1
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
2
|
Maharati A, Taghehchian N, Taghavinia F, Golshan A, Aarabi A, Abbaszadegan MR, Moghbeli M. LINC01322 may serve as a potential diagnostic marker for advanced stage tumors in renal cell carcinoma patients eligible for total nephrectomy. Biochem Biophys Rep 2024; 40:101843. [PMID: 39886373 PMCID: PMC11780390 DOI: 10.1016/j.bbrep.2024.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 02/01/2025] Open
Abstract
Background Renal cell carcinoma (RCC) is a common urological cancer globally and shows a favorable prognosis in early stages of the tumor progression. Due to the poor prognosis for metastatic RCC patients, it is crucial to explore the molecular biology of RCC progression to establish efficient diagnostic and therapeutic markers for these patients. Long non-coding RNAs (lncRNAs) have critical roles in regulation of tumor cell proliferation, migration, and apoptosis during RCC progression. For the first time in the present study, we assessed the LINC01322 RNA expression levels in RCC patients to introduce that as a potential tumor marker among these patients. Methods we visualized LINC01322 expression data using the online tool Gene Expression Profiling Interactive Analysis (GEPIA2) across different cancers and normal tissues. Fifty fresh samples of RCC tumor tissues and their adjacent normal margins were collected to analyze the RNA expression of LINC01322 and its association with the clinicopathological features of RCC patients. The SYBR green method was used in real-time PCR to measure the LINC01322 RNA expression levels in RCC patients. Results Based on in-silico analysis, we hypothesized that LINC01322 could be involved in RCC progression by interacting with VHL, thereby influencing the tumor microenvironment. There were significant increased levels of LINC01322 RNA expressions in advanced stage compared with primary stage tumors that were located in left kidney (p = 0.048). Left kidney that were undergone the total nephrectomy had significant higher levels of LINC01322 RNA expressions compared with tumors in right kidney (p = 0.045). There was a direct correlation between the levels of LINC01322 RNA expression and RCC tumor size. Conclusions considering the substantial increase in LINC01322 RNA expression in advanced stage RCC tumors that are candidates for total nephrectomy; it could be suggested as a potential diagnostic indicator for high-risk patients. In-silico analysis also revealed that LINC01322 could be involved in regulation of tumor microenvironment during RCC progression by interacting with VHL. However, further investigations are needed to validate the potential link between LINC01322 and VHL during RCC progression. Evaluating the serum LINC01322 RNA levels in RCC patients is also necessary to use that as a diagnostic marker in clinical settings.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Taghavinia
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Golshan
- Department of Urology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Aarabi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Tan RZ, Jia J, Li T, Wang L, Kantawong F. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother 2024; 176:116922. [PMID: 38870627 DOI: 10.1016/j.biopha.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Tous C, Muñoz-Redondo C, Gavilán A, Bravo-Gil N, Baco-Antón F, Navarro-González E, Antiñolo G, Borrego S. Delving into the Role of lncRNAs in Papillary Thyroid Cancer: Upregulation of LINC00887 Promotes Cell Proliferation, Growth and Invasion. Int J Mol Sci 2024; 25:1587. [PMID: 38338866 PMCID: PMC10855357 DOI: 10.3390/ijms25031587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common histological category of thyroid cancer. In recent years, there has been an increasing number of studies on lncRNAs in PTC. Long intergenic non-protein coding RNA 887 (LINC00887) is a critical oncogene in developing other cancers. LINC00887 is upregulated in PTC samples but its role in PTC is currently unclear. This study aimed to investigate the impact the disruption of LINC00887 expression has on PTC progression. We performed a CRISPR/Cas9 strategy for the truncation of LINC00887 in BCPAP and TPC1 cell lines. Functional assays showed that LINC00887 knockdown in both TPC1 and BCPAP cells reduced cell proliferation, colony formation and migration, delayed the cell cycle, and increased apoptosis. These results strengthened the role of LINC00887 in cancer and showed for the first time that this lncRNA could be a potential oncogene in PTC, acting as a tumor promoter. Modulation of the immune system may be one of the etiopathogenic mechanisms of LINC00887 in PTC, as shown by the observed influence of this lncRNA on PD-L1 expression. In addition, the biological pathways of LINC00887 identified to date, such as EMT, the Wnt/β-catenin signaling pathway or the FRMD6-Hippo signaling pathway may also be relevant regulatory mechanisms operating in PTC.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Carmen Muñoz-Redondo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Angela Gavilán
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Fátima Baco-Antón
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Elena Navarro-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Department of Endocrinology and Nutrition, University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
5
|
Su Z, Ao J, Zhao F, Xu G, Chen H, Gao C. The roles of long non‑coding RNAs in renal cell carcinoma (Review). Mol Clin Oncol 2022; 18:4. [PMID: 36591597 PMCID: PMC9780631 DOI: 10.3892/mco.2022.2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the gene expression regulation and usually play important roles in various human cancers, including the renal cell carcinoma (RCC). Dysregulation of certain lncRNAs are associated with the prognosis of patients with RCC. In the present review, several recently studied lncRNAs were discussed and their critical roles in proliferation, migration, invasion, apoptosis and drug resistance of renal cancer cells were revealed. The research on lncRNAs further increases our understanding on the development and progression of RCC. It is suggested that lncRNAs can be used as biomarkers or therapeutic targets for diagnosis or treatment of renal cancer.
Collapse
Affiliation(s)
- Zhengming Su
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Jian Ao
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Fengjin Zhao
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Huihua Chen
- Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China,Correspondence to: Professor Huihua Chen, Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, P.R. China
| | - Chen Gao
- Department of Operating Room, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Professor Huihua Chen, Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
6
|
Ghasemian M, Rajabibazl M, Sahebi U, Sadeghi S, Maleki R, Hashemnia V, Mirfakhraie R. Long non-coding RNA MIR4435-2HG: a key molecule in progression of cancer and non-cancerous disorders. Cancer Cell Int 2022; 22:215. [PMID: 35715800 PMCID: PMC9205143 DOI: 10.1186/s12935-022-02633-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/11/2022] [Indexed: 12/18/2022] Open
Abstract
MIR4435-2HG (LINC00978) is a long non-coding RNA (lncRNA) that acts as an oncogene in almost all cancers. This lncRNA participates in the molecular cascades involved in other disorders such as coronary artery diseases, osteonecrosis, osteoarthritis, osteoporosis, and periodontitis. MIR4435-2HG exerts its functions via the spectrum of different mechanisms, including inhibition of apoptosis, sponging microRNAs (miRNAs), promoting cell proliferation, increasing cell invasion and migration, and enhancing epithelial to mesenchymal transition (EMT). MIR4435-2HG can regulate several signaling pathways, including Wnt, TGF-β/SMAD, Nrf2/HO-1, PI3K/AKT, MAPK/ERK, and FAK/AKT/β‑catenin signaling pathways; therefore, it can lead to tumor progression. In the present review, we aimed to discuss the potential roles of lncRNA MIR4435-2HG in developing cancerous and non-cancerous conditions. Due to its pivotal role in different disorders, this lncRNA can serve as a potential biomarker in future investigations. Moreover, it may serve as a potential therapeutic target for the treatment of various diseases.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Unes Sahebi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Sadeghi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Reza Maleki
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Veys Hashemnia
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Chao X, Wang P, Ma X, Li Z, Xia Y, Guo Y, Ge L, Tian L, Zheng H, Du Y, Li J, Zuo Z, Xie L, Guo X. Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, and treatment response in clear cell renal cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:209-218. [PMID: 34514100 PMCID: PMC8424129 DOI: 10.1016/j.omto.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/12/2021] [Indexed: 10/27/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological type of renal carcinoma and has a high recurrence rate and poor outcome. Accurate patient risk stratification based on genetic markers can help to identify the high-risk patient for early and further treatments and would promote patient survival. Long non-coding RNAs (lncRNAs) have attracted widespread attention as biomarkers for early diagnosis, treatment, and prognosis because of their high specificity and sensitivity. Here, we performed a systematic search in NCBI PubMed and found 44 lncRNAs as oncogenes, 18 lncRNAs as tumor suppressors, 199 lncRNAs as diagnostic biomarkers, 62 lncRNAs as prognostic biomarkers, and 3 lncRNAs as predictive biomarkers for ccRCC. We also comprehensively discuss the biological functions and molecular regulatory mechanisms of lncRNAs in ccRCC. Overall, the present study is a systemic analysis to assess the expression and clinical value of lncRNAs in ccRCC, and lncRNAs hold promise to be diagnostic, prognostic, and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaoyu Chao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Pei Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoyu Ma
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Zhenfen Li
- Kaifeng Tumor Hospital, Kaifeng 475004, China
| | - Yubing Xia
- Kaifeng Tumor Hospital, Kaifeng 475004, China
| | - Ying Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linna Ge
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linzhu Tian
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hong Zheng
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaowu Du
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, China
| | - Zhanjie Zuo
- Thoracic Cancer Treatment Center, Armed police Beijing Corps Hospital, Beijing 100027, China
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Shen T, Xia W, Min S, Yang Z, Cheng L, Wang W, Zhan Q, Shao F, Zhang X, Wang Z, Zhang Y, Shen G, Zhang H, Wu LL, Yu GY, Kong QP, Wang X. A pair of long intergenic non-coding RNA LINC00887 variants act antagonistically to control Carbonic Anhydrase IX transcription upon hypoxia in tongue squamous carcinoma progression. BMC Biol 2021; 19:192. [PMID: 34493285 PMCID: PMC8422755 DOI: 10.1186/s12915-021-01112-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are important regulators in tumor progression. However, their biological functions and underlying mechanisms in hypoxia adaptation remain largely unclear. Results Here, we established a correlation between a Chr3q29-derived lncRNA gene and tongue squamous carcinoma (TSCC) by genome-wide analyses. Using RACE, we determined that two novel variants of this lncRNA gene are generated in TSCC, namely LINC00887_TSCC_short (887S) and LINC00887_TSCC_long (887L). RNA-sequencing in 887S or 887L loss-of-function cells identified their common downstream target as Carbonic Anhydrase IX (CA9), a gene known to be upregulated by hypoxia during tumor progression. Mechanistically, our results showed that the hypoxia-augmented 887S and constitutively expressed 887L functioned in opposite directions on tumor progression through the common target CA9. Upon normoxia, 887S and 887L interacted. Upon hypoxia, the two variants were separated. Each RNA recognized and bound to their responsive DNA cis-acting elements on CA9 promoter: 887L activated CA9’s transcription through recruiting HIF1α, while 887S suppressed CA9 through DNMT1-mediated DNA methylation. Conclusions We provided hypoxia-permitted functions of two antagonistic lncRNA variants to fine control the hypoxia adaptation through CA9. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01112-2.
Collapse
Affiliation(s)
- Tao Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wangxiao Xia
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
| | - Sainan Min
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Zixuan Yang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Lehua Cheng
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
| | - Wei Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Qianxi Zhan
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Fanghong Shao
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Xuehan Zhang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhiyu Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Yan Zhang
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guodong Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, 650223, China.
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China. .,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
9
|
Jin G, Mi H, Ye Y, Yao Q, Yuan L, Wu X. LINC00671 inhibits renal cell cancer progression via regulating miR-221-5p/SOCS1 axis. Am J Transl Res 2021; 13:7524-7537. [PMID: 34377233 PMCID: PMC8340225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 03/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) has gradually received widespread attention due to its role in regulating tumor progression. However, in renal cell cancer (RCC), the exact function of lncRNA LINC00671 remains uncertain. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for detecting LINC00671 and miR-221-5p expressions in RCC tissues and cell lines. Western blotting technique was utilized for detecting the expressions of epithelial-mesenchymal transition (EMT)-associated proteins (E-cadherin and N-cadherin) and suppressor of cytokine signaling 1 (SOCS1). The correlation between clinicopathological features and LINC00671 expression was also evaluated. RCC cell multiplication, migration and invasion were measured by CCK-8, EdU and Transwell assays, respectively. The targeted relationships between LINC00671 as well as the SOCS1 3'UTR and miR-221-5p were verified by RNA immunoprecipitation (RIP) and luciferase reporter gene assay. RESULTS LINC00671 expression in RCC tissues and cells was significantly reduced. Patients with low LINC00671 expression had relatively shorter disease-free survival and overall survival. Moreover, LINC00671 expression was linked to lymph node metastasis, tumor stage, and tumor size. In Caki-1 and 769-P cell lines, LINC00671 overexpression restrained the multiplication, migration, invasion, as well as the EMT process of RCC cells in vitro. In terms of mechanism, miR-221-5p was identified as a target of LINC00671, and LINC00671 could up-regulate SOCS1 by repressing miR-221-5p. CONCLUSION LINC00671 regulates the miR-221-5p/SOCS1 axis as a tumor suppressor in RCC.
Collapse
Affiliation(s)
- Gang Jin
- Department of Urology Surgery, The No. 1 People’s Hospital of Pinghu CommunityPinghu 314200, China
| | - Haiyan Mi
- Department of Nephrology, Affiliated Nashua Hospital, University of South ChinaHengyang 421002, China
| | - Yunfei Ye
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai 201204, China
| | - Qi Yao
- Department of Outpatient, The No. 1 People’s Hospital of Pinghu CommunityPinghu 314200, China
| | - Lei Yuan
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgery HospitalShanghai 200438, China
| | - Xiaoxiong Wu
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of TCMShanghai 200137, China
| |
Collapse
|
10
|
Zhang B, Chu W, Wen F, Zhang L, Sun L, Hu B, Wang J, Su Q, Mei Y, Cao J, Zheng J, Mou X, Dong H, Lin X, Wang N, Ji H. Dysregulation of Long Non-coding RNAs and mRNAs in Plasma of Clear Cell Renal Cell Carcinoma Patients Using Microarray and Bioinformatic Analysis. Front Oncol 2020; 10:559730. [PMID: 33330027 PMCID: PMC7729199 DOI: 10.3389/fonc.2020.559730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: The roles of long non-coding RNAs (lncRNAs) in the diagnosis of clear cell renal cell carcinoma (ccRCC) are still not well-defined. We aimed to identify differentially expressed lncRNAs and mRNAs in plasma of ccRCC patients and health controls systematically. Methods: Expression profile of plasma lncRNAs and mRNAs in ccRCC patients and healthy controls was analyzed based on microarray assay. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based approaches were used to investigate biological function and signaling pathways mediated by the differentially expressed mRNAs. SOCS2-AS1 was selected for validation using Real-Time PCR. The differentially expressed lncRNAs and mRNAs were further compared with E-MTAB-1830 datasets using Venn and the NetworkAnalyst website. The GEPIA and ULCAN websites were utilized for the evaluation of the expression level of differentially expressed mRNA and their association with overall survival (OS). Results: A total of 3,664 differentially expressed lncRNAs were identified in the plasma of ccRCC patients, including 1,511 up-regulated and 2,153 down-regulated lncRNAs (fold change ≥2 and P < 0.05), respectively. There were 2,268 differentially expressed mRNAs, including 932 up-regulated mRNAs and 1,336 down-regulated mRNAs, respectively (fold change ≥2 and P < 0.05). Pathway analysis based on deregulated mRNAs was mainly involved in melanogenesis and Hippo signaling pathway (P < 0.05). In line with the lncRNA microarray findings, the SOCS2-AS1 was down-regulated in ccRCC plasma and tissues, as well as in cell lines. Compared with the E-MTAB-1830 gene expression profiles, we identified 18 lncRNAs and 87 mRNAs differently expressed in both plasma and neoplastic tissues of ccRCC. The expression of 10 mRNAs (EPB41L4B, CCND1, GGT1, CGNL1, CYSLTR1, PLAUR, UGT3A1, PROM2, MUC12, and PCK1) was correlated with the overall survival (OS) rate in ccRCC patients based on the GEPIA and ULCAN websites. Conclusions: We firstly reported differentially expressed lncRNAs in ccRCC patients and healthy controls systemically. Several differentially expressed lncRNAs and mRNAs were identified, which might serve as diagnostic or prognostic markers. The biological function of these lncRNAs and mRNAs should be further validated. Our study may contribute to the future treatment of ccRCC and provide novel insights into cancer biology.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Urology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Wei Chu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Feifei Wen
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Li Zhang
- Department of Anesthesiology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Lixia Sun
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jingjing Wang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Qingguo Su
- Department of Urology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jingyuan Cao
- Department of Urology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jing Zheng
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Xiaodong Mou
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Hongliang Dong
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Province Hospital, Jinan, China
| | - Nan Wang
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Hong Ji
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| |
Collapse
|
11
|
Zhao L, Li C, Jiang W, Luan H, Zhao J, Zhang J, Xu Y. Serum response factor increases renal cell carcinoma migration and invasion through promoting epithelial-mesenchymal transition. Int J Urol 2020; 27:808-816. [PMID: 32524697 DOI: 10.1111/iju.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/29/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explore the regulation and function of serum response factor in epithelial-mesenchymal transition in renal cell carcinoma. METHODS First, bioinformatics analysis of human renal cell carcinoma tissues was carried out. Then, the expression of serum response factor, mesenchymal markers (N-cadherin, vimentin and fibronectin) and epithelial markers (zonula occludens-1 and epithelial cadherin) was examined in 786-O cells (a human renal cell carcinoma cell line). Serum response factor was overexpressed with pcDNA-serum response factor plasmid, and suppressed by CCG-1423 (a small molecule inhibitor of serum response factor) to study how serum response factor affects epithelial-mesenchymal transition in renal cell carcinoma. A xenograft nude mouse model was established to explore whether serum response factor affected the tumorigenic ability of renal cell carcinoma cells. RESULTS Serum response factor interacted with several important differentially expressed genes in renal cell carcinoma. In 786-O cells, serum response factor, N-cadherin, vimentin and fibronectin were upregulated, whereas zonula occludens-1 and epithelial cadherin were downregulated. Serum response factor upregulation in 786-O cells increased the Snail expression. Serum response factor suppression reduced Snail induction, and migration and invasion in renal cell carcinoma, which decreased the xenograft tumor volume. CONCLUSIONS Serum response factor is a critical transcription factor in human renal cell carcinoma. Increased serum response factor activity induces epithelial-mesenchymal transition, migration and invasion in 786-O cells, and facilitates the progression of renal cell carcinoma. Targeting serum response factor with CCG-1423 might be an attractive therapeutic strategy for renal cell carcinoma.
Collapse
Affiliation(s)
- Long Zhao
- Departments of, Department of, Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenyu Li
- Departments of, Department of, Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Jiang
- Departments of, Department of, Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Luan
- Departments of, Department of, Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhao
- Department of, Nephrology, Weifang People's Hospital, Weifang, China
| | - Jiaxin Zhang
- Department of, Breast Surgery, Weifang People's Hospital, Weifang, China
| | - Yan Xu
- Departments of, Department of, Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Lin X, Tang X, Zheng T, Qiu J, Hua K. Long non-coding RNA AOC4P suppresses epithelial ovarian cancer metastasis by regulating epithelial-mesenchymal transition. J Ovarian Res 2020; 13:45. [PMID: 32334623 PMCID: PMC7183637 DOI: 10.1186/s13048-020-00644-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Objective Currently, the function and mechanisms of long non-coding RNAs (lncRNAs) involved in the metastasis of epithelial ovarian cancer (EOC), especially those of the lncRNAs participated in the epithelial-mesenchymal transition (EMT) process, remains largely unknown. Here, we focused on a lncRNA named AOC4P and analysed its role in EOC. Materials and methods The expression of AOC4P gene was examined with quantitative real-time quantitative PCR (qRT-PCR). The cell migration and invasion were detected by Transwell and scratch assays. The in vivo metastatic activity was evaluated by intraperitoneal metastasis model. The downstream genes were investigated by a tumour EMT real-time polymerase chain reaction (RT-PCR) array, and validated by qRT-PCR and Western blot. Results The results showed that AOC4P expression levels were decreased in EOC tissues and cell lines, and that the under-expression of AOC4P was positively correlated with FIGO stage and lymph node metastasis. Furthermore, the knockdown of AOC4P expression in poorly metastatic EOC cell lines remarkably facilitated cell migration/invasion while the overexpression of AOC4P in highly metastatic EOC cell lines reduced the metastatic ability of these cells in vitro. Consistently, the anti-metastatic role of AOC4P in vivo was also verified by bioluminescence imaging and tumour dissection. Mechanistically, the anti-metastatic effect of AOC4P in EOC was partially mediated by the EMT process accompanied by the alterations in MMP9 and COL1A2 expression. Conclusion These data highlight that AOC4P plays a critical role in EOC invasion/metastasis and could function as a novel and effective target for the lncRNA-based anti-metastatic clinical management of EOC.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Tingting Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China.
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China.
| |
Collapse
|
13
|
Tian J, Liu Y, Hu M, Zheng Y, Xu P, Zhang L, Liao J, Wu Y, Wen L, Tong C, Yan J, Qi H, Saffery R, Baker PN, Kilby MD. Upregulated LncZBTB39 in pre-eclampsia and its effects on trophoblast invasion and migration via antagonizing the inhibition of miR-210 on THSD7A expression. Eur J Obstet Gynecol Reprod Biol 2020; 248:164-171. [PMID: 32222649 DOI: 10.1016/j.ejogrb.2020.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Pre-eclampsia (PE) is a major cause of maternal morbidity and mortality, but its etiology remains to be elucidated. Accumulating evidence suggests that placental long noncoding RNAs (lncRNAs) might contribute to the pathogenesis of pre-eclampsia. STUDY DESIGN In the present study, the expression levels of lncRNAs in human placenta were first determined by microarray analysis and then validated by secondary RT-qPCR and FISH. LncZBTB39 expression manipulation in HTR8/SVneo trophoblast cells was achieved by shRNA and plasmid transfection. Then, the invasion and migration of lncZBTB39-deficient and lncZBTB39-overexpressing trophoblast cells were evaluated by transwell assays and wound-healing assays, respectively. MMP2 activity was measured by gelatin zymography. The downstream target genes of lncZBTB39 were then identified by a transcriptomic microarray, followed by RT-qPCR validation. RESULTS We found that lncZBTB39 was upregulated in PE-complicated human placentas, and overexpression of lncZBTB39 inhibited invasion and migration, as well as MMP2 activity in HTR8/SVneo cells, while downregulation of lncZBTB39 enhanced invasion, migration and MMP2 activity. In addition, THSD7A expression was elevated by lncZBTB39 overexpression but reduced in lncZBTB39-deficient cells; moreover, lncZBTB39 antagonized the inhibitory effects of miR-210 on THSD7A expression. CONCLUSION PE-complicated placentas are associated with upregulated lncZBTB39, which negatively regulates trophoblast invasion and migration, most likely by preserving the expression of THSD7A mRNA through sponging miR-210. The results of this study not only provide novel evidence that lncRNAs regulate trophoblastic activities but also suggest that lncZBTB39 may be a potential interventional target for PE.
Collapse
Affiliation(s)
- Jing Tian
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China; Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yamin Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China; Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China
| | - Yangxi Zheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China
| | - Lan Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China
| | - Jiujiang Liao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China.
| | - Jianying Yan
- Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China.
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing 400016, China.
| | - Richard Saffery
- Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Philip N Baker
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham, B15 2TG, UK; Institute of Metabolism & Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
14
|
Kong L, Hu W, Gao X, Wu Y, Xue Y, Cheng K, Tang M. Molecular mechanisms underlying nickel nanoparticle induced rat Sertoli-germ cells apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:240-248. [PMID: 31349165 DOI: 10.1016/j.scitotenv.2019.07.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
This study was done on SD rat Sertoli-germ co-cultured cells (Sertoli-germ cells) with nickel nanoparticles (Ni NPs). A series of investigations were performed to observe the role of Ni NPs on the apoptosis of Sertoli-germ cells and to explore the long-chain non-coding RNA (lncRNA) functions on key signaling pathways and regulatory mechanisms. We found that Ni NPs had an apoptotic effect on Sertoli-germ cells. Ni NPs-induced apoptosis in Sertoli-germ cells involves the LOC102551356, Insulin-like growth factor-binding protein 3 (Igfbp3), and mitochondrial apoptosis pathway. The specific mechanism may be: during the process of Ni NPs-induced apoptosis in Sertoli-germ cells, the expression of LOC102551356 is up-regulated, and LOC102551356 activates the mitochondrial apoptosis pathway through targeted regulation of the target gene Igfbp3 in the P53-reduced apoptosis pathway. The results of this study will be important for the safety evaluation of Ni NPs in the future, and could provide an approach for the prevention or alleviation of the toxicity induced by Ni NPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Xiaojie Gao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Yongya Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Keping Cheng
- Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
15
|
Song EL, Xing L, Wang L, Song WT, Li DB, Wang Y, Gu YW, Liu MM, Ni WJ, Zhang P, Ma X, Zhang X, Yao J, Chen Y, An RH. LncRNA ADAMTS9-AS2 inhibits cell proliferation and decreases chemoresistance in clear cell renal cell carcinoma via the miR-27a-3p/FOXO1 axis. Aging (Albany NY) 2019; 11:5705-5725. [PMID: 31400752 PMCID: PMC6710069 DOI: 10.18632/aging.102154] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence reveals the principal role of long noncoding RNAs in the progression of clear cell renal cell carcinoma (ccRCC). However, little is known about the underlying mechanism of ADAM metallopeptidase with thrombospondin type 1 motif, 9 antisense RNA 2 (ADAMTS9-AS2) in ccRCC. Here, bioinformatics analyses verified ADAMTS9-AS2 is a long noncoding RNA and its high expression was associated with better prognosis of ccRCC. ADAMTS9-AS2 was clearly downregulated in ccRCC clinical samples and cell lines. Clinical data showed low-expressed ADAMTS9-AS2 was correlated with worse overall survival in ccRCC patients. Next, miR-27a-3p was identified as an inhibitory target of ADAMTS9-AS2 by dual-luciferase reporter and RNA immunoprecipitation assays. Both overexpressed ADAMTS9-AS2 and underexpressed miR-27a-3p in ccRCC cell lines led to the inhibition of cell proliferation and the reduction of chemoresistance. Additionally, Forkhead Box Protein O1 (FOXO1) was confirmed as the inhibitory target of miR-27a-3p. Induced by ADAMTS9-AS2 overexpression, cell proliferation and chemoresistance exhibited an obvious reduction, FOXO1 expression showed an evident increase, but all were reversed after miR-27a-3p was simultaneously overexpressed. Collectively, these results suggest ADAMTS9-AS2 inhibits the progression and impairs the chemoresistance of ccRCC via miR-27a-3p-mediated regulation of FOXO1 and may serve as a prognostic biomarker and therapeutic target for ccRCC.
Collapse
MESH Headings
- ADAMTS9 Protein/antagonists & inhibitors
- ADAMTS9 Protein/genetics
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Computational Biology
- Down-Regulation
- Drug Resistance, Neoplasm/genetics
- Female
- Forkhead Box Protein O1/antagonists & inhibitors
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Prognosis
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Er-lin Song
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Li Xing
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Liang Wang
- Medical Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Wen-ting Song
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang Province, P. R. China
| | - Dan-bin Li
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Yi Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Yi-wei Gu
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Ming-ming Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Wen-jun Ni
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Peng Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical Academy, Beijing 100036, P.R. China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical Academy, Beijing 100036, P.R. China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical Academy, Beijing 100036, P.R. China
| | - Jie Yao
- Department of Urological Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, P.R. China
| | - Yang Chen
- Department of Hematology and Medical Oncology, Beijing ChuiYangLiu Hospital, Beijing 100022, P. R. China
| | - Rui-hua An
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| |
Collapse
|
16
|
Lin X, Tang X, Zheng T, Qiu J, Hua K. Long Non-Coding RNA NONHSAT076754 Promotes Invasion and Metastasis in Epithelial Ovarian Cancer. J Cancer 2019; 10:1930-1940. [PMID: 31205552 PMCID: PMC6547989 DOI: 10.7150/jca.29057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/23/2019] [Indexed: 12/22/2022] Open
Abstract
Although accumulating evidence suggests that long non-coding RNAs (lncRNAs) are critical determinants of ovarian cancer development and progression, reports of metastasis-associated lncRNAs are limited. Here, we focused on NONHSAT076754 and explored its expression level, clinical value, biological behavior and molecular basis in epithelial ovarian cancer (EOC) metastasis. The results showed that NONHSAT076754 expression was increased in EOC tissues and cell lines and that this expression was closely related with FIGO stage, high tumor grade and lymph node metastasis. Furthermore, NONHSAT076754 knockdown markedly inhibited EOC cell migration and invasion in vitro. Consistently, the in vivo data from both the bioluminescence imaging and tumor dissection revealed that depletion of NONHSAT076754 reduced EOC metastasis. Mechanically, the pro-metastatic activities of NONHSAT076754 were partially regulated by PTEN and HTATIP2. Further rescue assays validated that knockdown of HTATIP2 remarkably reversed NONHSAT076754 silencer-induced inhibition of EOC cell metastasis. These data indicate that NONHSAT076754 is a vital regulator of EOC metastasis, laying the foundation for lncRNA-based clinical management of EOC aggressiveness and metastasis.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Tingting Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
17
|
Chen D, Zhu M, Su H, Chen J, Xu X, Cao C. LINC00961 restrains cancer progression via modulating epithelial-mesenchymal transition in renal cell carcinoma. J Cell Physiol 2018; 234:7257-7265. [PMID: 30367453 DOI: 10.1002/jcp.27483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Recently, long noncoding RNA have been identified as new gene regulators and prognostic biomarkers in various cancers, including renal cell carcinoma (RCC). The expression and biological roles of LINC00961 have been reported in many human cancers. However, up to date, no study of LINC00961 has been shown in RCC. Currently, we aimed to investigate the function of LINC00961 in RCC progression. Interestingly, we observed that LINC00961 could act as a novel biomarker in predicting the diagnosis of RCC. Then, we found that LINC00961 was greatly downregulated in RCC cell lines (Caki-1, Caki-2, 786-O, A498, and ACHN cells) compared with normal renal cell lines (HK-2 cells). Then, 786-O cells and ACHN cells were infected with LV-LINC00961. As displayed in our current study, LINC00961 overexpression could obviously suppress the proliferation and survival of RCC cells in vitro. In addition, RCC cell apoptosis was greatly induced and cell cycle progression was blocked in G1 phase by upregulation of LINC00961 in 786-O cells and ACHN cells. Subsequently, we found that LV-LINC00961 was able to restrain RCC cell migration and cell invasion capacity. Meanwhile, the messenger RNA and protein expression levels of epithelial-mesenchymal transition (EMT)-associated markers Slug and N-cadherin in RCC cell lines were dramatically inhibited by overexpressing LINC00961. Finally, the in vivo experiment was carried out and we observed that LINC00961 could inhibit RCC development through modulating EMT process. Taken these together, it was indicated in our study that LINC00961 was involved in RCC progression through targeting EMT pathway.
Collapse
Affiliation(s)
- Dongming Chen
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huang Su
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jiexun Chen
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xianlin Xu
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Lichner Z, Saleeb R, Butz H, Ding Q, Nofech-Mozes R, Riad S, Farag M, Varkouhi AK, Dos Santos CC, Kapus A, Yousef GM. Sunitinib induces early histomolecular changes in a subset of renal cancer cells that contribute to resistance. FASEB J 2018; 33:1347-1359. [PMID: 30148679 DOI: 10.1096/fj.201800596r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sunitinib is the standard-of-care, first-line treatment for advanced renal cell carcinoma (RCC). Characteristics of treatment-resistant RCC have been described; however, complex tumor adaptation mechanisms obstruct the identification of significant operators in resistance. We hypothesized that resistance is a late manifestation of early, treatment-induced histomolecular alterations; therefore, studying early drug response may identify drivers of resistance. We describe an epithelioid RCC growth pattern in RCC xenografts, which emerges in sunitinib-sensitive tumors and is augmented during resistance. This growth modality is molecularly and morphologically related to the RCC spheroids that advance during in vitro treatment. Based on time-lapse microscopy, mRNA and microRNA screening, and tumor behavior-related characteristics, we propose that the spheroid and adherent RCC growth patterns differentially respond to sunitinib. Gene expression analysis indicated that sunitinib promoted spheroid formation, which provided a selective survival advantage under treatment. Functional studies confirm that E-cadherin is a key contributor to the survival of RCC cells under sunitinib treatment. In summary, we suggest that sunitinib-resistant RCC cells exist in treatment-sensitive tumors and are histologically identifiable.-Lichner, Z., Saleeb, R., Butz, H., Ding, Q., Nofech-Mozes, R., Riad, S., Farag, M., Varkouhi, A. K., dos Santos, C. C., Kapus, A., Yousef, G. M. Sunitinib induces early histomolecular changes in a subset of renal cancer cells that contribute to resistance.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rola Saleeb
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Henriett Butz
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University (HAS-SE), Budapest, Hungary
| | - Qiang Ding
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Roy Nofech-Mozes
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sara Riad
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mina Farag
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amir K Varkouhi
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Viral Vector and Cell Therapy Core (VICTOR), St. Michael's Hospital, Toronto, Ontario, Canada
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Viral Vector and Cell Therapy Core (VICTOR), St. Michael's Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada; and.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - George M Yousef
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Presence of Intratumoral Calcifications and Vasculature Is Associated With Poor Overall Survival in Clear Cell Renal Cell Carcinoma. J Comput Assist Tomogr 2018; 42:418-422. [PMID: 29287026 DOI: 10.1097/rct.0000000000000704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The objective of this study was to explore the prognostic significance of the preoperative computed tomography (CT) features in clear cell renal cell carcinoma. PATIENTS AND METHODS The clinical data and CT data from 210 patients (1 grade 1, 84 grade 2, 92 grade 3, and 32 grade 4) generated with The Cancer Imaging Archive were reviewed. Overall survival was assessed using Kaplan-Meyer analysis. The relationship between CT features and survivals were evaluated using univariate and multivariable Cox regression analysis. RESULTS The follow-up occurred between 13 and 3989 days (median, 1405 days; mean, 1434 days).On univariate Cox regressions, 4 preoperative CT features (intratumoral calcifications: yes vs no hazard ratio [HR], 2.054; 95% confidence interval [CI], 1.231-3.428; renal vein invasion: yes vs no HR, 2.013; 95% CI, 1.218-3.328; collecting system invasion: yes vs no HR, 2.139; 95% CI, 1.286-3.558; gross appearance of intratumoral vasculature: yes vs no HR, 2.385; 95% CI, 1.454-3.915) were significantly associated with overall survival (all P < 0.05). On multivariable Cox regression analysis, predictors of mortality in clear cell renal cell carcinoma were the presence of intratumoral calcifications (HR, 1.718; 95% CI, 1.014-2.911; P = 0.044) and gross appearance of intratumoral vasculature (HR, 2.137; 95% CI, 1.284-3.557; P = 0.003). CONCLUSIONS Presence of intratumoral calcifications and vasculature can be potential prognostic features to screen patients for unfavorable prognosis.
Collapse
|
20
|
Li M, Wang Y, Cheng L, Niu W, Zhao G, Raju JK, Huo J, Wu B, Yin B, Song Y, Bu R. Long non-coding RNAs in renal cell carcinoma: A systematic review and clinical implications. Oncotarget 2018; 8:48424-48435. [PMID: 28467794 PMCID: PMC5564659 DOI: 10.18632/oncotarget.17053] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/20/2017] [Indexed: 12/27/2022] Open
Abstract
Renal cell carcinoma is one of the most common malignancy in adults, its prognosis is poor in an advanced stage and early detection is difficult due to the lack of molecular biomarkers. The identification of novel biomarkers for RCC is an urgent and meaningful project. Long non-coding RNA (lncRNA) is transcribed from genomic regions with a minimum length of 200 bases and limited protein-coding potential. Recently, lncRNAs have been greatly studied in a variety of cancer types. They participate in a wide variety of biological processes including cancer biology. In this review, we provide a new insight of the profiling of lncRNAs in RCC and their roles in renal carcinogenesis, with an emphasize on their potential in diagnosis, prognosis and potential roles in RCC therapy.
Collapse
Affiliation(s)
- Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wanting Niu
- Department of Orthopedics, Brigham and Women's Hospital, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Guoan Zhao
- School of Network Education, Beijing University of Posts and Telecommunications, Hebei, Beijing 100088, P.R. China
| | - Jithin K Raju
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jun Huo
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
21
|
Zheng P, Li H, Xu P, Wang X, Shi Z, Han Q, Li Z. High lncRNA HULC expression is associated with poor prognosis and promotes tumor progression by regulating epithelial-mesenchymal transition in prostate cancer. Arch Med Sci 2018; 14:679-686. [PMID: 29765457 PMCID: PMC5949918 DOI: 10.5114/aoms.2017.69147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs) play critical roles in tumor progression and development. However, the expression pattern and biological function of lncRNA HULC (highly upregulated in liver cancer) in prostate cancer (PCa) remain largely unclear. MATERIAL AND METHODS The expression of lncRNA HULC in 53 paired PCa tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The χ2 test was used to explore the association of lncRNA HULC expression with clinicopathologic features. Kaplan-Meier analysis was used to detect the association between HULC expression and overall survival of PCa patients. Furthermore, the function of HULC in cell growth and metastasis was detected in PCa cells. RESULTS Our data showed that HULC expression was upregulated in PCa tissues and cell lines compared to adjacent non-tumor tissues and the normal prostate cell line RWPE-1 (p < 0.05). High HULC expression was positively associated with advanced clinicopathologic features and poor overall survival (OS) for PCa patients (p < 0.05). HULC inhibition suppressed PCa cell growth and metastasis both in vitro and in vivo (p < 0.05). Furthermore, HULC knockdown reduced N-cadherin and vimentin expression and increased E-cadherin expression in PCa cells (p < 0.05). CONCLUSIONS Our data suggested that lncRNA HULC might play oncogenic roles in PCa progression, which provided a novel therapeutic strategy for PCa patients.
Collapse
Affiliation(s)
- Pengyi Zheng
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Huibing Li
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Po Xu
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Xiaohui Wang
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Zhenguo Shi
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Qingjiang Han
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Zhijun Li
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| |
Collapse
|
22
|
Moghaddas Sani H, Hejazian M, Hosseinian Khatibi SM, Ardalan M, Zununi Vahed S. Long non-coding RNAs: An essential emerging field in kidney pathogenesis. Biomed Pharmacother 2018; 99:755-765. [PMID: 29710473 DOI: 10.1016/j.biopha.2018.01.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Human Genome Project has made it clear that a majority of the genome is transcribed into the non-coding RNAs including microRNAs as well as long non-coding RNAs (lncRNAs) which both can affect different features of cells. LncRNAs are long heterogenous RNAs that regulate gene expression and a variety of signaling pathways involved in cellular homeostasis and development. Studies over the past decade have shown that lncRNAs have a major role in the kidney pathogenesis. The effective roles of lncRNAs have been recognized in renal ischemia, injury, inflammation, fibrosis, glomerular diseases, renal transplantation, and renal cell carcinoma. The present review outlines the role and function of lncRNAs in kidney pathogenesis as novel essential regulators. Molecular mechanism insights into the functions of lncRNAs in kidney pathophysiological processes may contribute to effective future therapeutics.
Collapse
Affiliation(s)
| | - Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
23
|
Zhang G, An X, Zhao H, Zhang Q, Zhao H. Long non-coding RNA HNF1A-AS1 promotes cell proliferation and invasion via regulating miR-17-5p in non-small cell lung cancer. Biomed Pharmacother 2018; 98:594-599. [DOI: 10.1016/j.biopha.2017.12.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 01/10/2023] Open
|
24
|
Zheng Y, Miu Y, Yang X, Yang X, Zhu M. CCR7 Mediates TGF-β1-Induced Human Malignant Glioma Invasion, Migration, and Epithelial–Mesenchymal Transition by Activating MMP2/9 Through the Nuclear Factor KappaB Signaling Pathway. DNA Cell Biol 2017; 36:853-861. [PMID: 28817313 DOI: 10.1089/dna.2017.3818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yanyan Zheng
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan, Shandong Province, China
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Yiting Miu
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaokai Yang
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaoguo Yang
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Meijia Zhu
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan, Shandong Province, China
| |
Collapse
|
25
|
A genome-wide comprehensively analyses of long noncoding RNA profiling and metastasis associated lncRNAs in renal cell carcinoma. Oncotarget 2017; 8:87773-87781. [PMID: 29152119 PMCID: PMC5675671 DOI: 10.18632/oncotarget.21206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Recently, a growing number of studies have indicated that long noncoding RNAs (lncRNAs) are emerging as new critical regulators of tumorigenesis and prognostic markers in multiple cancers. However, the expression pattern of lncRNAs and their contributions in renal cell carcinoma (RCC) remains poorly understood. In this study, we performed a genome-wide comprehensively analysis of lncRNAs profiling and clinical relevance to provide valuable lncRNA candidates for the further study in RCC. RCC and non-tumor tissues RNA sequencing data, and microarray data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), then, these data were annotated and analyzed to find dysregulated lncRNAs in RCC. We identified that hundreds of lncRNAs were differentially expressed in RCC tissues compared with normal tissues, and genomic variation analyses revealed that copy number amplification or deletion happened in some of these lncRNAs genome loci. Moreover, lots of lncRNAs expression levels are significantly associated RCC patients overall survival time, such as PVT1 and DUXAP8. Finally, we identified some novel metastasis associated lncRNAs in RCC (such as DUXAP8) by analyzing lncRNAs profiling in the RCC tissues from patients with metastasis compared with the primary RCC tissues without metastasis; knockdown of DUXAP8 could impair RCC cells invasive ability in vitro. Overall, our findings illuminate a lot of lncRNAs are aberrantly expressed in RCC that may offer useful resource for identification novel prognostic markers in this disease.
Collapse
|
26
|
Chen S, Ma P, Li B, Zhu D, Chen X, Xiang Y, Wang T, Ren X, Liu C, Jin X. LncRNA CCAT1 inhibits cell apoptosis of renal cell carcinoma through up-regulation of Livin protein. Mol Cell Biochem 2017; 434:135-142. [PMID: 28470345 DOI: 10.1007/s11010-017-3043-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/22/2017] [Indexed: 02/06/2023]
Abstract
This study was to investigate the involvement of long non-coding RNA (lncRNA) colon cancer-associated transcript-1 (CCAT1) in renal cell carcinoma (RCC) and to further uncover its underlying mechanism. In this study, the expression of CCAT1 and Livin of RCC tissues or cells was determined using qRT-PCR (quantitative real-time PCR) and western blot, respectively. RNA pulldown and RIP (RNA-Binding Protein Immunoprecipitation) assays were performed to examine the sequence interaction between CCAT1 and Livin. The viability and apoptosis of RCC cells was assessed by MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and TUNEL (TdT-mediated dUTP nick end labeling) assays, respectively. Mice of tumor animal models were established to observe the effect of CCAT1 on RCC tumor growth. The relative expression of CCAT1 in RCC tissues and cell lines was obviously higher than that of the control. CCAT1 knockdown could reduce cell viability and increase the apoptosis of RCC cells in vitro. Furthermore, Livin was significantly inhibited by CCAT1 silencing; RNA pulldown and RIP assays showed that CCAT1 was physically associated with Livin protein. Moreover, Livin overexpression not only significantly inhibited RCC cell apoptosis and increased cell viability, but completely reversed the si-CCAT1-mediated repression of cell viability. More importantly, CCAT1 silencing could inhibit the growth of RCC in vivo that was accompanied by the reduction of Livin in RCC tissues. CCAT1 inhibits RCC cell apoptosis and increases cell viability through up-regulation of Livin.
Collapse
Affiliation(s)
- Shaoan Chen
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Pengpeng Ma
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 76# Linjiang Lu, Chongqing, 400010, People's Republic of China
| | - Bin Li
- School of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Dawei Zhu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 76# Linjiang Lu, Chongqing, 400010, People's Republic of China
| | - Xiude Chen
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Yuzhu Xiang
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Tengteng Wang
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Xiangbin Ren
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Chuan Liu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 76# Linjiang Lu, Chongqing, 400010, People's Republic of China.
| | - Xunbo Jin
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|