1
|
Mantica M, Drappatz J, Lieberman F, Hadjipanayis CG, Lunsford LD, Niranjan A. Phase II study of border zone stereotactic radiosurgery with bevacizumab in patients with recurrent or progressive glioblastoma multiforme. J Neurooncol 2023; 164:179-190. [PMID: 37515669 DOI: 10.1007/s11060-023-04398-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE Recurrent glioblastoma is universally fatal with limited effective treatment options. The aim of this phase 2 study of Border Zone SRS plus bevacizumab was to evaluate OS in patients with recurrent GBM. METHODS Patients with histologically confirmed GBM with recurrent disease who had received prior first-line treatment with fractionated radiotherapy and chemotherapy and eligible for SRS were enrolled. Bevacizumab 10 mg/kg was given day -1, day 14, and then every 14 days until disease progression. 1-14 days before BZ-SRS procedure, patients underwent brain MRI /MRS. MRS with measurement of choline-to-N-acetyl aspartate index (CNI) area ≥ 3 was targeted for SRS. RESULTS From 2015-2017, sixteen of planned 40 patients were enrolled. The median age was 62 (range, 48-74Y). 3/16 (0.188) participants experienced grade 2 toxicity. No AREs were reported. The mOS was 11.73 months compared to 8.74 months (P = 0.324) from date of SRS for the BZ-SRS and institutional historical controls, respectively. PFS-6 and OS-6 were 31.2% (p = 0.00294) and 81.2%(p = 0.058), respectively. Of 13 evaluable for best response: 1 CR (p = 0.077), 4 PR (p = 0.308), 7 SD (p = 0.538), and 1 PD (p = 0.077). 11/16 participants had MRS scans with an estimated probability that MRS changes a treatment plan of 0 (0, 0.285). CONCLUSION BZ-SRS with bevacizumab was feasible and well tolerated. There is no significant survival benefit using BZ-SRS with bevacizumab compared to institutional historical controls. Secondary analysis revealed a trend toward improved PFS-6, but not OS-6 after BZ-SRS. MRS scans did not result in changes to SRS treatment plans.
Collapse
Affiliation(s)
- Megan Mantica
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA.
| | - Jan Drappatz
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Frank Lieberman
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA
| | | | - L Dade Lunsford
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ajay Niranjan
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
2
|
Byrnes JR, Weeks AM, Shifrut E, Carnevale J, Kirkemo L, Ashworth A, Marson A, Wells JA. Hypoxia Is a Dominant Remodeler of the Effector T Cell Surface Proteome Relative to Activation and Regulatory T Cell Suppression. Mol Cell Proteomics 2022; 21:100217. [PMID: 35217172 PMCID: PMC9006863 DOI: 10.1016/j.mcpro.2022.100217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 01/02/2023] Open
Abstract
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture-based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.
Collapse
Affiliation(s)
- James R Byrnes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Eric Shifrut
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA; Gladstone Institutes, San Francisco, California, USA
| | - Julia Carnevale
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lisa Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Alan Ashworth
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA; Gladstone Institutes, San Francisco, California, USA; Department of Medicine, University of California, San Francisco, San Francisco, California, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA; Parker Institute for Cancer Immunotherapy, San Francisco, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
3
|
Liu Y, Gan Z, Hu F. Effect of hydroxyapatite bioceramics on the growth of osteoblasts and HIF-α/VEGF signal axis in partial hypoxia environment in vitro. Technol Health Care 2022; 30:363-369. [PMID: 35124611 PMCID: PMC9028651 DOI: 10.3233/thc-thc228033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Hydroxyapatite bioceramic is a kind of bone implant commonly used in oral clinic treatment. In the early stage of tissue repair, cells will suffer hypoxic due to the interruption of blood supply. OBJECTIVE: Studying the expression of osteoblasts in hypoxic environment will help us to understand the expression and response mechanism of osteoblasts at the implantation site of hydroxyapatite in the early stage of hypoxia. METHODS: MG63 osteoblast cell line was used in this study. The cells of normal group were incubated under normal oxygen and hydroxyapatite ceramics condition. The cells of hypoxia group were incubated under hypoxia (37∘C, 8% CO2, 8% O2, 86% N2) and hydroxyapatite ceramics condition. Cell proliferation was measured by CCK8 assay. Apoptosis was measured by flow cytometry. Serum alkaline phosphatase (ALP) activity was measured by ALP kit. Hypoxia inducible factor (HIF-α) and vascular endothelial growth factor (VEGF) were detected by Western blot. RESULTS: Compared to the normal group, the cells of hypoxia group showed a dramatically higher proliferation ability, especially at 48 h (P< 0.05). Due to hypoxia, cell apoptosis was induced, but there is no difference between these two groups. Interestingly, the ALP activity of hypoxia group was higher than that of normal group at 24 h and 48 h (P< 0.05). Mechanically, western blot result showed that the protein level of both HIF-α and VEGF were up-regulated in hypoxia group. CONCLUSIONS: Under hypoxia condition, hydroxyapatite bioceramics can promote the proliferation of MG63 osteoblasts, elevate the activity of alkaline phosphatase and upregulate HIF-α and VEGF expression without effect on apoptosis.
Collapse
Affiliation(s)
| | | | - Fei Hu
- Corresponding author: Fei Hu, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:
| |
Collapse
|
4
|
Gonçalves DA, Jasiulionis MG, de Melo FHM. The Role of the BH4 Cofactor in Nitric Oxide Synthase Activity and Cancer Progression: Two Sides of the Same Coin. Int J Mol Sci 2021; 22:9546. [PMID: 34502450 PMCID: PMC8431490 DOI: 10.3390/ijms22179546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer development is associated with abnormal proliferation, genetic instability, cell death resistance, metabolic reprogramming, immunity evasion, and metastasis. These alterations are triggered by genetic and epigenetic alterations in genes that control cell homeostasis. Increased reactive oxygen and nitrogen species (ROS, RNS) induced by different enzymes and reactions with distinct molecules contribute to malignant transformation and tumor progression by modifying DNA, proteins, and lipids, altering their activities. Nitric oxide synthase plays a central role in oncogenic signaling modulation and redox landscape. Overexpression of the three NOS isoforms has been found in innumerous types of cancer contributing to tumor growth and development. Although the main function of NOS is the production of nitric oxide (NO), it can be a source of ROS in some pathological conditions. Decreased tetrahydrobiopterin (BH4) cofactor availability is involved in NOS dysfunction, leading to ROS production and reduced levels of NO. The regulation of NOSs by BH4 in cancer is controversial since BH4 has been reported as a pro-tumoral or an antitumoral molecule. Therefore, in this review, the role of BH4 in the control of NOS activity and its involvement in the capabilities acquired along tumor progression of different cancers was described.
Collapse
Affiliation(s)
- Diego Assis Gonçalves
- Micro-Imuno-Parasitology Department, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | - Fabiana Henriques Machado de Melo
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Institute of Medical Assistance to Public Servants of the State (IAMSPE), São Paulo 04039-000, Brazil
| |
Collapse
|
5
|
Idris M, Alves MM, Hofstra RMW, Mahe MM, Melotte V. Intestinal multicellular organoids to study colorectal cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188586. [PMID: 34216725 DOI: 10.1016/j.bbcan.2021.188586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
Modeling colorectal cancer (CRC) using organoids has burgeoned in the last decade, providing enhanced in vitro models to study the development and possible treatment options for this type of cancer. In this review, we describe both normal and CRC intestinal organoid models and their utility in the cancer research field. Besides highlighting studies that develop epithelial CRC organoid models, i.e. organoids without tumor microenvironment (TME) cellular components, we emphasize on the need for TME in CRC modeling, to help reduce translational disparities in this area. Also, we discuss the utilization of CRC organoids derived from pluripotent stem cells, as well as their potential to be used in cancer research. Finally, limitations and challenges in the current CRC organoids field, are discussed.
Collapse
Affiliation(s)
- Musa Idris
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maxime M Mahe
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, OH, USA; TENS - Inserm UMR 1235, INSERM, University of Nantes, Nantes, France
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
The Double-Faced Role of Nitric Oxide and Reactive Oxygen Species in Solid Tumors. Antioxidants (Basel) 2020; 9:antiox9050374. [PMID: 32365852 PMCID: PMC7278755 DOI: 10.3390/antiox9050374] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
Disturbed redox homeostasis represents a hallmark of cancer phenotypes, affecting cellular metabolism and redox signaling. Since reactive oxygen and nitrogen species (ROS/RNS) are involved in regulation of proliferation and apoptosis, they may play a double-faced role in cancer, entailing protumorigenic and tumor-suppressing effects in early and later stages, respectively. In addition, ROS and RNS impact the activity and communication of all tumor constituents, mediating their reprogramming from anti- to protumorigenic phenotypes, and vice versa. An important role in this dichotomic action is played by the variable amounts of O2 in the tumor microenvironment, which dictates the ultimate outcome of the influence of ROS/RNS on carcinogenesis. Moreover, ROS/RNS levels remarkably influence the cancer response to therapy. The relevance of ROS/RNS signaling in solid tumors is witnessed by the emergence of novel targeted treatments of solid tumors with compounds that target ROS/RNS action and production, such as tyrosine kinase inhibitors and monoclonal antibodies, which might contribute to the complexity of redox regulation in cancer. Prospectively, the dual role of ROS/RNS in the different stages of tumorigenesis through different impact on oxidation and nitrosylation may also allow development of tailored diagnostic and therapeutic approaches.
Collapse
|
7
|
Qiao C, Wan J, Zhang L, Luo B, Liu P, Di A, Gao H, Sun X, Zhao G. Astragaloside II alleviates the symptoms of experimental ulcerative colitis in vitro and in vivo. Am J Transl Res 2019; 11:7074-7083. [PMID: 31814910 PMCID: PMC6895531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory intestinal disease, and its morbidity is rising worldwide. Previous study indicated that astragaloside II (AS II), a monomeric compound, was used to treat bowel disease. However, the effects of AS II on UC remains unclear. Thus, this study aimed to investigate the therapeutic effects of AS II on experimental UC in vitro and in vivo. METHODS CCD-18Co cells were stimulated by 1 μg/mL LPS to mimic UC in vitro. In addition, dextran sulfate sodium (DSS)-induced UC mouse model was established in vivo. CCK-8 assay was used to detect cell proliferation in vitro. Moreover, the concentrations of inflammatory factors interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO), superoxide dismutase (SOD) and malondialdehyde (MDA) in CCD-18Co cells and colon tissues were determined by ELISA, respectively. Meanwhile, the expressions of hypoxia-inducible factor 1α (HIF-α), phospho-inhibitor of NF-κB (p-IκB) and phospho-NF-κB p65 (p-p65) were detected by western blotting in vitro and in vivo, respectively. RESULTS In this study, the levels of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 were significantly increased in lipopolysaccharide (LPS)-stimulated CCD-18Co cells. However, LPS-induced inflammatory response was markedly alleviated by AS II. In addition, LPS-induced HIF-α, p-IκB and p-p65 proteins increases were markedly ameliorated by AS II treatment. Moreover, AS II reduced disease activity index (DAI) scores and increased the colon lengths in DSS-treated mice. Meanwhile, AS II decreased the levels of IL-6, TNF-α, IL-1β, NO, MPO and MDA, and increased the level of SOD in colon of DSS-treated mice. Furthermore, AS II downregulated the expressions of HIF-α, p-IκB and p-p65 in DSS-induced UC in mice. CONCLUSION Our findings indicated that AS II could alleviate inflammatory response in LPS-induced CCD-18Co cells and in DSS-induced UC in mice. In conclusion, AS II may serve as a potential agent for the treatment of UC.
Collapse
Affiliation(s)
- Cuixia Qiao
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Jin’e Wan
- Department of High Pressure Oxygen, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Lize Zhang
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Bo Luo
- Department of Urology, Songshan Hospital of Qingdao UniversityQingdao 266000, Shandong, China
| | - Penglin Liu
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Aiting Di
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Hairui Gao
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Xiaomei Sun
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Gang Zhao
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| |
Collapse
|
8
|
Acute and chronic hypoxia differentially predispose lungs for metastases. Sci Rep 2019; 9:10246. [PMID: 31308473 PMCID: PMC6629695 DOI: 10.1038/s41598-019-46763-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Oscillations in oxygen levels affect malignant cell growth, survival, and metastasis, but also somatic cell behaviour. In this work, we studied the effect of the differential expression of the two primary hypoxia inducible transcription factor isoforms, HIF-1α and HIF-2α, and pulmonary hypoxia to investigate how the hypoxia response of the vascular endothelium remodels the lung pre-metastatic niche. Molecular responses to acute versus chronic tissue hypoxia have been proposed to involve dynamic HIF stabilization, but the downstream consequences and the extent to which differential lengths of exposure to hypoxia can affect HIF-isoform activation and secondary organ pre-disposition for metastasis is unknown. We used primary pulmonary endothelial cells and mouse models with pulmonary endothelium-specific deletion of HIF-1α or HIF-2α, to characterise their roles in vascular integrity, inflammation and metastatic take after acute and chronic hypoxia. We found that acute hypoxic response results in increased lung metastatic tumours, caused by HIF-1α-dependent endothelial cell death and increased microvascular permeability, in turn facilitating extravasation. This is potentiated by the recruitment and retention of specific myeloid cells that further support a pro-metastatic environment. We also found that chronic hypoxia delays tumour growth to levels similar to those seen in normoxia, and in a HIF-2α-specific fashion, correlating with increased endothelial cell viability and vascular integrity. Deletion of endothelial HIF-2α rendered the lung environment more vulnerable to tumour cell seeding and growth. These results demonstrate that the nature of the hypoxic challenge strongly influences the nature of the endothelial cell response, and affects critical parameters of the pulmonary microenvironment, significantly impacting metastatic burden. Additionally, this work establishes endothelial cells as important players in lung remodelling and metastatic progression.
Collapse
|
9
|
Yuan B, Lin L, Ying ZY, Ying MX, Zhou QY, Shi L. Repression of M-phase phosphoprotein 8 inhibits melanoma growth and metastasis in vitro and in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:12003-12009. [PMID: 31966565 PMCID: PMC6966055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/30/2017] [Indexed: 06/10/2023]
Abstract
Metastatic melanoma accounts for the majority of skin cancer deaths due to its aggressiveness and high resistance to current therapies. M-phase phosphoprotein 8 (MPP8) has been shown to bind to methylated H3K9 and promote tumor cell motility and invasion. The current study aimed to investigate the role of MPP8 in melanoma growth and metastasis. Our results showed that MMP8 was up-regulated in the metastatic melanoma specimens. Knockdown of MPP8 inhibited melanoma cell growth both in vitro and in vivo. Furthermore, down-regulation of MPP8 induced S-phase cell cycle arrest as well as altered expression of cell cycle-related proteins in melanoma cells. In addition, repression of MPP8 inhibited the migration and invasion of melanoma cells both in vitro and in vivo. Taken together, these data suggest that MPP8 knockdown could inhibit the growth and metastasis of melanoma cells and provide novel therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| | - Lei Lin
- Department of Aesthetic Medicine, Ningbo College of Health SciencesNingbo, China
| | - Zhen-Yi Ying
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| | - Meng-Xia Ying
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| | - Qiong-Yan Zhou
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| | - Lei Shi
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| |
Collapse
|
10
|
Niyazi M, Harter PN, Hattingen E, Rottler M, von Baumgarten L, Proescholdt M, Belka C, Lauber K, Mittelbronn M. Bevacizumab and radiotherapy for the treatment of glioblastoma: brothers in arms or unholy alliance? Oncotarget 2016; 7:2313-28. [PMID: 26575171 PMCID: PMC4823037 DOI: 10.18632/oncotarget.6320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/13/2015] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) represents the most frequent primary brain tumor in adults and carries a dismal prognosis despite aggressive, multimodal treatment regimens involving maximal resection, radiochemotherapy, and maintenance chemotherapy. Histologically, GBMs are characterized by a high degree of VEGF-mediated vascular proliferation. In consequence, new targeted anti-angiogenic therapies, such as the monoclonal anti-VEGF-A antibody bevacizumab, have proven effective in attenuating tumor (neo)angiogenesis and were shown to possess therapeutic activity in several phase II trials. However, the role of bevacizumab in the context of multimodal therapy approaches appears to be rather complex. This review will give insights into current concepts, limitations, and controversies regarding the molecular mechanisms and the clinical benefits of bevacizumab treatment in combination with radio(chemo)therapy - particularly in face of the results of recent phase III trials, which failed to demonstrate convincing improvements in overall survival (OS).
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, University of Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Maya Rottler
- Department of Radiation Oncology, University of Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University of Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University of Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Sica GS, Fiorani C, Stolfi C, Monteleone G, Candi E, Amelio I, Catani V, Sibio S, Divizia A, Tema G, Iaculli E, Gaspari AL. Peritoneal expression of Matrilysin helps identify early post-operative recurrence of colorectal cancer. Oncotarget 2015; 6:13402-13415. [PMID: 25596746 PMCID: PMC4537023 DOI: 10.18632/oncotarget.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
Recurrence of colorectal cancer (CRC) following a potentially curative resection is a challenging clinical problem. Matrix metalloproteinase-7 (MMP-7) is over-expressed by CRC cells and supposed to play a major role in CRC cell diffusion and metastasis. MMP-7 RNA expression was assessed by real-time PCR using specific primers in peritoneal washing fluid obtained during surgical procedure. After surgery, patients underwent a regular follow up for assessing recurrence. transcripts for MMP-7 were detected in 31/57 samples (54%). Patients were followed-up (range 20-48 months) for recurrence prevention. Recurrence was diagnosed in 6 out of 55 patients (11%) and two patients eventually died because of this. Notably, all the six patients who had relapsed were positive for MMP-7. Sensitivity and specificity of the test were 100% and 49% respectively. Data from patients have also been corroborated by computational approaches. Public available coloncarcinoma datasets have been employed to confirm MMP7 clinical impact on the disease. Interestingly, MMP-7 expression appeared correlated to Tgfb-1, and correlation of the two factors represented a poor prognostic factor. This study proposes positivity of MMP-7 in peritoneal cavity as a novel biomarker for predicting disease recurrence in patients with CRC.
Collapse
Affiliation(s)
- Giuseppe S. Sica
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
- European Society Degenerative Disease (ESDD). www.esdd.it
| | - Cristina Fiorani
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Carmine Stolfi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Giovanni Monteleone
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Simone Sibio
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Andrea Divizia
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Giorgia Tema
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Edoardo Iaculli
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Achille L. Gaspari
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| |
Collapse
|