J.H.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Pan Z, Seto WK, Liu CJ, Mao Y, Alqahtani SA, Eslam M. A literature review of genetics and epigenetics of HCV-related hepatocellular carcinoma: translational impact. Hepatobiliary Surg Nutr 2024; 13:650-661. [PMID: 39175720 PMCID: PMC11336528 DOI: 10.21037/hbsn-23-562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/19/2024] [Indexed: 08/24/2024]
Abstract
Background and Objective Hepatocellular carcinoma (HCC) poses a significant global health burden and ranks as the fifth most prevalent cancer on a global scale. Hepatitis C virus (HCV) infection remains one of the major risk factors for HCC development. HCC is a heterogeneous disease, and the development of HCC caused by HCV is intricate and involves various factors, including genetic susceptibility, viral factors, immune response due to chronic inflammation, alcohol abuse, and metabolic dysfunction associated with fatty liver disease. In this review, we provide a comprehensive and updated review of research on the genetics and epigenetic mechanisms implicated in developing HCC associated with HCV infection. We also discuss the potential translational implications, including novel biomarkers and drugs for treatment. Methods A comprehensive literature search was conducted in June 2023 in PubMed and Embase databases. Key Content and Findings Recent findings indicate that a variety of genetic and epigenetic processes are involved in the pathogenesis and continue to exist even after the complete elimination of HCV. The deregulation of the epigenome has been identified as a significant factor in the deletrious effects of liver disease, especially during the initial stages when genetic alterations are uncommon. The enduring "epigenetic memory" of gene expression is believed to be regulated by epigenetic mechanisms, indicating that alterations caused by HCV infection continue to exist and are linked to the risk of development of liver cancer even after successful treatment. Systems biology analytical methods will be required to delineate the magnitude and significance of both genetic and epigenomic alterations in tumor evolution. Conclusions By facilitating a more profound understanding of these aspects, this will ultimately foster the advancement of novel therapies and ultimately improve outcomes for patients.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chun-Jen Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
- Hepatitis Research Center, National Taiwan University Hospital, Taipei
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Kumazaki S, Hikita H, Tahata Y, Sung JH, Fukumoto K, Myojin Y, Sakane S, Murai K, Sasaki Y, Shirai K, Saito Y, Kodama T, Kakita N, Takahashi H, Toyoda H, Suda G, Morii E, Kojima T, Ebihara T, Shimizu K, Sasaki Y, Tatsumi T, Takehara T. Serum growth differentiation factor 15 is a novel biomarker with high predictive capability for liver cancer occurrence in patients with MASLD regardless of liver fibrosis. Aliment Pharmacol Ther 2024; 60:327-339. [PMID: 38828944 DOI: 10.1111/apt.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND AND AIMS Although metabolic dysfunction-associated steatotic liver disease (MASLD) patients with a Fib-4 index >1.3 are recommended for fibrosis evaluation via elastography or biopsy, a more convenient method identifying high-risk populations requiring follow-up is needed. We explored the utility of serum levels of growth differentiation factor-15 (GDF15), a cell stress-responsive cytokine related to metabolic syndrome, for stratifying the risk of clinical events in MASLD patients. METHODS Serum GDF15 levels were measured in 518 biopsy-performed MASLD patients, 216 MASLD patients for validation, and 361 health checkup recipients with MASLD. RESULTS In the biopsy-MASLD cohort, multivariate analysis indicated that the serum GDF15 level was a risk factor for liver cancer, independent of the fibrosis stage or Fib-4 index. Using a GDF15 cutoff of 1.75 ng/mL based on the Youden index, high-GDF15 patients, regardless of fibrosis status, had a higher liver cancer incidence rate. While patients with a Fib-4 index <1.3 or low-GDF15 rarely developed liver cancer, high-GDF15 patients with a Fib-4 index >1.3 developed liver cancer and decompensated liver events at significantly higher rates and had poorer prognoses. In the validation cohort, high-GDF15 patients had significantly higher incidences of liver cancer and decompensated liver events and poorer prognoses than low-GDF15 patients, whether limited to high-Fib-4 patients. Among health checkup recipients with MASLD, 23.0% had a Fib-4 index >1.3, 2.7% had a Fib-4 index >1.3 and >1.75 ng/mL GDF15. CONCLUSIONS Serum GDF15 is a biomarker for liver cancer with high predictive capability and is useful for identifying MASLD patients requiring regular surveillance.
Collapse
Affiliation(s)
- Shusuke Kumazaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Tahata
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ji Hyun Sung
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Fukumoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuta Myojin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichi Sasaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kumiko Shirai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshinobu Saito
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naruyasu Kakita
- Department of Gastroenterology and Hepatology, Kaizuka City Hospital, Osaka, Japan
| | - Hirokazu Takahashi
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Kojima
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology, Osaka Central Hospital, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Huang Q, Ren Y, Yuan P, Huang M, Liu G, Shi Y, Jia G, Chen M. Targeting the AMPK/Nrf2 Pathway: A Novel Therapeutic Approach for Acute Lung Injury. J Inflamm Res 2024; 17:4683-4700. [PMID: 39051049 PMCID: PMC11268519 DOI: 10.2147/jir.s467882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
ALI(acute lung injury) is a severe respiratory dysfunction caused by various intrapulmonary and extrapulmonary factors. It is primarily characterized by oxidative stress and affects the integrity of the pulmonary barrier. In severe cases, ALI can progress to ARDS(acute respiratory distress syndrome), a condition that poses a serious threat to the lives of affected patients. To date, the etiological mechanisms underlying ALI remain elusive, and available therapeutic options are quite limited. AMPK(AMP-activated protein kinase), an essential serine/threonine protein kinase, performs a pivotal function in the regulation of cellular energy levels and cellular regulatory mechanisms, including the detection of redox signals and mitigating oxidative stress. Meanwhile, Nrf2(nuclear factor erythroid 2-related factor 2), a critical transcription factor, alleviates inflammation and oxidative responses by interacting with multiple signaling pathways and contributing to the modulation of oxidative enzymes associated with inflammation and programmed cell death. Indeed, AMPK induces the dissociation of Nrf2 from Keap1(kelch-like ECH-associated protein-1) and facilitates its translocation into the nucleus to trigger the transcription of downstream antioxidant genes, ultimately suppressing the expression of inflammatory cells in the lungs. Given their roles, AMPK and Nrf2 hold promise as novel treatment targets for ALI. This study aimed to summarise the current status of research on the AMPK/Nrf2 signaling pathway in ALI, encompassing recently reported natural compounds and drugs that can activate the AMPK/Nrf2 signaling pathway to alleviate lung injury, and provide a theoretical reference for early intervention in lung injury and future research on lung protection.
Collapse
Affiliation(s)
- Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ping Yuan
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ma Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Guoyue Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yuanzhi Shi
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Guiyang Jia
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| |
Collapse
|
8
|
Jeong Y, Han J, Jang KL. Reactive Oxygen Species Induction by Hepatitis B Virus: Implications for Viral Replication in p53-Positive Human Hepatoma Cells. Int J Mol Sci 2024; 25:6606. [PMID: 38928309 PMCID: PMC11204012 DOI: 10.3390/ijms25126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis B virus (HBV) infects approximately 300 million people worldwide, causing chronic infections. The HBV X protein (HBx) is crucial for viral replication and induces reactive oxygen species (ROS), leading to cellular damage. This study explores the relationship between HBx-induced ROS, p53 activation, and HBV replication. Using HepG2 and Hep3B cell lines that express the HBV receptor NTCP, we compared ROS generation and HBV replication relative to p53 status. Results indicated that HBV infection significantly increased ROS levels in p53-positive HepG2-NTCP cells compared to p53-deficient Hep3B-NTCP cells. Knockdown of p53 reduced ROS levels and enhanced HBV replication in HepG2-NTCP cells, whereas p53 overexpression increased ROS and inhibited HBV replication in Hep3B-NTCP cells. The ROS scavenger N-acetyl-L-cysteine (NAC) reversed these effects. The study also found that ROS-induced degradation of the HBx is mediated by the E3 ligase Siah-1, which is activated by p53. Mutations in p53 or inhibition of its transcriptional activity prevented ROS-mediated HBx degradation and HBV inhibition. These findings reveal a p53-dependent negative feedback loop where HBx-induced ROS increases p53 levels, leading to Siah-1-mediated HBx degradation and HBV replication inhibition. This study offers insights into the molecular mechanisms of HBV replication and identifies potential therapeutic targets involving ROS and p53 pathways.
Collapse
Affiliation(s)
- Yuna Jeong
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Mondal A, Sarkar A, Das D, Sengupta A, Kabiraj A, Mondal P, Nag R, Mukherjee S, Das C. Epigenetic orchestration of the DNA damage response: Insights into the regulatory mechanisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:99-141. [PMID: 39179350 DOI: 10.1016/bs.ircmb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The DNA damage response (DDR) is a critical cellular mechanism that safeguards genome integrity and prevents the accumulation of harmful DNA lesions. Increasing evidence highlights the intersection between DDR signaling and epigenetic regulation, offering profound insights into various aspects of cellular function including oncogenesis. This comprehensive review explores the intricate relationship between the epigenetic modifications and DDR activation, with a specific focus on the impact of viral infections. Oncogenic viruses, such as human papillomavirus, hepatitis virus (HBV or HCV), and Epstein-Barr virus have been shown to activate the DDR. Consequently, these DNA damage events trigger a cascade of epigenetic alterations, including changes in DNA methylation patterns, histone modifications and the expression of noncoding RNAs. These epigenetic changes exert profound effects on chromatin structure, gene expression, and maintenance of genome stability. Importantly, elucidation of the viral-induced epigenetic alterations in the context of DDR holds significant implications for comprehending the complexity of cancer and provides potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Dipanwita Das
- Virus Unit [NICED-ICMR], ID and BG Hospital, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Rachayita Nag
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
10
|
Ioniuc I, Lupu A, Tarnita I, Mastaleru A, Trandafir LM, Lupu VV, Starcea IM, Alecsa M, Morariu ID, Salaru DL, Azoicai A. Insights into the Management of Chronic Hepatitis in Children-From Oxidative Stress to Antioxidant Therapy. Int J Mol Sci 2024; 25:3908. [PMID: 38612717 PMCID: PMC11011982 DOI: 10.3390/ijms25073908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Recent research has generated awareness of the existence of various pathophysiological pathways that contribute to the development of chronic diseases; thus, pro-oxidative factors have been accepted as significant contributors to the emergence of a wide range of diseases, from inflammatory to malignant. Redox homeostasis is especially crucial in liver pathology, as disturbances at this level have been linked to a variety of chronic diseases. Hepatitis is an umbrella term used to describe liver inflammation, which is the foundation of this disease regardless of its cause. Chronic hepatitis produces both oxidative stress generated by hepatocyte inflammation and viral inoculation. The majority of hepatitis in children is caused by a virus, and current studies reveal that 60-80% of cases become chronic, with many young patients still at risk of advancing liver damage. This review intends to emphasize the relevance of understanding these pathological redox pathways, as well as the need to update therapeutic strategies in chronic liver pathology, considering the beneficial effects of antioxidants.
Collapse
Affiliation(s)
- Ileana Ioniuc
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Ancuta Lupu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Irina Tarnita
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Alexandra Mastaleru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (D.L.S.)
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Vasile Valeriu Lupu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Iuliana Magdalena Starcea
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Mirabela Alecsa
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (D.L.S.)
| | - Alice Azoicai
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| |
Collapse
|
11
|
Coelho Ferraz A, Bueno da Silva Menegatto M, Lameira Souza Lima R, Samuel Ola-Olub O, Caldeira Costa D, Carlos de Magalhães J, Maurício Rezende I, Desiree LaBeaud A, P Monath T, Augusto Alves P, Teixeira de Carvalho A, Assis Martins-Filho O, P Drumond B, Magalhães CLDB. Yellow fever virus infection in human hepatocyte cells triggers an imbalance in redox homeostasis with increased reactive oxygen species production, oxidative stress, and decreased antioxidant enzymes. Free Radic Biol Med 2024; 213:266-273. [PMID: 38278309 PMCID: PMC10911966 DOI: 10.1016/j.freeradbiomed.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
Yellow fever (YF) presents a wide spectrum of severity, with clinical manifestations in humans ranging from febrile and self-limited to fatal cases. Although YF is an old disease for which an effective and safe vaccine exists, little is known about the viral- and host-specific mechanisms that contribute to liver pathology. Several studies have demonstrated that oxidative stress triggered by viral infections contributes to pathogenesis. We evaluated whether yellow fever virus (YFV), when infecting human hepatocytes cells, could trigger an imbalance in redox homeostasis, culminating in oxidative stress. YFV infection resulted in a significant increase in reactive oxygen species (ROS) levels from 2 to 4 days post infection (dpi). When measuring oxidative parameters at 4 dpi, YFV infection caused oxidative damage to lipids, proteins, and DNA, evidenced by an increase in lipid peroxidation/8-isoprostane, carbonyl protein, and 8-hydroxy-2'-deoxyguanosine, respectively. Furthermore, there was a significant reduction in the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), in addition to a reduction in the ratio of reduced to oxidized glutathione (GSH/GSSG), indicating a pro-oxidant environment. However, no changes were observed in the enzymatic activity of the enzyme catalase (CAT) or in the gene expression of SOD isoforms (1/2/3), CAT, or GPx. Therefore, our results show that YFV infection generates an imbalance in redox homeostasis, with the overproduction of ROS and depletion of antioxidant enzymes, which induces oxidative damage to cellular constituents. Moreover, as it has been demonstrated that oxidative stress is a conspicuous event in YFV infection, therapeutic strategies based on antioxidant biopharmaceuticals may be new targets for the treatment of YF.
Collapse
Affiliation(s)
- Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Oluwashola Samuel Ola-Olub
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - José Carlos de Magalhães
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Minas Gerais, Brazil
| | - Izabela Maurício Rezende
- Pandemic Preparedenss Hub, Divison of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Angelle Desiree LaBeaud
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, California, United States
| | | | - Pedro Augusto Alves
- Imunologia de Doenças Virais, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira de Carvalho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Betânia P Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Isaguliants MG, Ivanov AV, Buonaguro FM. Chronic Viral Infections and Cancer, Openings for Therapies and Vaccines. Cancers (Basel) 2024; 16:818. [PMID: 38398209 PMCID: PMC10886681 DOI: 10.3390/cancers16040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024] Open
Abstract
Infections are responsible for approximately one out of six cases of cancer worldwide [...].
Collapse
Affiliation(s)
- Maria G. Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy;
| |
Collapse
|
13
|
Sinha S, Hassan N, Schwartz RE. Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology 2024; 79:482-501. [PMID: 36626634 DOI: 10.1097/hep.0000000000000012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
The synchronous functioning and quality control of organelles ensure cell survival and function and are essential for maintaining homeostasis. Prolonged exposure to stressors (viruses, bacteria, parasitic infections, alcohol, drugs) or genetic mutations often disrupt the functional integrity of organelles which plays a critical role in the initiation and progression of several diseases including chronic liver diseases. One of the most important pathologic consequences of chronic liver diseases is liver fibrosis, characterized by tissue scarring due to the progressive accumulation of extracellular matrix components. Left untreated, fibrosis may advance to life-threatening complications such as cirrhosis, hepatic decompensation, and HCC, which collectively accounts for ∼1 million deaths per year worldwide. Owing to the lack of treatment options that can regress or reverse cirrhosis, liver transplantation is currently the only available treatment for end-stage liver disease. However, the limited supply of usable donor organs, adverse effects of lifelong immunosuppressive regimes, and financial considerations pose major challenges and limit its application. Hence, effective therapeutic strategies are urgently needed. An improved understanding of the organelle-level regulation of fibrosis can help devise effective antifibrotic therapies focused on reducing organelle stress, limiting organelle damage, improving interorganelle crosstalk, and restoring organelle homeostasis; and could be a potential clinical option to avoid transplantation. This review provides a timely update on the recent findings and mechanisms covering organelle-specific dysfunctions in liver fibrosis, highlights how correction of organelle functions opens new treatment avenues and discusses the potential challenges to clinical application.
Collapse
Affiliation(s)
- Saloni Sinha
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
14
|
Shokeen K, Kumar S. Newcastle disease virus regulates its replication by instigating oxidative stress-driven Sirtuin 7 production. J Gen Virol 2024; 105. [PMID: 38376490 DOI: 10.1099/jgv.0.001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Yoon H, Jang KL. Hydrogen Peroxide Inhibits Hepatitis C Virus Replication by Downregulating Hepatitis C Virus Core Levels through E6-Associated Protein-Mediated Proteasomal Degradation. Cells 2023; 13:62. [PMID: 38201266 PMCID: PMC10778395 DOI: 10.3390/cells13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis C virus (HCV) is constantly exposed to considerable oxidative stress, characterized by elevated levels of reactive oxygen species, including hydrogen peroxide (H2O2), during acute and chronic infection in the hepatocytes of patients. However, the effect of oxidative stress on HCV replication is largely unknown. In the present study, we demonstrated that H2O2 downregulated HCV Core levels to inhibit HCV replication. For this purpose, H2O2 upregulated p53 levels, resulting in the downregulation of both the protein and enzyme activity levels of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b, and activated the expression of E6-associated protein (E6AP) through promoter hypomethylation in the presence of HCV Core. E6AP, an E3 ligase, induced the ubiquitin-dependent proteasomal degradation of HCV Core in a p53-dependent manner. The inhibitory effect of H2O2 on HCV replication was almost completely nullified either by treatment with a representative antioxidant, N-acetyl-L-cysteine, or by knockdown of p53 or E6AP using a specific short hairpin RNA, confirming the roles of p53 and E6AP in the inhibition of HCV replication by H2O2. This study provides insights into the mechanisms that regulate HCV replication under conditions of oxidative stress in patients.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea;
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea;
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
16
|
Aasarey R, Yadav K, Kashyap BK, Prabha S, Kumar P, Kumar A, Ruokolainen J, Kesari KK. Role of Immunological Cells in Hepatocellular Carcinoma Disease and Associated Pathways. ACS Pharmacol Transl Sci 2023; 6:1801-1816. [PMID: 38093838 PMCID: PMC10714437 DOI: 10.1021/acsptsci.3c00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 03/28/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the predominant causes of cancer-related mortality across the globe. It is attributed to obesity, excessive alcohol consumption, smoking, and infection by the hepatitis virus. Early diagnosis of HCC is essential, and local treatments such as surgical excision and percutaneous ablation are effective. Palliative systemic therapy, primarily with the tyrosine kinase inhibitor Sorafenib, is used in advanced cases. However, the prognosis for advanced HCC remains poor. This Review additionally describes the pathophysiological mechanisms of HCC, which include aberrant molecular signaling, genomic instability, persistent inflammation, and the paradoxical position of the immune system in promoting and suppressing HCC. The paper concludes by discussing the growing body of research on the relationship between mitochondria and HCC, suggesting that mitochondrial dysfunction may contribute to the progression of HCC. This Review focuses on immunological interactions between different mechanisms of HCC progression, including obesity, viral infection, and alcohol consumption.
Collapse
Affiliation(s)
- Ram Aasarey
- Department
of Laboratory Medicine, All India Institute
of Medical Science, New Delhi-11029, India
| | - Kajal Yadav
- Department
of Biotechnology, All India Institute of
Medical Science, New Delhi-11029, India
| | - Brijendra Kumar Kashyap
- Department
of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi-284128, Uttar Pradesh, India
| | - Sarit Prabha
- Department
of Biological Science and Engineering, Maulana
Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh,India
| | - Pramod Kumar
- Indian
Council of Medical Research, National Institute
of Cancer Prevention and Research (NICPR), l-7, Sector-39, Noida-201301, National Capital Region, India
| | - Anil Kumar
- Department
of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke-835222, Ranchi, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara-144411, Punjab, India
| |
Collapse
|
17
|
Ning Q, Yang T, Guo X, Huang Y, Gao Y, Liu M, Yang P, Guan Y, Liu N, Wang Y, Chen D. CHB patients with rtA181T-mutated HBV infection are associated with higher risk hepatocellular carcinoma due to increases in mutation rates of tumour suppressor genes. J Viral Hepat 2023; 30:951-958. [PMID: 37735836 DOI: 10.1111/jvh.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
The HBV rtA181T mutation is associated with an increased risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). This study aimed to evaluate the mechanism by which rtA181T mutation increases the risk of HCC. We enrolled 470 CHB patients with rtA181T and rtA181V mutation in this study; 68 (22.15%) of the 307 patients with rtA181T mutation and 22 (13.5%) of the 163 patients with rtA181V mutation developed HCC (p < .05). The median follow-up periods were 8.148 and 8.055 years (p > .05). Serum HBV DNA and HBsAg levels in rtA181T-positive patients were similar to that in rtA181V-positive patients. However, the serum HBeAg levels in the rtA181T-positive patients were significantly higher than that in rtA181V-positive patients. In situ hybridization experiments showed that the HBV cccDNA and HBV RNA levels were significantly higher in the liver cancer tissues of patients with the rtA181T mutation compared to that in the tissues of patients with the rtA181V mutation. The percentage of anti-tumour hot-gene site mutations was significantly higher in the rtA181T-positive HCC liver tissue compared to that in the rtA181T-negative HCC liver tissue (7.65% and 4.3%, p < .05). This is the first study to use a large cohort and a follow-up of more than 5 years (average 8 years) to confirm that the rtA181T mutation increased the risk of HCC, and that it could be related to the increase in the mutation rate of hotspots of tumour suppressor genes (CTNNB1, TP53, NRAS and PIK3CA).
Collapse
Affiliation(s)
- Qiqi Ning
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Tongwang Yang
- Academician Workstation, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xianghua Guo
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Yanxiang Huang
- Clinical laboratory center, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Yuxue Gao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Mengcheng Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Pengxiang Yang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Yuanyue Guan
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Ning Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Yang Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| |
Collapse
|
18
|
Arain MA, Khaskheli GB, Shah AH, Marghazani IB, Barham GS, Shah QA, Khand FM, Buzdar JA, Soomro F, Fazlani SA. Nutritional significance and promising therapeutic/medicinal application of camel milk as a functional food in human and animals: a comprehensive review. Anim Biotechnol 2023; 34:1988-2005. [PMID: 35389299 DOI: 10.1080/10495398.2022.2059490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Camel milk (CM) is the key component of human diet specially for the population belongs to the arid and semi-arid regions of the world. CM possess unique composition as compare to the cow milk with abundant amount of medium chain fatty acids in fat low lactose and higher concentration of whey protein and vitamin C. Besides the nutritional significance of CM, it also contains higher concentration of bioactive compounds including bioactive peptides, lactic acid bacteria (LAB), lactoferrin (LF), lactoperoxidase, lysozyme casein and immunoglobulin. Recently, CM and their bioactive compounds gaining more attention toward scientific community owing to their multiple health benefits, especially in the current era of emerging drug resistance and untold side effects of synthetic medicines. Consumption of fresh or fermented CM and its products presumed exceptional nutraceutical and medicinal properties, including antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, hepatoprotective, nephroprotective, anticancer and immunomodulatory activities. Moreover, CM isolated LAB exhibit antioxidant and probiotic effects leading to enhance the innate and adaptive immune response against both gram-negative and gram-positive pathogenic bacteria. The main objective of this review is to highlight the nutritional significance, pharmaceutical potential, medicinal value and salient beneficial health aspect of CM for human and animals.
Collapse
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Gul Bahar Khaskheli
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Atta Hussain Shah
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Illahi Bakhash Marghazani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ghulam Shabir Barham
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Faiz Muhammad Khand
- Department of Veterinary Surgery, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Feroza Soomro
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Sarfraz Ali Fazlani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| |
Collapse
|
19
|
Ariffianto A, Deng L, Abe T, Matsui C, Ito M, Ryo A, Aly HH, Watashi K, Suzuki T, Mizokami M, Matsuura Y, Shoji I. Oxidative stress sensor Keap1 recognizes HBx protein to activate the Nrf2/ARE signaling pathway, thereby inhibiting hepatitis B virus replication. J Virol 2023; 97:e0128723. [PMID: 37800948 PMCID: PMC10617466 DOI: 10.1128/jvi.01287-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is one of the most important defense mechanisms against oxidative stress. We previously reported that a cellular hydrogen peroxide scavenger protein, peroxiredoxin 1, a target gene of transcription factor Nrf2, acts as a novel HBV X protein (HBx)-interacting protein and negatively regulates hepatitis B virus (HBV) propagation through degradation of HBV RNA. This study further demonstrates that the Nrf2/ARE signaling pathway is activated during HBV infection, eventually leading to the suppression of HBV replication. We provide evidence suggesting that Keap1 interacts with HBx, leading to Nrf2 activation and inhibition of HBV replication via suppression of HBV core promoter activity. This study raises the possibility that activation of the Nrf2/ARE signaling pathway is a potential therapeutic strategy against HBV. Our findings may contribute to an improved understanding of the negative regulation of HBV replication by the antioxidant response.
Collapse
Affiliation(s)
- Adi Ariffianto
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hussein Hassan Aly
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masashi Mizokami
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
20
|
Werner AD, Schauflinger M, Norris MJ, Klüver M, Trodler A, Herwig A, Brandstädter C, Dillenberger M, Klebe G, Heine A, Saphire EO, Becker K, Becker S. The C-terminus of Sudan ebolavirus VP40 contains a functionally important CX nC motif, a target for redox modifications. Structure 2023; 31:1038-1051.e7. [PMID: 37392738 DOI: 10.1016/j.str.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.
Collapse
Affiliation(s)
| | | | - Michael J Norris
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Michael Klüver
- Institute for Virology, Philipps-University of Marburg, Marburg, Germany
| | - Anna Trodler
- Institute for Virology, Philipps-University of Marburg, Marburg, Germany
| | - Astrid Herwig
- Institute for Virology, Philipps-University of Marburg, Marburg, Germany
| | - Christina Brandstädter
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Gerhard Klebe
- Institute for Pharmaceutical Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Andreas Heine
- Institute for Pharmaceutical Chemistry, Philipps-University of Marburg, Marburg, Germany
| | | | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute for Virology, Philipps-University of Marburg, Marburg, Germany.
| |
Collapse
|
21
|
Yoon H, Lee HK, Jang KL. Hydrogen Peroxide Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation in Human Hepatoma Cells. Int J Mol Sci 2023; 24:13354. [PMID: 37686160 PMCID: PMC10488175 DOI: 10.3390/ijms241713354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The hepatitis B virus (HBV) is constantly exposed to significant oxidative stress characterized by elevated levels of reactive oxygen species (ROS), such as H2O2, during infection in hepatocytes of patients. In this study, we demonstrated that H2O2 inhibits HBV replication in a p53-dependent fashion in human hepatoma cell lines expressing sodium taurocholate cotransporting polypeptide. Interestingly, H2O2 failed to inhibit the replication of an HBV X protein (HBx)-null HBV mutant, but this defect was successfully complemented by ectopic expression of HBx. Additionally, H2O2 upregulated p53 levels, leading to increased expression of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induced the ubiquitination-dependent proteasomal degradation of HBx. The inhibitory effect of H2O2 was nearly abolished not only by treatment with a representative antioxidant, N-acetyl-L-cysteine but also by knockdown of either p53 or Siah-1 using specific short hairpin RNA, confirming the role of p53 and Siah-1 in the inhibition of HBV replication by H2O2. The present study provides insights into the mechanism that regulates HBV replication under conditions of oxidative stress in patients.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
| | - Hye-Kyoung Lee
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
22
|
Chen Z, Peng P, Wang M, Deng X, Chen R. Bioinformatics-based and multiscale convolutional neural network screening of herbal medicines for improving the prognosis of liver cancer: a novel approach. Front Med (Lausanne) 2023; 10:1218496. [PMID: 37680619 PMCID: PMC10481873 DOI: 10.3389/fmed.2023.1218496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023] Open
Abstract
Background Liver cancer is one of the major diseases threatening human life and health, and this study aims to explore new methods for treating liver cancer. Methods A deep learning model for the efficacy of clinical herbal medicines for liver cancer was constructed based on NDCNN, combined with the natural evolutionary rules of a genetic algorithm to obtain the herbal compound for liver cancer treatment. We obtained differential genes between liver cancer tissues and normal tissues from the analysis of TCGA database, screened the active ingredients and corresponding targets of the herbal compound using the TCMSP database, mapped the intersection to obtain the potential targets of the herbal compound for liver cancer treatment in the Venny platform, constructed a PPI network, and conducted GO analysis and KEGG analysis on the targets of the herbal compound for liver cancer treatment. Finally, the key active ingredients and important targets were molecularly docked. Results The accuracy of the NDCNN training set was 0.92, and the accuracy of the test set was 0.84. After combining with the genetic algorithm for 1,000 iterations, a set of Chinese herbal compound prescriptions was finally the output. A total of 86 targets of the herbal compound for liver cancer were obtained, mainly five core targets of IL-6, ESR1, JUN, IL1β, and MMP9. Among them, quercetin, kaempferol, and stigmasterol may be the key active ingredients in hepatocellular carcinoma, and the herbal compound may be participating in an inflammatory response and the immune regulation process by mediating the IL-17 signaling pathway, the TNF signaling pathway, and so on. The anticancer effects of the herbal compound may be mediated by the IL-17 signaling pathway, the TNF signaling pathway, and other signaling pathways involved in inflammatory response and immune regulation. Molecular docking showed that the three core target proteins produced stable binding to the two main active ingredients. Conclusion The screening of effective herbal compounds for the clinical treatment of liver cancer based on NDCNN and genetic algorithms is a feasible approach and will provide ideas for the development of herbal medicines for the treatment of liver cancer and other cancers.
Collapse
Affiliation(s)
- Zeshan Chen
- Department of Traditional Chinese Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Peichun Peng
- International Zhuang Medicine Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Miaodong Wang
- Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Xin Deng
- Basic Medical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Rudi Chen
- Guangxi University of Traditional Chinese Medicine, Nanning, China
| |
Collapse
|
23
|
Allameh A, Niayesh-Mehr R, Aliarab A, Sebastiani G, Pantopoulos K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants (Basel) 2023; 12:1653. [PMID: 37759956 PMCID: PMC10525124 DOI: 10.3390/antiox12091653] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The liver is an organ that is particularly exposed to reactive oxygen species (ROS), which not only arise during metabolic functions but also during the biotransformation of xenobiotics. The disruption of redox balance causes oxidative stress, which affects liver function, modulates inflammatory pathways and contributes to disease. Thus, oxidative stress is implicated in acute liver injury and in the pathogenesis of prevalent infectious or metabolic chronic liver diseases such as viral hepatitis B or C, alcoholic fatty liver disease, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Moreover, oxidative stress plays a crucial role in liver disease progression to liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Herein, we provide an overview on the effects of oxidative stress on liver pathophysiology and the mechanisms by which oxidative stress promotes liver disease.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Giada Sebastiani
- Chronic Viral Illness Services, McGill University Health Center, Montreal, QC H4A 3J1, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kostas Pantopoulos
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
24
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
25
|
Shoraka S, Hosseinian SM, Hasibi A, Ghaemi A, Mohebbi SR. The role of hepatitis B virus genome variations in HBV-related HCC: effects on host signaling pathways. Front Microbiol 2023; 14:1213145. [PMID: 37588887 PMCID: PMC10426804 DOI: 10.3389/fmicb.2023.1213145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, with a high prevalence in many regions. There are variations in the etiology of HCC in different regions, but most cases are due to long-term infection with viral hepatitis. Hepatitis B virus (HBV) is responsible for more than 50% of virus-related HCC, which highlights the importance of HBV in pathogenesis of the disease. The development and progression of HBV-related HCC is a complex multistep process that can involve host, viral, and environmental factors. Several studies have suggested that some HBV genome mutations as well as HBV proteins can dysregulate cell signaling pathways involved in the development of HCC. Furthermore, it seems that the pathogenicity, progression of liver diseases, response to treatment and also viral replication are different among HBV mutants. Understanding the relationship between HBV genome variations and host signaling pathway alteration will improve our understanding of the molecular pathogenesis of HBV-related HCC. Furthermore, investigating commonly dysregulated pathways in HBV-related HCC is necessary to discover more specific therapeutic targets and develop more effective strategies for HCC treatment. The objective of this review is to address the role of HBV in the HCC progression and primarily focus on the impacts of HBV genome variations on HCC-related signaling pathways.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mahdi Hosseinian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayda Hasibi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Fredsgaard M, Kaniki SEK, Antonopoulou I, Chaturvedi T, Thomsen MH. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1, HBV, HCV, and HIV: A Review. Molecules 2023; 28:5312. [PMID: 37513186 PMCID: PMC10384198 DOI: 10.3390/molecules28145312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.
Collapse
Affiliation(s)
| | | | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | | | | |
Collapse
|
27
|
Wróblewska J, Wróblewski M, Hołyńska-Iwan I, Modrzejewska M, Nuszkiewicz J, Wróblewska W, Woźniak A. The Role of Glutathione in Selected Viral Diseases. Antioxidants (Basel) 2023; 12:1325. [PMID: 37507865 PMCID: PMC10376684 DOI: 10.3390/antiox12071325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
During inflammatory processes, immunocompetent cells are exposed to substantial amounts of free radicals and toxic compounds. Glutathione is a cysteine-containing tripeptide that is an important and ubiquitous antioxidant molecule produced in human organs. The intracellular content of GSH regulates the detoxifying capacity of cells, as well as the inflammatory and immune response. GSH is particularly important in the liver, where it serves as the major non-protein thiol involved in cellular antioxidant defense. There are numerous causes of hepatitis. The inflammation of the liver can be caused by a variety of infectious viruses. The relationship between oxidative stress and the hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV) infection is not fully known. The aim of this study was to examine the relationship between hepatotropic viruses and glutathione status, including reduced glutathione (GSH) and oxidized glutathione (GSSG), as well as antioxidant enzymes, e.g., glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) in liver diseases.
Collapse
Affiliation(s)
- Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Weronika Wróblewska
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
28
|
Smirnova OA, Ivanova ON, Mukhtarov F, Valuev-Elliston VT, Fedulov AP, Rubtsov PM, Zakirova NF, Kochetkov SN, Bartosch B, Ivanov AV. Hepatitis Delta Virus Antigens Trigger Oxidative Stress, Activate Antioxidant Nrf2/ARE Pathway, and Induce Unfolded Protein Response. Antioxidants (Basel) 2023; 12:974. [PMID: 37107349 PMCID: PMC10136299 DOI: 10.3390/antiox12040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. Although the virus encodes just two forms of its single antigen, it enhances the progression of liver disease to cirrhosis in CHB patients and increases the incidence of hepatocellular carcinoma. HDV pathogenesis so far has been attributed to virus-induced humoral and cellular immune responses, while other factors have been neglected. Here, we evaluated the impact of the virus on the redox status of hepatocytes, as oxidative stress is believed to contribute to the pathogenesis of various viruses, including HBV and hepatitis C virus (HCV). We show that the overexpression of large HDV antigen (L-HDAg) or autonomous replication of the viral genome in cells leads to increased production of reactive oxygen species (ROS). It also leads to the upregulated expression of NADPH oxidases 1 and 4, cytochrome P450 2E1, and ER oxidoreductin 1α, which have previously been shown to mediate oxidative stress induced by HCV. Both HDV antigens also activated the Nrf2/ARE pathway, which controls the expression of a spectrum of antioxidant enzymes. Finally, HDV and its large antigen also induced endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR). In conclusion, HDV may enhance oxidative and ER stress induced by HBV, thus aggravating HBV-associated pathologies, including inflammation, liver fibrosis, and the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Furkat Mukhtarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Artemy P. Fedulov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Petr M. Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Birke Bartosch
- Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69434 Lyon, France;
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| |
Collapse
|
29
|
Loureiro D, Tout I, Narguet S, Bed CM, Roinard M, Sleiman A, Boyer N, Pons‐Kerjean N, Castelnau C, Giuly N, Tonui D, Soumelis V, El Benna J, Soussan P, Moreau R, Paradis V, Mansouri A, Asselah T. Mitochondrial stress in advanced fibrosis and cirrhosis associated with chronic hepatitis B, chronic hepatitis C, or nonalcoholic steatohepatitis. Hepatology 2023; 77:1348-1365. [PMID: 35971873 PMCID: PMC10026976 DOI: 10.1002/hep.32731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection causes oxidative stress (OS) and alters mitochondria in experimental models. Our goal was to investigate whether HBV might alter liver mitochondria also in humans, and the resulting mitochondrial stress might account for the progression of fibrosis in chronic hepatitis B (CHB). APPROACH AND RESULTS The study included 146 treatment-naïve CHB mono-infected patients. Patients with CHB and advanced fibrosis (AF) or cirrhosis (F3-F4) were compared to patients with no/mild-moderate fibrosis (F0-F2). Patients with CHB were further compared to patients with chronic hepatitis C (CHC; n = 33), nonalcoholic steatohepatatis (NASH; n = 12), and healthy controls ( n = 24). We detected oxidative damage to mitochondrial DNA (mtDNA), including mtDNA strand beaks, and identified multiple mtDNA deletions in patients with F3-F4 as compared to patients with F0-F2. Alterations in mitochondrial function, mitochondrial unfolded protein response, biogenesis, mitophagy, and liver inflammation were observed in patients with AF or cirrhosis associated with CHB, CHC, and NASH. In vitro , significant increases of the mitochondrial formation of superoxide and peroxynitrite as well as mtDNA damage, nitration of the mitochondrial respiratory chain complexes, and impairment of complex I occurred in HepG2 cells replicating HBV or transiently expressing hepatitits B virus X protein. mtDNA damage and complex I impairment were prevented with the superoxide-scavenging Mito-Tempo or with inducible nitric oxide synthase (iNOS)-specific inhibitor 1400 W. CONCLUSIONS Our results emphasized the importance of mitochondrial OS, mtDNA damage, and associated alterations in mitochondrial function and dynamics in AF or cirrhosis in CHB and NASH. Mitochondria might be a target in drug development to stop fibrosis progression.
Collapse
Affiliation(s)
- Dimitri Loureiro
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Issam Tout
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Stéphanie Narguet
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Cheikh Mohamed Bed
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Morgane Roinard
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Ahmad Sleiman
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Boyer
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Pons‐Kerjean
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Pharmacy, Hôpital Beaujon, Clichy, France
| | - Corinne Castelnau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Giuly
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Dorothy Tonui
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Vassili Soumelis
- Université de Paris Cité, INSERM U976 HIPI Unit, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint‐Louis, Paris, France
| | - Jamel El Benna
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | | | - Richard Moreau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Abdellah Mansouri
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Tarik Asselah
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| |
Collapse
|
30
|
Transcriptomic Analysis of Hepatitis B Infected Liver for Prediction of Hepatocellular Carcinoma. BIOLOGY 2023; 12:biology12020188. [PMID: 36829466 PMCID: PMC9952979 DOI: 10.3390/biology12020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Hepatocellular cancer (HCC) is a leading cause of cancer-related mortality worldwide, and chronic hepatitis B virus infection (CHB) has been a major risk factor for HCC development. The pathogenesis of HBV-related HCC has been a major focus revealing the interplay of a multitude of intracellular signaling pathways, yet the precise mechanisms and their implementations to clinical practice remain to be elucidated. This study utilizes publicly available transcriptomic data from the livers of CHB patients in order to identify a population with a higher risk of malignant transformation. We report the identification of a novel list of genes (PCM1) which can generate clear transcriptomic sub-groups among HBV-infected livers. PCM1 includes genes related to cell cycle activity and liver cancer development. In addition, markers of inflammation, M1 macrophages and gamma delta T cell infiltration are present within the signature. Genes within PCM1 are also able to differentiate HCC from normal liver, and some genes within the signature are associated with poor prognosis of HCC at the mRNA level. The analysis of the immunohistochemical stainings validated that proteins coded by a group of PCM1 genes were overexpressed in liver cancer, while minimal or no expression was detected in normal liver. Altogether, our findings suggest that PCM1 can be developed into a clinically applicable method to identify CHB patients with a higher risk of HCC development.
Collapse
|
31
|
Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay - related mechanisms underlying liver disease progression. Front Immunol 2022; 13:965548. [PMID: 36544761 PMCID: PMC9760931 DOI: 10.3389/fimmu.2022.965548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV) constitute common chronic liver diseases with worldwide distribution. NAFLD burden is expected to grow in the coming decade, especially in western countries, considering the increased incidence of diabetes and obesity. Despite the organized HBV vaccinations and use of anti-viral therapies globally, HBV infection remains endemic and challenging public health issue. As both NAFLD and HBV have been associated with the development of progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the co-occurrence of both diseases has gained great research and clinical interest. The causative relationship between NAFLD and HBV infection has not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity in NAFLD disease seems to initiate activation of signaling pathways that enhance pro-inflammatory responses and disrupt hepatocyte cell homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and HCC and can affect HBV replication and immune encountering of HBV virus, which may further have impact on liver disease progression. Chronic HBV infection is suggested to have an influence on metabolic changes, which could lead to NAFLD development and the HBV-induced inflammatory responses and molecular pathways may constitute an aggravating factor in hepatic steatosis development. The observed altered immune homeostasis in both HBV infection and NAFLD could be associated with progression to HCC development. Elucidation of the possible mechanisms beyond HBV chronic infection and NAFLD diseases, which could lead to advanced liver disease or increase the risk for severe complications, in the case of HBV-NAFLD co-existence is of high clinical significance in the context of designing effective therapeutic targets.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
32
|
Sarantis P, Trifylli EM, Koustas E, Papavassiliou KA, Karamouzis MV, Papavassiliou AG. Immune Microenvironment and Immunotherapeutic Management in Virus-Associated Digestive System Tumors. Int J Mol Sci 2022; 23:13612. [PMID: 36362398 PMCID: PMC9655697 DOI: 10.3390/ijms232113612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 08/29/2023] Open
Abstract
The development of cancer is a multifactorial phenomenon, while it constitutes a major global health problem. Viruses are an important factor that is involved in tumorigenesis and is associated with 12.1% of all cancer cases. Major examples of oncogenic viruses which are closely associated with the digestive system are HBV, HCV, EBV, HPV, JCV, and CMV. EBV, HPV, JCV, and CMV directly cause oncogenesis by expressing oncogenic proteins that are encoded in their genome. In contrast, HBV and HCV are correlated indirectly with carcinogenesis by causing chronic inflammation in the infected organs. In addition, the tumor microenvironment contains various immune cells, endothelial cells, and fibroblasts, as well as several growth factors, cytokines, and other tumor-secreted molecules that play a key role in tumor growth, progression, and migration, while they are closely interrelated with the virus. The presence of T-regulatory and B-regulatory cells in the tumor microenvironment plays an important role in the anti-tumor immune reaction. The tumor immune microenvironments differ in each type of cancer and depend on viral infection. The alterations in the immune microenvironment caused by viruses are also reflected in the effectiveness of immunotherapy. The present review aims at shedding light on the association between viruses and digestive system malignancies, the characteristics of the tumor immune microenvironment that develop, and the possible treatments that can be administered.
Collapse
Affiliation(s)
- Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
33
|
Golikov MV, Valuev-Elliston VT, Smirnova OA, Ivanov AV. Physiological Media in Studies of Cell Metabolism. Mol Biol 2022; 56:629-637. [PMID: 36217338 PMCID: PMC9534458 DOI: 10.1134/s0026893322050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Changes in cell metabolism accompany the development of a wide spectrum of pathologies including cancer, autoimmune, and inflammatory diseases. Therefore, usage of inhibitors of metabolic enzymes are considered a promising strategy for the development of therapeutic agents. However, the investigation of cellular metabolism is hampered by the significant impact of culture media, which interfere with many cellular processes, thus making cellular models irrelevant. There are numerous reports that show that the results from in vitro systems are not reproduced in in vivo models and patients. Over the last decade a novel approach has emerged, which consists of adaptation of the culture medium composition to that closer to the composition of blood plasma. In 2017‒2019, two plasma-like media were proposed, Plasmax and HPLM. In the review, we have summarized the drawbacks of common media and have analyzed changes in the metabolism of cells cultivated in common and plasma-like media in normal and pathological conditions.
Collapse
Affiliation(s)
- M. V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - O. A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
34
|
Zakirova NF, Kondrashova AS, Golikov MV, Ivanova ON, Ivanov AV, Isaguliants MG, Bayurova EO. Expression of HIV-1 Reverse Transcriptase in Murine Cancer Cells Increases Mitochondrial Respiration. Mol Biol 2022; 56:723-734. [DOI: 10.1134/s0026893322050168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 04/17/2025]
|
35
|
Brezgin SA, Kostyusheva AP, Ponomareva NI, Gegechkori VI, Kirdyashkina NP, Ayvasyan SR, Dmitrieva LN, Kokoreva LN, Chulanov VP, Kostyushev DS. HBx Protein Potentiates Hepatitis B Virus Reactivation. Mol Biol 2022. [DOI: 10.1134/s0026893322050041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Mulherkar TH, Gómez DJ, Sandel G, Jain P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022; 14:v14092037. [PMID: 36146843 PMCID: PMC9503663 DOI: 10.3390/v14092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) function as a link between innate and adaptive immune responses. Retroviruses HIV-1 and HTLV-1 modulate DCs to their advantage and utilize them to propagate infection. Coinfection of HTLV-1 and HIV-1 has implications for cancer malignancies. Both viruses initially infect DCs and propagate the infection to CD4+ T cells through cell-to-cell transmission using mechanisms including the formation of virologic synapses, viral biofilms, and conduits. These retroviruses are both neurotrophic with neurovirulence determinants. The neuropathogenesis of HIV-1 and HTLV-1 results in neurodegenerative diseases such as HIV-associated neurocognitive disorders (HAND) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Infected DCs are known to traffic to the brain (CNS) and periphery (PNS, lymphatics) to induce neurodegeneration in HAND and HAM/TSP patients. Elevated levels of neuroinflammation have been correlated with cognitive decline and impairment of motor control performance. Current vaccinations and therapeutics for HIV-1 and HTLV-1 are assessed and can be applied to patients with HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL). These diseases caused by co-infections can result in both neurodegeneration and cancer. There are associations with cancer malignancies and HIV-1 and HTLV-1 as well as other human oncogenic viruses (EBV, HBV, HCV, HDV, and HPV). This review contains current knowledge on DC sensing of HIV-1 and HTLV-1 including DC-SIGN, Tat, Tax, and current viral therapies. An overview of DC interaction with oncogenic viruses including EBV, Hepatitis viruses, and HPV is also provided. Vaccines and therapeutics targeting host–pathogen interactions can provide a solution to co-infections, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Tania H. Mulherkar
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Daniel Joseph Gómez
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Department of Biological Sciences, California State University, 25800 Carlos Bee Blvd, Hayward, CA 94542, USA
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Correspondence:
| |
Collapse
|
37
|
Mohamed MA, Bayoumy EM, Swailam MM, Allam AS. Assessment of carotid atherosclerosis in Egyptian chronic hepatitis C patients after treatment by direct-acting antiviral drugs. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Recent studies suggested association between hepatitis C virus (HCV) infection and cardiovascular disorders, including carotid atherosclerosis with evidence of an effect of HCV clearance on carotid atherosclerosis.
Objectives
We aimed to evaluate the impact of direct-acting antiviral (DAA) therapy for chronic hepatitis C virus (HCV) infection on carotid atherosclerosis.
Subjects and methods
This is a prospective cohort study that was carried out in Internal Medicine and Hepatology Department, and outpatient clinics of the Ain Shams University hospitals included 80 Egyptian patients with chronic HCV infection who started treatment in the form of IFN-free DAA-based regimen and completed the course of treatment and 6-month follow-up period. All patients were subjected to detailed history taking, full physical examination, full laboratory investigations, radiological assessment by abdominal ultrasonography, and high-resolution B-mode ultrasonography of both the common carotid arteries.
Results
The mean age of cases was 58.13 ± 7.56 years, 49 (61.25%) males and 31 (38.75%) females. IMT was significantly decreased after treatment 1.24 versus 1.57 mm p < 0.001. The number of patients with IMT ≥ 1 mm was significantly decreased after 6 months 45 (56.3%) versus 57 (71.3%). There was significant positive correlation between baseline carotid IMT and age, BMI, bilirubin, INR, CTP score, carotid plaques, and total cholesterol. Meanwhile, there was significant negative correlation between baseline carotid IMT and hemoglobin, platelets, albumin, and HDL. In patients who achieved SVR, total cholesterol, triglycerides, LDL, and HDL were significantly increased after treatment. IMT was significantly lower in SVR group compared to non-SVR group (p = 0.016).
Conclusion
Hepatitis C virus eradication by DAAs improves carotid atherosclerosis by decreasing carotid intima-media thickening.
Collapse
|
38
|
Arsenic-Induced Injury of Mouse Hepatocytes through Lysosome and Mitochondria: An In Vitro Study. Int J Hepatol 2022; 2022:1546297. [PMID: 36117518 PMCID: PMC9477643 DOI: 10.1155/2022/1546297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND AIMS The cellular mechanism of liver injury related to arsenic toxicity is ill defined. It is thought that oxidative stress and mitochondrial dysfunction may play some role in arsenic-induced liver damage. In this study, we evaluated subcellular events within the primary cultured mouse hepatocytes when exposed to inorganic arsenic. METHODS Primary cultured mouse hepatocytes were treated with 10 μM arsenic for different time periods. Reactive oxygen species (ROS) formation, functional changes of the lysosome and mitochondria, and mode of hepatocytes death were studied by laser confocal microscopy, fluorescence spectroscopy, and flow cytometry. Expression of proapoptotic member of the BCL-2 family of genes BAX and antiapoptotic BCL-2 mRNA expression were studied by real-time PCR. Cytochrome c expression was studied by Western blotting. RESULTS Fluorescence spectroscopy as well as flow cytometric analysis revealed that arsenic-induced formation of ROS was time dependent. Confocal microscopy showed initiation of ROS formation from periphery of the hepatocytes at 30 min of arsenic exposure that progressed to central part of the hepatocytes at 3 h of arsenic exposure. The ROS formation was found to be NADPH oxidase (NOX) dependent. This low level of intracellular ROS induced lysosomal membrane permeabilization (LMP) and subsequently released cathepsin B to the cytosol. The LMP further increased intracellular ROS which in turn triggered induction of mitochondrial permeability transition (MPT). Pretreatment of hepatocytes with LMP inhibitor bafilomycin A (BafA) significantly decreased, and LMP inducer chloroquine (ChQ) significantly increased the production of ROS suggesting that LMP preceded enhanced ROS generation in response to arsenic. MPT was accompanied with increase in BAX : BCL2 mRNA ratio resulting in upregulation of caspase 3 and increased hepatocyte apoptosis. CONCLUSION Although arsenic-related oxidative liver injury is well established, neither the site of origin of ROS nor the early sequence of events in arsenic toxicity due to ROS is known. We believe that our study provides evidences elucidating the early sequence of events that culminates in the death of the mouse hepatocytes during arsenic exposure.
Collapse
|
39
|
Gligorijević N, Minić S, Nedić O. Structural changes of proteins in liver cirrhosis and consequential changes in their function. World J Gastroenterol 2022; 28:3780-3792. [PMID: 36157540 PMCID: PMC9367231 DOI: 10.3748/wjg.v28.i29.3780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The liver is the site of synthesis of the majority of circulating proteins. Besides initial polypeptide synthesis, sophisticated machinery is involved in the further processing of proteins by removing parts of them and/or adding functional groups and small molecules tailoring the final molecule to suit its physiological purpose. Posttranslational modifications (PTMs) design a network of molecules with the common protein ancestor but with slightly or considerably varying activity/localization/purpose. PTMs can change under pathological conditions, giving rise to aberrant or overmodified proteins. Undesired changes in the structure of proteins most often accompany undesired changes in their function, such as reduced activity or the appearance of new effects. Proper protein processing is essential for the reactions in living beings and crucial for the overall quality control. Modifications that occur on proteins synthesized in the liver whose PTMs are cirrhosis-related are oxidation, nitration, glycosylation, acetylation, and ubiquitination. Some of them predominantly affect proteins that remain in liver cells, whereas others predominantly occur on proteins that leave the liver or originate from other tissues and perform their function in the circulation. Altered PTMs of certain proteins are potential candidates as biomarkers of liver-related diseases, including cirrhosis. This review will focus on PTMs on proteins whose structural changes in cirrhosis exert or are suspected to exert the most serious functional consequences.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Department of Metabolism, University of Belgrade-Institute for the Application of Nuclear Energy, Belgrade 11080, Serbia
| | - Simeon Minić
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Belgrade 11000, Serbia
| | - Olgica Nedić
- Department of Metabolism, University of Belgrade-Institute for the Application of Nuclear Energy, Belgrade 11080, Serbia
| |
Collapse
|
40
|
Suhail M, Sohrab SS, Kamal M, Azhar EI. Role of hepatitis c virus in hepatocellular carcinoma and neurological disorders: an overview. Front Oncol 2022; 12:913231. [PMID: 35965577 PMCID: PMC9372299 DOI: 10.3389/fonc.2022.913231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The hepatitis C virus (HCV) causes serious issues, affecting 71 million people globally. The most common manifestations range from chronic hepatitis to liver cirrhosis, leading to hepatocellular carcinoma. Many mechanisms are known to play an important role in HCV-induced HCC. The interaction of viral proteins with host cells results in oxidative stress damage, liver inflammation, and irregularities in signaling pathways. These results in the activation of oncogenes and metabolic disturbances, liver fibrosis, and angiogenesis. Additionally, some non-coding RNAs (ncRNAs) and toll-like receptors have been identified and play a significant role in HCC development. This virus is also associated with impairment of the central nervous system, resulting in acute or sub-acute encephalopathy and inflammatory disorders. Neurological disorders are associated with the inflammatory responses of many cells, including microglia and astrocytes. Additionally, there are many other extrahepatic manifestations, including neurological disorders such as depression and fatigue, in 50% of infected patients. These manifestations include neuro-invasion, immune-mediated damage, neurotransmitter alterations, sensory-motor polyneuropathy, sensitivity loss, weakness of the leg, and cryoglobulinemia, which significantly results in a reduced quality of life. HCV infection may be improved using an appropriate diagnosis and direct antiviral therapy for sustained virological response. However, the success of therapy depends on the symptoms and organ damage, diagnosis, and therapeutic strategies applied. Some published reports have discussed that HCV is associated with both HCC and neurological disorders. Additionally, it has also been observed that individuals with HCC also develop neurological disorders compared with individuals with HCV alone. This review aims to provide an overview of the latest information about the relationship between HCV-induced HCC and their role in neurological disorders. Additionally, we have also discussed the progress made in the diagnosis, physio-pathological mechanisms, and strong antiviral therapies developed for HCV infection and HCC, as well as the latest advancements made in the study of the neurological disorders associated with HCV infection.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sayed Sartaj Sohrab
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Sayed Sartaj Sohrab,
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Enzymoics Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Esam Ibraheem Azhar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Oxidative Stress in Chronic Hepatitis B—An Update. Microorganisms 2022; 10:microorganisms10071265. [PMID: 35888983 PMCID: PMC9318593 DOI: 10.3390/microorganisms10071265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, the role of oxidative stress has been investigated in an increasing number of infections. There is a close link between the inflammation that accompanies infections and oxidative stress. Excessive reactive oxygen species induce harmful effects on cell components, including lipids, proteins, and nucleic acids. A growing body of evidence attests to the role of oxidative stress in the pathogenesis of viral liver infections, especially in hepatitis C virus (HCV) infection. Regarding hepatitis B virus (HBV) infection, the data are limited, but important progress has been achieved in recent years. This review presents the latest advances pertaining to the role of the oxidative stress byproducts in the pathogenesis of chronic hepatitis B, constituting a source of potential new markers for the evaluation and monitoring of patients with chronic hepatitis B.
Collapse
|
42
|
Zou JY, Huang YJ, He J, Tang ZX, Qin L. Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer. World J Clin Cases 2022; 10:4737-4760. [PMID: 35801051 PMCID: PMC9198879 DOI: 10.12998/wjcc.v10.i15.4737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metabolic reprogramming is a feature of tumour cells and is essential to support their rapid proliferation. The glycolytic activity of liver cancer cells is significantly higher than that of normal liver cells, and the rapidly proliferating tumour cells are powered by aerobic glycolysis. Lipid metabolism reprogramming enables tumour cells to meet their needs for highly proliferative growth and is an important driving force for the development of hepatocellular carcinoma (HCC).
AIM To explore the influence of different metabolic subtypes of HCC and analyse their significance in guiding prognosis and treatment based on the molecular mechanism of glycolysis and fatty acid oxidation (FAO).
METHODS By downloading related data from public databases including the Cancer Genome Atlas (TCGA), the Molecular Signatures Database, and International Cancer Genome Consortium, we utilised unsupervised consensus clustering to divide TCGA Liver Hepatocellular Carcinoma samples into four metabolic subgroups and compared single nucleotide polymorphism, copy number variation, tumour microenvironment, and Genomics of Drug Sensitivity in Cancer and Tumour Immune Dysfunction and Exclusion between different metabolites. The differences and causes of survival and the clinical characteristics between them were analysed, and a prognostic model was established based on glycolysis and FAO genes. Combined with the clinical features, a Norman diagram was created to compare the pros and cons of each model.
RESULTS In the four metabolic subgroups, with the increase in glycolytic expression, the median survival of patients showed the worst results, while FAO showed the best. When comparing the follow-up analysis of each group, we considered that the differences between them might be related to reactive oxygen species, somatic copy number variation of key genes, and immune microenvironment. It was also found that the FAO group and the low-risk group had better efficacy and response to immune checkpoint blockade treatment and anti-tumour drugs.
CONCLUSION There are obvious differences in genes, chromosomes, and clinical characteristics between metabolic subgroups. The establishment of a prognostic model could predict patient prognosis and guide clinical treatment.
Collapse
Affiliation(s)
- Jia-Yue Zou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yu-Jie Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Zu-Xiong Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
43
|
Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022; 14:v14050986. [PMID: 35632728 PMCID: PMC9146458 DOI: 10.3390/v14050986] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is DNA-based virus, member of the Hepadnaviridae family, which can cause liver disease and increased risk of hepatocellular carcinoma (HCC) in infected individuals, replicating within the hepatocytes and interacting with several cellular proteins. Chronic hepatitis B can progressively lead to liver cirrhosis, which is an independent risk factor for HCC. Complications as liver decompensation or HCC impact the survival of HBV patients and concurrent HDV infection worsens the disease. The available data provide evidence that HBV infection is associated with the risk of developing HCC with or without an underlying liver cirrhosis, due to various direct and indirect mechanisms promoting hepatocarcinogenesis. The molecular profile of HBV-HCC is extensively and continuously under study, and it is the result of altered molecular pathways, which modify the microenvironment and lead to DNA damage. HBV produces the protein HBx, which has a central role in the oncogenetic process. Furthermore, the molecular profile of HBV-HCC was recently discerned from that of HDV-HCC, despite the obligatory dependence of HDV on HBV. Proper management of the underlying HBV-related liver disease is fundamental, including HCC surveillance, viral suppression, and application of adequate predictive models. When HBV-HCC occurs, liver function and HCC characteristics guide the physician among treatment strategies but always considering the viral etiology in the treatment choice.
Collapse
|
44
|
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F, Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022; 13:821344. [PMID: 35401182 PMCID: PMC8987160 DOI: 10.3389/fphar.2022.821344] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Collapse
|
45
|
Samir D, Nour H, Maroua C. Assessment of Haematological Complications and Prognostic Value of Oxidative Stress Markers in Viral Hepatitis B Patients. JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.3923/jms.2022.44.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Boulahtouf Z, Virzì A, Baumert TF, Verrier ER, Lupberger J. Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. Int J Mol Sci 2022; 23:ijms23052787. [PMID: 35269929 PMCID: PMC8911453 DOI: 10.3390/ijms23052787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.
Collapse
Affiliation(s)
- Zakaria Boulahtouf
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Alessia Virzì
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Service d’Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Eloi R. Verrier
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Correspondence:
| |
Collapse
|
47
|
Xie Y, Chang J, Pan Y, Hao W, Li J. Toxicological effects of acute prothioconazole and prothioconazole-desthio administration on liver in male Chinese lizards (Eremias argus). CHEMOSPHERE 2022; 291:132825. [PMID: 34762875 DOI: 10.1016/j.chemosphere.2021.132825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Prothioconazole (PTC) is a high effective systemic fungicide, and one of its major metabolites is prothioconazole-desthio (PTC-d). Because of its wildly use in the farmland of China, the local eco-toxicological effects of PTC as well as PTC-d are needed to be concerned. This study investigated hepatoxicity of Chinese lizards (Eremias argus), a local non-target organism, after single dose oral treated (100 mg kg-1 BW) through pathological, enzyme activity and gene expression analysis. PTC treatment caused ballooning and PTC-d treatment led to macrovesicular steatosis of hepatocyte. The elevation of serum indexes, including the activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT), further confirmed the hepatic injury. PTC and PTC-d treatments altered oxidative status reflected by the inhibition of superoxide dismutase (SOD) activity , meanwhile, the stimulation of catalase (CAT) activity, glutathione peroxidase (GPx) activity and malondialdehyde (MDA) content. The mRNA expression changes of apoptosis-related factors and cytokines genes, including Bax, Bcl-2, TNF-α, NF-κB, Caspase-3 and Nrf2, deeply uncovered the potential mechanism of hepatotoxicity caused by PTC and PTC-d. In brief, the results indicated that both of these two compounds altered oxidative status, then were likely to trigger caspase-3 by affecting the ratio of pro- and anti-apoptotic factors which belong to intrinsic apoptosis pathway. Specifically, more serious impacts were induced by PTC-d than its parent compound. This study is the first to provide specific insight into potential hepatotoxicity resulted from PTC and PTC-d in male Chinese lizards.
Collapse
Affiliation(s)
- Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| |
Collapse
|
48
|
Huang CH, Huang TJ, Lin YC, Lin CN, Chen MY. Factors Associated with Urinary 1-Hydroxypyrene and Malondialdehyde among Adults near a Petrochemical Factory: Implications for Sex and Lifestyle Modification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031362. [PMID: 35162385 PMCID: PMC8835126 DOI: 10.3390/ijerph19031362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
Background: The association between the biomarkers of environmental exposure, oxidative stress, and health-related behaviors in community residents living in an endemic viral hepatitis area and near petrochemical industrial complexes remains unclear. From a health promotion perspective, healthcare providers must know what to do for residents concerned about their health and living environment, especially for individual-level and modifiable risk factors. Therefore, we aimed to explore the factors associated with urinary 1-hydroxypyrene (1-OHP) and malondialdehyde (MDA). Methods: A community-based, cross-sectional study was conducted between July 2018 and February 2019 in western coastal Yunlin County, Taiwan. All participants lived within a 10 km radius of a large petrochemical complex and did not work in the factory. This study was conducted with the local hospital through annual community health screening. Biological samples were collected and biomarkers determined and quantified in the central laboratory of the collaborating hospital. Results: A total of 6335 adult residents completed the study. The mean age was 47.7 (SD = 16) years. Out of the total population, 56.4% were female, 30.1% had metabolic syndrome (MetS), and 16.8% and 14.3% had hepatitis B virus antigen (HBsAg) and hepatitis C virus antibody (anti-HCV) positivity, respectively. The median 1-OHP and MDA level was 0.11 and 0.9 μg/g creatinine with an interquartile range of 0.07–0.18, and 0.4–1.5, respectively. The MDA levels correlated with specific diseases. The multivariable ordinal logistic regression model revealed that female sex, smoking, betel nut use, HBsAg, and anti-HCV positivity were associated with higher 1-OHP levels. In men, MetS was associated with higher 1-OHP levels and regular exercise with lower 1-OHP levels. High MDA levels were associated with smoking, betel nut users, HBsAg, and anti-HCV positivity. Conclusions: The findings highlight the importance of initiating individualized health promotion programs for residents near petrochemical factories, especially for adults with substance-use and cardiometabolic risk factors. Furthermore, it is crucial to provide further treatment to patients with viral hepatitis.
Collapse
Affiliation(s)
- Cheng-Hsien Huang
- Department of Family Medicine, Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
| | - Tung-Jung Huang
- Department of Pulmonary Disease and Critical Care, Chang Gung Memorial Hospital, Yunlin 638, Taiwan;
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| | - Yu-Chih Lin
- Department of Family Medicine, Chang Gung Memorial Hospital, Yunlin 638, Taiwan;
| | - Chia-Ni Lin
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Yen Chen
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 613, Taiwan
- School of Nursing, Chang Gung University, Taoyuan 333, Taiwan
- Research Fellow, Department of Cardiology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Correspondence: ; Tel.: +886-(5)-3628800 (ext. 2301); Fax: +886-(5)-3628866
| |
Collapse
|
49
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
50
|
Golikov MV, Karpenko IL, Lipatova AV, Ivanova ON, Fedyakina IT, Larichev VF, Zakirova NF, Leonova OG, Popenko VI, Bartosch B, Kochetkov SN, Smirnova OA, Ivanov AV. Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses. Antioxidants (Basel) 2021; 11:97. [PMID: 35052601 PMCID: PMC8772912 DOI: 10.3390/antiox11010097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Changes in metabolic pathways are often associated with the development of various pathologies including cancer, inflammatory diseases, obesity and metabolic syndrome. Identification of the particular metabolic events that are dysregulated may yield strategies for pharmacologic intervention. However, such studies are hampered by the use of classic cell media that do not reflect the metabolite composition that exists in blood plasma and which cause non-physiological adaptations in cultured cells. In recent years two groups presented media that aim to reflect the composition of human plasma, namely human plasma-like medium (HPLM) and Plasmax. Here we describe that, in four different mammalian cell lines, Plasmax enhances mitochondrial respiration. This is associated with the formation of vast mitochondrial networks and enhanced production of reactive oxygen species (ROS). Interestingly, cells cultivated in Plasmax displayed significantly less lysosomes than when any standard media were used. Finally, cells cultivated in Plasmax support replication of various RNA viruses, such as hepatitis C virus (HCV) influenza A virus (IAV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and several others, albeit at lower levels and with delayed kinetics. In conclusion, studies of metabolism in the context of viral infections, especially those concerning mitochondria, lysosomes, or redox systems, should be performed in Plasmax medium.
Collapse
Affiliation(s)
- Michail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Irina T. Fedyakina
- Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Russia, 132098 Moscow, Russia; (I.T.F.); (V.F.L.)
| | - Viktor F. Larichev
- Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Russia, 132098 Moscow, Russia; (I.T.F.); (V.F.L.)
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Olga G. Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Vladimir I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, 69000 Lyon, France;
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| |
Collapse
|