1
|
Islam A, Chang YC, Chen XC, Weng CW, Chen CY, Wang CW, Chen MK, Tikhomirov AS, Shchekotikhin AE, Chueh PJ. Water-soluble 4-(dimethylaminomethyl)heliomycin exerts greater antitumor effects than parental heliomycin by targeting the tNOX-SIRT1 axis and apoptosis in oral cancer cells. eLife 2024; 12:RP87873. [PMID: 38567911 PMCID: PMC10990494 DOI: 10.7554/elife.87873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The antibiotic heliomycin (resistomycin), which is generated from Streptomyces resistomycificus, has multiple activities, including anticancer effects. Heliomycin was first described in the 1960s, but its clinical applications have been hindered by extremely low solubility. A series of 4-aminomethyl derivatives of heliomycin were synthesized to increase water solubility; studies showed that they had anti-proliferative effects, but the drug targets remained unknown. In this study, we conducted cellular thermal shift assays (CETSA) and molecular docking simulations to identify and validate that heliomycin and its water-soluble derivative, 4-(dimethylaminomethyl)heliomycin (designated compound 4-dmH) engaged and targeted with sirtuin-1 (SIRT1) in p53-functional SAS and p53-mutated HSC-3 oral cancer cells. We further addressed the cellular outcome of SIRT1 inhibition by these compounds and found that, in addition to SIRT1, the water-soluble 4-dmH preferentially targeted a tumor-associated NADH oxidase (tNOX, ENOX2). The direct binding of 4-dmH to tNOX decreased the oxidation of NADH to NAD+ which diminished NAD+-dependent SIRT1 deacetylase activity, ultimately inducing apoptosis and significant cytotoxicity in both cell types, as opposed to the parental heliomycin-induced autophagy. We also observed that tNOX and SIRT1 were both upregulated in tumor tissues of oral cancer patients compared to adjacent normal tissues, suggesting their clinical relevance. Finally, the better therapeutic efficacy of 4-dmH was confirmed in tumor-bearing mice, which showed greater tNOX and SIRT1 downregulation and tumor volume reduction when treated with 4-dmH compared to heliomycin. Taken together, our in vitro and in vivo findings suggest that the multifaceted properties of water-soluble 4-dmH enable it to offer superior antitumor value compared to parental heliomycin, and indicated that it functions through targeting the tNOX-NAD+-SIRT1 axis to induce apoptosis in oral cancer cells.
Collapse
Affiliation(s)
- Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
| | - Yu-Chun Chang
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
| | - Xiao-Chi Chen
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
| | - Chia-Wei Weng
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
- Institute of Medicine, Chung Shan Medical UniversityTaichungTaiwan
| | - Chien-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
| | - Che-Wei Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian HospitalChanghuaTaiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichungTaiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian HospitalChanghuaTaiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichungTaiwan
| | | | | | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichungTaiwan
- Department of Medical Research, China Medical University HospitalTaichungTaiwan
- Graduate Institute of Basic Medicine, China Medical UniversityTaichungTaiwan
| |
Collapse
|
2
|
The prospective effect of fucoidan on splenic dysfunction caused by oxaliplatin in male rats through endoplasmic stress dynamics. Sci Rep 2022; 12:22147. [PMID: 36550146 PMCID: PMC9780252 DOI: 10.1038/s41598-022-25441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Fucoidans (FUCs) are highly sulfated polysaccharides demonstrating multiple actions in different systems. Oxaliplatin (OXA) is a platinum-containing chemotherapeutic agent with several side effects that restrict its usage. The current study aimed to determine the potential effect of FUC in male rats with splenic dysfunction induced by OXA. Eighty adult male rats aged (8-9 weeks) weighing (190-230 g) were divided into four groups: (Group I: the control group): Rats were administrated normal saline; (Group II: controls treated by FUC): Rats were treated with FUC; (Group III: Splenic dysfunction group): Rats were treated with 8 mg/kg OXA. (IV: Splenic dysfunction treated by FUC): Rats were treated by OXA as Group III, then fucoidan was given. At the end of the experiment, blood was collected to determine red blood cells and white blood cells. Splenic tissues were divided into one part for biochemical assays, oxidative stress markers as MDA and catalase, inflammatory markers (TNF-alpha, IL6), and apoptotic markers (caspase 3) and gene expression of Nrf2, Mapk1 gene expression, and endoplasmic stress parameters and the other part was used for immunohistochemical and histopathological analysis. Compared to the OXA-induced splenic dysfunction group, FUC significantly decreased high levels of MDA, TNF- alpha, IL6, caspase-3, Mapk1, endoplasmic stress induced by OXA, and increased the level of catalase and Nrf2. Fucoidan has corrected the histopathological and immunohistochemical changes compared to the OXA-induced splenic dysfunction group. In conclusion, our findings suggest that fucoidan has a significant role in the treatment of splenic dysfunction induced by OXA.
Collapse
|
3
|
Cai L, Ke C, Lin Z, Huang Y, Wang A, Wang S, Chen C, Zhong C, Fu L, Hu P, Chai J, Zhang H, Zhang B. Prognostic value of nicotinamide adenine dinucleotide (NAD +) metabolic genes in patients with stomach adenocarcinoma based on bioinformatics analysis. J Gastrointest Oncol 2022; 13:2845-2862. [PMID: 36636067 PMCID: PMC9830334 DOI: 10.21037/jgo-22-1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Because stomach adenocarcinoma (STAD) has a poor prognosis, it is necessary to explore new prognostic genes to stratify patients to guide existing individualized treatments. Methods Survival and clinical information, RNA-seq data and mutation data of STAD were acquired from The Cancer Genome Atlas (TCGA) database. Fifty-one nicotinamide adenine dinucleotide (NAD+) metabolism-related genes (NMRGs) were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Differentially expressed NMRGs (DE-NMRGs) between STAD and normal samples were screened, and consistent clustering analysis of STAD patients was performed based on the DE-NMRGs. Survival analysis, Gene Set Enrichment Analysis (GSEA), mutation frequency analysis, immune microenvironment analysis and drug prediction were performed among different clusters. Additionally, the differentially expressed genes (DEGs) among different clusters were selected, and the intersections of DEGs and DE-NMRGs were selected as the prognostic genes. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed on a human gastric mucosa epithelial cell line and cancer cell line to verify the expression of the prognostic genes. Results A total of 27 DE-NMRGs and two clusters were selected. There was a difference in survival between clusters 1 and 2. Furthermore, 18 DE-NMRGs were significantly different between clusters 1 and 2. The different Gene Ontology (GO) biological processes and KEGG pathways between clusters 1 and 2 were mainly enriched in cyclic nucleotide mediated signaling, synaptic signaling and hedgehog signaling pathway, etc. The somatic mutation frequencies were different between the two clusters, and TTN was the highest mutated gene in the patients of the clusters 1 and 2. Additionally, eight immune cells, immune score, stromal score, and estimate score were different between clusters 1 and 2. The patients in cluster 2 were sensitive to CTLA4 inhibitor treatment. Furthermore, the top five drugs (AP.24534, BX.795, Midostaurin, WO2009093927 and CCT007093) were significantly higher in cluster 1 than in cluster 2. Finally, three genes (AOX1, NNMT and PTGIS) were acquired as prognostic, and their expressions were consistent with the results of bioinformatics analysis. Conclusions Three prognostic genes related to NAD+ metabolism in STAD were screened out, which provides a theoretical basis and reference value for future treatment and prognosis of STAD.
Collapse
Affiliation(s)
- Linkun Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanfeng Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zikai Lin
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yalan Huang
- Hunan University of Chinese Medicine, Changsha, China
| | - Aling Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiying Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhui Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cailing Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingyu Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peixin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiwei Chai
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiyan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Badie A, Gaiddon C, Mellitzer G. Histone Deacetylase Functions in Gastric Cancer: Therapeutic Target? Cancers (Basel) 2022; 14:5472. [PMID: 36358890 PMCID: PMC9659209 DOI: 10.3390/cancers14215472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most aggressive cancers. Therapeutic treatments are based on surgery combined with chemotherapy using a combination of platinum-based agents. However, at metastatic stages of the disease, survival is extremely low due to late diagnosis and resistance mechanisms to chemotherapies. The development of new classifications has not yet identified new prognostic markers for clinical use. The studies of epigenetic processes highlighted the implication of histone acetylation status, regulated by histone acetyltransferases (HATs) and by histone deacetylases (HDACs), in cancer development. In this way, inhibitors of HDACs (HDACis) have been developed and some of them have already been clinically approved to treat T-cell lymphoma and multiple myeloma. In this review, we summarize the regulations and functions of eighteen HDACs in GC, describing their known targets, involved cellular processes, associated clinicopathological features, and impact on survival of patients. Additionally, we resume the in vitro, pre-clinical, and clinical trials of four HDACis approved by Food and Drug Administration (FDA) in cancers in the context of GC.
Collapse
Affiliation(s)
| | | | - Georg Mellitzer
- Laboratoire Streinth, Université de Strasbourg, Inserm UMR_S 1113 IRFAC, 67200 Strasbourg, France
| |
Collapse
|
5
|
Zhao B, Wang Y, Zhao X, Ni J, Zhu X, Fu Y, Yang F. SIRT1 enhances oxaliplatin resistance in colorectal cancer through microRNA-20b-3p/DEPDC1 axis. Cell Biol Int 2022; 46:2107-2117. [PMID: 36200529 DOI: 10.1002/cbin.11905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
Abstract
Oxaliplatin (L-OHP) is a standard treatment drug for colorectal cancer (CRC), but acquired drug resistance limits the outcome of patients. We investigated the involvement of sirtuin 1 (SIRT1) in L-OHP resistance in the setting of CRC via microRNA-20b-3p/DEP domain containing 1 (miR-20b-3p/DEPDC1) axis. CRC tissues that were resistant or sensitive to L-OHP were harvested, in which SIRT1, miR-20b-3p, and DEPDC1 levels were tested. L-OHP-resistant-resistant CRC cells were transfected, subsequently, cellular proliferation, invasion, migration, and apoptosis were tested, and tumor resistance to L-OHP was observed. The binding of SIRT1 to miR-20b-3p promoter and the targeting relationship between miR-20b-3p and DEPDC1 were verified. An aberrant elevation in SIRT1 expression was seen in L-OHP-resistant CRC tissues and cells. Knockdown of SIRT1 sensitized CRC cells and xenografted CRC tumors to L-OHP. SIRT1 bound with miR-20b-3p promoter to regulate DEPDC1. Reducing miR-20b-3p or raising DEPDC1 levels weakened the effect of SIRT1 knockdown on L-OHP-resistant-CRC cells. SIRT1 enhances L-OHP resistance in CRC by mediating miR-20b-3p/DEPDC1 axis.
Collapse
Affiliation(s)
- Bin Zhao
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Yuncui Wang
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Xingwang Zhao
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Jian Ni
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Xiaowen Zhu
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Yan Fu
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Fan Yang
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| |
Collapse
|
6
|
Chang JS, Chen CY, Tikhomirov AS, Islam A, Liang RH, Weng CW, Wu WH, Shchekotikhin AE, Chueh PJ. Bis(chloroacetamidino)-Derived Heteroarene-Fused Anthraquinones Bind to and Cause Proteasomal Degradation of tNOX, Leading to c-Flip Downregulation and Apoptosis in Oral Cancer Cells. Cancers (Basel) 2022; 14:cancers14194719. [PMID: 36230644 PMCID: PMC9562014 DOI: 10.3390/cancers14194719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New-generation anthraquinone derivatives attached with different heterocycles and bearing chloroacetamidines in the side chains have been synthesized to reduce side effects and drug resistance. In this study, we identified the cellular target of the studied compounds through ligand binding assays and in silico simulations. Our results illustrate that the studied compounds bound to and targeted the tumor-associated NADH oxidase (tNOX) in oral cancer cells. tNOX is a growth-related protein and is found to be expressed in cancer cells but not in non-transformed cells, and its knockdown by RNA interference in tumor cells overturns cancer phenotypes, supporting its role in cellular growth. We also identified that tNOX bound to the studied compounds and underwent degradation, which was correlated with apoptosis induction in oral cancer cells. Abstract Anthraquinone-based intercalating compounds, namely doxorubicin and mitoxantrone, have been used clinically based on their capacity to bind DNA and induce DNA damage. However, their applications have been limited by side effects and drug resistance. New-generation anthraquinone derivatives fused with different heterocycles have been chemically synthesized and screened for higher anticancer potency. Among the compounds reported in our previous study, 4,11-bis(2-(2-chloroacetamidine)ethylamino)anthra[2,3-b]thiophene-5,10-dione dihydrochloride (designated 2c) was found to be apoptotic, but the direct cellular target responsible for the cytotoxicity remained unknown. Here, we report the synthesis and anticancer properties of two other derivatives, 4,11-bis(2-(2-chloroacetamidine)ethylamino)naphtho[2,3-f]indole-5,10-dione dihydrochloride (2a) and 4,11-bis(2-(2-chloroacetamidine)ethylamino)-2-methylanthra[2,3-b]furan-5,10-dione dihydrochloride (2b). We sought to identify and validate the protein target(s) of these derivatives in oral cancer cells, using molecular docking simulations and cellular thermal shift assays (CETSA). Our CETSA results illustrate that these derivatives targeted the tumor-associated NADH oxidase (tNOX, ENOX2), and their direct binding downregulated tNOX in p53-functional SAS and p53-mutated HSC-3 cells. Interestingly, the compounds targeted and downregulated tNOX to reduce SIRT1 deacetylase activity and increase Ku70 acetylation, which triggers c-Flip ubiquitination and induces apoptosis in oral cancer cells. Together, our data highlight the potential value of these heteroarene-fused anthraquinones in managing cancer by targeting tNOX and augmenting apoptosis.
Collapse
Affiliation(s)
- Jeng Shiun Chang
- Department of Otolaryngology, Head and Neck Surgery, Jen-Ai Hospital, Taichung 41265, Taiwan
| | - Chien-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | | | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Ru-Hao Liang
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Chia-Wei Weng
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wei-Hou Wu
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (A.E.S.); (P.J.C.); Tel.: +7-499-246-0228 (A.E.S.); +886-4-22840896 (P.J.C.)
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence: (A.E.S.); (P.J.C.); Tel.: +7-499-246-0228 (A.E.S.); +886-4-22840896 (P.J.C.)
| |
Collapse
|
7
|
Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State. Cancers (Basel) 2022; 14:cancers14030485. [PMID: 35158753 PMCID: PMC8833725 DOI: 10.3390/cancers14030485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma is characterized by a pronounced redox imbalance due to elevated glycolytic and mitochondrial oxidative metabolism. New therapeutic strategies have been developed to modulate glioblastoma redox signaling to effectively suppress growth and prolong survival. However, drug selectivity and therapeutic relapse prove to be the major challenges. We describe a pharmacological strategy for the selective targeting and treatment of glioblastoma using the redox active combination drug menadione/ascorbate, which is characterized by tolerance to normal cells and tissues. Menadione/ascorbate treatment of glioblastoma mice suppressed tumor growth and significantly increased survival without adverse side effects. This is accompanied by increased oxidative stress, decreased reducing capacity and decreased cellular density in the tumor alone, as well as increased brain perfusion and decreased regulation of several oncoproteins and oncometabolites, which implies modulation of the immune response and reduced drug resistance. We believe that this therapeutic strategy is feasible and promising and deserves the attention of clinicians. Abstract Glioblastoma is one of the most aggressive brain tumors, characterized by a pronounced redox imbalance, expressed in a high oxidative capacity of cancer cells due to their elevated glycolytic and mitochondrial oxidative metabolism. The assessment and modulation of the redox state of glioblastoma are crucial factors that can provide highly specific targeting and treatment. Our study describes a pharmacological strategy for targeting glioblastoma using a redox-active combination drug. The experiments were conducted in vivo on glioblastoma mice (intracranial model) and in vitro on cell lines (cancer and normal) treated with the redox cycling pair menadione/ascorbate (M/A). The following parameters were analyzed in vivo using MRI or ex vivo on tissue and blood specimens: tumor growth, survival, cerebral perfusion, cellular density, tissue redox state, expression of tumor-associated NADH oxidase (tNOX) and transforming growth factor-beta 1 (TGF-β1). Dose-dependent effects of M/A on cell viability, mitochondrial functionality, and redox homeostasis were evaluated in vitro. M/A treatment suppressed tumor growth and significantly increased survival without adverse side effects. This was accompanied by increased oxidative stress, decreased reducing capacity, and decreased cellular density in the tumor only, as well as increased cerebral perfusion and down-regulation of tNOX and TGF-β1. M/A induced selective cytotoxicity and overproduction of mitochondrial superoxide in isolated glioblastoma cells, but not in normal microglial cells. This was accompanied by a significant decrease in the over-reduced state of cancer cells and impairment of their “pro-oncogenic” functionality, assessed by dose-dependent decreases in: NADH, NAD+, succinate, glutathione, cellular reducing capacity, mitochondrial potential, steady-state ATP, and tNOX expression. The safety of M/A on normal cells was compromised by treatment with cerivastatin, a non-specific prenyltransferase inhibitor. In conclusion, M/A differentiates glioblastoma cells and tissues from normal cells and tissues by redox targeting, causing severe oxidative stress only in the tumor. The mechanism is complex and most likely involves prenylation of menadione in normal cells, but not in cancer cells, modulation of the immune response, a decrease in drug resistance, and a potential role in sensitizing glioblastoma to conventional chemotherapy.
Collapse
|
8
|
Islam A, Hsieh PF, Liu PF, Chou JC, Liao JW, Hsieh MK, Chueh PJ. Capsaicin exerts therapeutic effects by targeting tNOX-SIRT1 axis and augmenting ROS-dependent autophagy in melanoma cancer cells. Am J Cancer Res 2021; 11:4199-4219. [PMID: 34659883 PMCID: PMC8493390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023] Open
Abstract
Although considered a sporadic type of skin cancer, malignant melanoma has regularly increased internationally and is a major cause of cancer-associated death worldwide. The treatment options for malignant melanoma are very limited. Accumulating data suggest that the natural compound, capsaicin, exhibits preferential anticancer properties to act as a nutraceutical agent. Here, we explored the underlying molecular events involved in the inhibitory effect of capsaicin on melanoma growth. The cellular thermal shift assay (CETSA), isothermal dose-response fingerprint curves (ITDRFCETSA), and CETSA-pulse proteolysis were utilized to confirm the direct binding of capsaicin with the tumor-associated NADH oxidase, tNOX (ENOX2) in melanoma cells. We also assessed the cellular impact of capsaicin-targeting of tNOX on A375 cells by flow cytometry and protein analysis. The essential role of tNOX in tumor- and melanoma-growth limiting abilities of capsaicin was evaluated in C57BL/6 mice. Our data show that capsaicin directly engaged with cellular tNOX to inhibit its enzymatic activity and enhance protein degradation capacity. The inhibition of tNOX by capsaicin was accompanied by the attenuation of SIRT1, a NAD+-dependent deacetylase. The suppression of tNOX and SIRT1 then enhanced ULK1 acetylation and induced ROS-dependent autophagy in melanoma cells. Capsaicin treatment of mice implanted with melanoma cancer cells suppressed tumor growth by down-regulating tNOX and SIRT1, which was also seen in an in vivo xenograft study with tNOX-depleted melanoma cells. Taken together, our findings suggest that tNOX expression is important for the growth of melanoma cancer cells both in vitro and in vivo, and that inhibition of the tNOX-SIRT1 axis contributes to inducting ROS-dependent autophagy in melanoma cells.
Collapse
Affiliation(s)
- Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Pei-Fang Hsieh
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 40227, Taiwan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Jou-Chun Chou
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Ming-Kun Hsieh
- Graduate Institute of Microbiology and Public Health, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 40227, Taiwan
- Graduate Institute of Basic Medicine, China Medical UniversityTaichung 40402, Taiwan
- Department of Medical Research, China Medical University HospitalTaichung 40402, Taiwan
| |
Collapse
|
9
|
Chang CF, Islam A, Liu PF, Zhan JH, Chueh PJ. Capsaicin acts through tNOX (ENOX2) to induce autophagic apoptosis in p53-mutated HSC-3 cells but autophagy in p53-functional SAS oral cancer cells. Am J Cancer Res 2020; 10:3230-3247. [PMID: 33163267 PMCID: PMC7642647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023] Open
Abstract
Despite the progress that has been made in diagnosing and treating oral cancers, they continue to have a poor prognosis, with a 5-year overall survival rate of approximately 50%. We have intensively studied the anticancer properties of capsaicin (a burning constituent of chili pepper), mainly focusing on its apoptotic properties. Here, we investigated the interplay between apoptosis and autophagy in capsaicin-treated oral cancer cells with either functional or mutant p53. Cytotoxicity was determined by cell impedance measurements and WST-1 assays, and cell death was analyzed by flow cytometry. The interaction between capsaicin and tumor-associated NADH oxidase (tNOX, ENOX2) was studied by cellular thermal shift assay (CETSA) and isothermal dose-response fingerprint curves (ITDRFCETSA). Our CETSA data suggested that capsaicin directly engaged with tNOX, resulting in its degradation through the ubiquitin-proteasome and the autophagy-lysosome systems. In p53-functional SAS cells, capsaicin induced significant cytotoxicity via autophagy but not apoptosis. Given that tNOX catalyzes the oxidation of NADH, the direct binding of capsaicin to tNOX also inhibited the NAD+-dependent activity of sirtuin 1 (SIRT1) deacetylase, we found that capsaicin-induced autophagy involved enhanced acetylation of ULK1, which is a key player in autophagy activation, possibly through SIRT1 inhibition. In p53-mutated HSC-3 cells, capsaicin triggered both autophagy and apoptosis. In this case, autophagy occurred before apoptosis: during this early stage, autophagy seemed to inhibit apoptosis; at a later stage, in contrast, autophagy appeared to be essential for the induction of apoptosis. Western blot analysis revealed that the reduction in tNOX and SIRT1 associated with enhanced ULK1 acetylation and c-Myc acetylation, which in turn, reactivated the TRAIL pathway, ultimately leading to apoptosis. Taken together, our data highlight the potential value of leveraging capsaicin and tNOX in therapeutic strategies against oral cancer.
Collapse
Affiliation(s)
- Chin-Fang Chang
- Department of Otolaryngology, Head and Neck Surgery, Jen-Ai HospitalTaichung 41265, Taiwan
- Department of Medical Education and Research, Jen-Ai HospitalTaichung 41265, Taiwan
- Cancer Medicine Center, Jen-Ai HospitalTaichung 41265, Taiwan
- Basic Medical Education Center, Central Taiwan University of Science and TechnologyTaichung 40601, Taiwan
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University145 Xingda Road, Taichung 40227, Taiwan
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Jun-Han Zhan
- Bachelor Program of Biotechnology, National Chung Hsing University145 Xingda Road, Taichung 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University145 Xingda Road, Taichung 40227, Taiwan
- Department of Medical Research, China Medical University HospitalTaichung 40402, Taiwan
- Graduate Institute of Basic Medicine, China Medical UniversityTaichung 40402, Taiwan
| |
Collapse
|
10
|
Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019; 6:148. [PMID: 31608282 PMCID: PMC6773871 DOI: 10.3389/fnut.2019.00148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Current treatment options for inoperable HCCs have decreased therapeutic efficacy and are associated with systemic toxicity and chemoresistance. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity. However, either directly targeting SIRT1, combining conventional chemotherapy with SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic efficacy and patient outcomes. Here, we present the interaction between SIRT1, miRNAs, and liver cancer stem cells and discuss the consequences of their interplay for the development and treatment of HCC.
Collapse
Affiliation(s)
- Marius Farcas
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Alexandru Gavrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Ionescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| | - Cristina S Catana
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| |
Collapse
|
11
|
Özcan Ö, Belli AK, Çetin ES, Kara M, Çelik Öİ, Kaplan M, Kayılıoğlu SI, Dönmez C, Polat M. Upregulation of SIRT1 gene in gastric adenocarcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2019; 30:326-330. [PMID: 30945643 PMCID: PMC6453656 DOI: 10.5152/tjg.2019.18550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/17/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS SIRT1 gene overexpression is reportedly associated with cancer development, via the triggering of DNA repair impairment, and cell proliferation. The study aimed to investigate SIRT1 expression in patients with gastric cancer and its correlations with the clinical and pathological characteristics of the disease. MATERIALS AND METHODS All patients (64 patients) who underwent gastric biopsy and were diagnosed with gastric adenocarcinoma and signet ring cell carcinoma between January 2011 and December 2013 were enrolled in the study, and patients with benign gastric biopsy were enrolled in the control group (34 patients). The previously prepared gastric tissues were collected from the pathology department, and SIRT1 gene expressions were evaluated in the gastric tissues of all study patients. Patients were subclassified according to their demographic, clinical, and pathologic features, and the patient and control groups were compared. RESULTS Sixty-four patients were included in the study (25 females and 39 males). The mean age of the patients was 66±1 (range: 33-88) years. The SIRT1 gene 2' Average delta cycle threshold (CT) value was 0.102 in the control group, whereas it was 0.292 in the patients with gastric cancer (relative risk: 2.86; p=0.014). The SIRT1 gene was upregulated in all tumor stage subgroups except stage I, female patients, young patients (<45 years), and corpus and cardia tumor subgroups compared to the control group. CONCLUSION SIRT1 gene overexpression is associated with gastric adenocarcinoma, and it can be argued that SIRT1 gene upregulation is associated with unfavorable gastric adenocarcinoma prognosis.
Collapse
Affiliation(s)
- Önder Özcan
- Department of General Surgery, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Ahmet Korkut Belli
- Department of General Surgery, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Esin Sakallı Çetin
- Department of Medical Biology, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Murat Kara
- Department of Medical Genetics, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Özgür İlhan Çelik
- Department of Pathology, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Mehmet Kaplan
- Department of General Surgery, NCR International Hospital, Gaziantep, Turkey
| | - Selami Ilgaz Kayılıoğlu
- Department of General Surgery, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Cem Dönmez
- Department of General Surgery, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Murat Polat
- Department of General Surgery, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| |
Collapse
|
12
|
Lin CY, Islam A, Su CJ, Tikhomirov AS, Shchekotikhin AE, Chuang SM, Chueh PJ, Chen YL. Engagement with tNOX (ENOX2) to Inhibit SIRT1 and Activate p53-Dependent and -Independent Apoptotic Pathways by Novel 4,11-Diaminoanthra[2,3- b]furan-5,10-diones in Hepatocellular Carcinoma Cells. Cancers (Basel) 2019; 11:cancers11030420. [PMID: 30909652 PMCID: PMC6468551 DOI: 10.3390/cancers11030420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and is among the top three causes of cancer-associated death worldwide. However, the clinical use of chemotherapy for HCC has been limited by various challenges, emphasizing the urgent need for novel agents with improved anticancer properties. We recently synthesized and characterized a series of 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives that exhibit potent apoptotic activity against an array of cancer cell lines, including variants with multidrug resistance. Their effect on liver cancer cells, however, was unknown. Here, we investigated three selected 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives (compounds 1–3) for their cytotoxicity and the underlying molecular mechanisms in wild-type or p53-deficient HCC cells. Cytotoxicity was determined by WST-1 assays and cell impedance measurements and apoptosis was analyzed by flow cytometry. The interaction between compounds and tumor-associated NADH oxidase (tNOX, ENOX2) was studied by cellular thermal shift assay (CETSA). We found that compound 1 and 2 induced significant cytotoxicity in both HepG2 and Hep3B lines. CETSA revealed that compounds 1 and 2 directly engaged with tNOX, leading to a decrease in the cellular NAD+/NADH ratio. This decreased the NAD+-dependent activity of Sirtuin 1 (SIRT1) deacetylase. In p53-wild-type HepG2 cells, p53 acetylation/activation was enhanced, possibly due to the reduction in SIRT1 activity, and apoptosis was observed. In p53-deficient Hep3B cells, the reduction in SIRT1 activity increased the acetylation of c-Myc, thereby reactivating the TRAIL pathway and, ultimately leading to apoptosis. These compounds thus trigger apoptosis in both cell types, but via different pathways. Taken together, our data show that derivatives 1 and 2 of 4,11-diaminoanthra[2,3-b]furan-5,10-diones engage with tNOX and inhibit its oxidase activity. This results in cytotoxicity via apoptosis through tNOX-SIRT1 axis to enhance the acetylation of p53 or c-Myc in HCC cells, depending on their p53 status.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Claire J Su
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Morrison Academy in Taichung, 216 Si Ping Road, Taichung 40679, Taiwan.
| | - Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11B. Pirogovskaya Street, Moscow 119021, Russia.
- Department of Organic Chemistry, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia.
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11B. Pirogovskaya Street, Moscow 119021, Russia.
- Department of Organic Chemistry, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia.
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yao Li Chen
- tian Hospital, Changhua 50008, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
13
|
Wei W, Xi Y, Jiamin X, Jing Z, Shuwen H. Screening of molecular targets and construction of a ceRNA network for oxaliplatin resistance in colorectal cancer. RSC Adv 2019; 9:31413-31424. [PMID: 35527927 PMCID: PMC9073375 DOI: 10.1039/c9ra06146k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Oxaliplatin resistance reduces the efficacy of chemotherapy for colorectal cancer (CRC). This study aimed to screen molecular targets of oxaliplatin resistance in CRC to construct a ceRNA network. The differentially expressed mRNA and lncRNA between the oxaliplatin-resistant and oxaliplatin-sensitive colon cancer cell lines was determined using RNA sequencing data (no. GSE42387) from the NCBI GEO database. Gene Ontology BP (biological process) and KEGG pathway enrichment analyses were used to analyze the function and pathway enrichment of the differentially expressed mRNA and lncRNA. The lnCeDB and starBase v2.0 were used to predict miRNA, and Cytoscape software was used to build a ceRNA network. The top 5 mRNA, miRNAs, and lncRNAs with high degrees of connectivity in the ceRNA network were validated by qPCR. TCGA colon cancer clinical data was used to perform a survival analysis of patients with differential mRNA and lncRNA expression. Between the two groups, 2515 mRNAs and 23 lncRNAs were differentially expressed. We constructed a ceRNA network containing 503 lncRNA–miRNA–mRNA regulatory pairs, 210 lncRNA–miRNA pairs, 382 miRNA–mRNA pairs, and 212 mRNA co-expression pairs. The differentially expressed lncRNA, miRNA and mRNA were verified by qPCR. One lncRNA (HOTAIR) and 14 mRNAs significantly correlated with patient prognosis. The discovery of differentially expressed genes and the construction of ceRNA networks will provide important resources for the search for therapeutic targets of oxaliplatin resistance. Moreover, this resource will aid the discovery of the mechanisms behind this type of drug resistance. Oxaliplatin resistance reduces the efficacy of chemotherapy for colorectal cancer (CRC).![]()
Collapse
Affiliation(s)
- Wu Wei
- Department of Gastroenterology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Yang Xi
- Department of Oncology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Xu Jiamin
- Graduate School of Nursing
- Huzhou University
- Huzhou
- China
| | - Zhuang Jing
- Graduate School of Nursing
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Han Shuwen
- Department of Oncology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| |
Collapse
|
14
|
Miller JJ, Orvain C, Jozi S, Clarke RM, Smith JR, Blanchet A, Gaiddon C, Warren JJ, Storr T. Multifunctional Compounds for Activation of the p53-Y220C Mutant in Cancer. Chemistry 2018; 24:17734-17742. [PMID: 30230059 DOI: 10.1002/chem.201802677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/13/2018] [Indexed: 01/19/2023]
Abstract
The p53 protein plays a major role in cancer prevention, and over 50 % of cancer diagnoses can be attributed to p53 malfunction. The common p53 mutation Y220C causes local protein unfolding, aggregation, and can result in a loss of Zn in the DNA-binding domain. Structural analysis has shown that this mutant creates a surface site that can be stabilized using small molecules, and herein a multifunctional approach to restore function to p53-Y220C is reported. A series of compounds has been designed that contain iodinated phenols aimed for interaction and stabilization of the p53-Y220C surface cavity, and Zn-binding fragments for metallochaperone activity. Their Zn-binding affinity was characterized using spectroscopic methods and demonstrate the ability of compounds L4 and L5 to increase intracellular levels of Zn2+ in a p53-Y220C-mutant cell line. The in vitro cytotoxicity of our compounds was initially screened by the National Cancer Institute (NCI-60), followed by testing in three stomach cancer cell lines with varying p53 status', including AGS (WTp53), MKN1 (V143A), and NUGC3 (Y220C). Our most promising ligand, L5, is nearly 3-fold more cytotoxic than cisplatin in a large number of cell lines. The impressive cytotoxicity of L5 is further maintained in a NUGC3 3D spheroid model. L5 also induces Y220C-specific apoptosis in a cleaved caspase-3 assay, reduces levels of unfolded mutant p53, and recovers p53 transcriptional function in the NUGC3 cell line. These results show that these multifunctional scaffolds have the potential to restore wild-type function in mutant p53-Y220C.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Christophe Orvain
- Inserm UMR_S 1113, Molecular Mechanisms of Stress Response and Pathologies, Université de Strasbourg, Strasbourg, France
| | - Shireen Jozi
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Ryan M Clarke
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Jason R Smith
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Anaïs Blanchet
- Inserm UMR_S 1113, Molecular Mechanisms of Stress Response and Pathologies, Université de Strasbourg, Strasbourg, France
| | - Christian Gaiddon
- Inserm UMR_S 1113, Molecular Mechanisms of Stress Response and Pathologies, Université de Strasbourg, Strasbourg, France
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| |
Collapse
|
15
|
Chen HY, Islam A, Yuan TM, Chen SW, Liu PF, Chueh PJ. Regulation of tNOX expression through the ROS-p53-POU3F2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:161. [PMID: 30029680 PMCID: PMC6053734 DOI: 10.1186/s13046-018-0837-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxaliplatin belongs to the platinum-based drug family and has shown promise in treating cancer by binding to DNA to induce cytotoxicity. However, individual patients show diverse therapeutic responses toward oxaliplatin due to yet-unknown underlying mechanisms. We recently established that oxaliplatin also exert its anti-cancer activity in gastric cancer cell lines by targeting tumor-associated NADH oxidase (tNOX), attenuate NAD+ generation and reduce NAD+-dependent sirtuin 1 (SIRT1) deacetylase activity, which in turn enhances p53 acetylation and apoptosis. METHODS In this study, differential cellular outcomes in response to oxaliplatin exposure of p53-wild-type versus p53-null HCT116 human colon cancer cells were examined. Cell growth profile was determined by cell impedance measurements and apoptosis was analyzed by flow cytometry. The engagement between oxaliplatin and tNOX protein was studied by cellular thermal shift assay. Furthermore, western blot analysis revealed that p53 was important in regulating tNOX expression in these cell lines. RESULTS In p53-wild-type cells, we found that oxaliplatin inhibited cell growth by inducing apoptosis and concurrently down-regulating tNOX at both the transcriptional and translational levels. In p53-null cells, in contrast, oxaliplatin moderately up-regulated tNOX expression and yielded no apoptosis and much less cytotoxicity. Further experiments revealed that in p53-wild-type cells, oxaliplatin enhanced ROS generation and p53 transcriptional activation, leading to down-regulation of the transcriptional factor, POU3F2, which enhances the expression of tNOX. Moreover, the addition of a ROS scavenger reversed the p53 activation, POU3F2 down-regulation, and apoptosis induced by oxaliplatin in p53-wild-type cells. In the p53-null line, on the other hand, oxaliplatin treatment triggered less ROS generation and no p53 protein, such that POU3F2 and tNOX were not down-regulated and oxaliplatin-mediated cytotoxicity was attenuated. CONCLUSION Our results show that oxaliplatin mediates differential cellular responses in colon cancer cells depending on their p53 status, and demonstrate that the ROS-p53 axis is important for regulating POU3F2 and its downstream target, tNOX. Notably, the depletion of tNOX sensitizes p53-null cells to both spontaneous and oxaliplatin-induced apoptosis. Our work thus clearly shows a scenario in which targeting of tNOX may be a potential strategy for cancer therapy in a p53-inactivated system.
Collapse
Affiliation(s)
- Huei-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tien-Ming Yuan
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Shi-Wen Chen
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Pei-Fen Liu
- DDepartment of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan. .,Graduate Institute of Basic Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|