1
|
Alobaidi R, Islam N, Olkey T, Haribabu Y, Shamo M, Sykora P, Simbulan-Rosenthal CM, Rosenthal DS. Combinational Inhibition of MEK and AKT Synergistically Induces Melanoma Stem Cell Apoptosis and Blocks NRAS Tumor Growth. Cells 2025; 14:248. [PMID: 39996721 PMCID: PMC11852824 DOI: 10.3390/cells14040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MICs), implicated in tumorigenesis, invasion, and drug resistance, and characterized by an elevated expression of stem cell markers, including CD133. siRNA knockdown of CD133 has been previously shown to enhance apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133's anti-apoptotic activity in patient-derived BAKP melanoma, harboring the difficult-to-treat NRASQ61K driver mutation, after CRISPR-Cas9 CD133 knockout or Doxycycline (Dox)-inducible re-expression of CD133. CD133 knockout in BAKP cells increased trametinib-induced apoptosis by reducing anti-apoptotic p-AKT and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in trametinib-treated cells, coincident with elevated p-AKT, p-BAD, and decreased activation of BAX and caspase-3. However, trametinib in combination with pan-AKT inhibitor capivasertib reduced cell survival as measured by XTT viability assays and apoptosis and colony formation assays, independent of CD133 status. CD133 may therefore activate a survival pathway wherein (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, which (3) decreases BAX activation, and (4) reduces caspases-3 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. In vivo mouse xenograft studies using Dox-inducible melanoma cells revealed increased rates of tumor growth after induction of CD133 expression in trametinib-treated +Dox mice, an effect which was synergistically suppressed by combination treatment. Targeting nodes of the AKT and MAPK survival pathways with trametinib and capivasertib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.
Collapse
Affiliation(s)
- Ryyan Alobaidi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (R.A.); (N.I.); (T.O.); (Y.H.); (M.S.); (C.M.S.-R.)
- Department of Pathology, King Saud University College of Medicine, Riyadh 11461, Saudi Arabia
| | - Nusrat Islam
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (R.A.); (N.I.); (T.O.); (Y.H.); (M.S.); (C.M.S.-R.)
| | - Toni Olkey
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (R.A.); (N.I.); (T.O.); (Y.H.); (M.S.); (C.M.S.-R.)
| | - Yogameenakshi Haribabu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (R.A.); (N.I.); (T.O.); (Y.H.); (M.S.); (C.M.S.-R.)
| | - Mathew Shamo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (R.A.); (N.I.); (T.O.); (Y.H.); (M.S.); (C.M.S.-R.)
| | - Peter Sykora
- Amelia Technologies, LLC, Washington, DC 20001, USA;
| | - Cynthia M. Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (R.A.); (N.I.); (T.O.); (Y.H.); (M.S.); (C.M.S.-R.)
| | - Dean S. Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (R.A.); (N.I.); (T.O.); (Y.H.); (M.S.); (C.M.S.-R.)
| |
Collapse
|
2
|
Rodrigues DCDN, Porto JCS, Dos Santos IL, Filho JIAB, Ferreira PMP. Repositioning anthelmintics for the treatment of inflammatory-based pathological conditions. Inflammopharmacology 2025; 33:551-571. [PMID: 39589670 DOI: 10.1007/s10787-024-01605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 11/27/2024]
Abstract
Acute, uncontrolled and/or long-lasting inflammation causes a breakdown in immunological tolerance, leading to chronicity and contributing to a series of significant local or systemic tissue changes. Anti-inflammatory efficacy, fewer adverse effects, improved selectivity, and curative action are imminent issues for patients suffering from chronic inflammation-related pathologies. Then, we performed a complete and critical review about anthelmintics, discussing the main classes and the available preclinical evidence on repurposing to treat inflammation-based conditions. Despite low bioavailability, many benzimidazoles (albendazole and mebendazole), salicylanilides (niclosamide), macrocyclic lactones (avermectins), pyrazinoisoquinolones (praziquantel), thiazolides (nitazoxanide), piperazine derivatives, and imidazothiazoles (levamisole) indicate that repositioning is a promising strategy. They may represent a lower cost and time-saving course to expand anti-inflammatory options. Although mechanisms of action are not fully elucidated and well-delineated, in general, anthelmintics disrupt mitogen-activated protein kinases, the synthesis of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-12, and IFN-γ), the migration and infiltration of leukocytes, and decrease COX-2 expression, which impacts negatively on the release of prostanoids and leukotrienes. Moreover, some of them reduce nuclear accumulation of NF-κB (niclosamide, albendazole, and ivermectin), levels of nitric oxide (nitazoxanide and albendazole), and mucus, cytokines, and bronchoconstriction in experimental inflammatory pulmonary diseases (ivermectin and niclosamide). Considering the linking between cytokines, bradykinin, histamine, and nociceptors with algesia, anthelmintics also stand out for treating inflammatory pain disorders (ivermectin, niclosamide, nitazoxanide, mebendazole, levamisole), including for cancer-related pain status. There are obstacles, including the low bioavailability and the first-pass metabolism.
Collapse
Affiliation(s)
- Débora Caroline do Nascimento Rodrigues
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil
| | - Jhonatas Cley Santos Porto
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil
| | - Ingredy Lopes Dos Santos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí (UFPI), Universitaria Avenue, Teresina, Piauí, 64049-550, Brazil.
| |
Collapse
|
3
|
Aliabadi A, Haghshenas MR, Kiani R, Koohi-Hosseinabadi O, Purkhosrow A, Pirsalami F, Panjehshahin MR, Erfani N. In vitro and in vivo anticancer activity of mebendazole in colon cancer: a promising drug repositioning. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2379-2388. [PMID: 37837472 DOI: 10.1007/s00210-023-02722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/13/2023] [Indexed: 10/16/2023]
Abstract
Colon cancer is one of the most common cancers and one of the main causes of death worldwide. Therefore, new treatment methods with better efficiency and fewer risks are very necessary. Mebendazole (MBZ), a drug commonly used for helminthic infections, has recently received attention as a suitable candidate for the treatment of various cancers. This study aimed to investigate, in vitro and in vivo, anticancer activity and selectivity Index of MBZ on colon cancer. HT-29 (human colorectal adenocarcinoma) and MCF-10 (non-tumorigenic epithelial) cell lines were treated with MBZ and Doxorubicin (DOX; positive control drug). IC50 values were estimated using methyl thiazole diphenyl-tetrazolium bromide (MTT) assay. We employed flow cytometry using annexin V-FITC and propidium iodide dyes. For the animal study, colon cancer was subcutaneously induced by CT26 cells (mouse colon cancer) in Bulb/C mice. The mice were treated with 0.05 of LD50, intraperitoneal, every other day for 35 days. Finally, the survival rate, tumor volume, and tumor weight were calculated. Our results demonstrated that IC50 values after 72 h for HT29 and MCF-10 cell lines were 0.29 ± 0.04 µM and 0.80 ± 0.02 µM, respectively. MBZ was more selective than DOX in inhibiting the proliferation of cancer cells compared to normal cells (2. 75 vs. 2.45). Annexin V/PI staining demonstrated that MBZ treatment at IC50 concentrations induced (78 ± 12%) apoptosis in the HT29 cancer cell line after 48 h (P ≤ 0.0001). Also, in mice bearing colon cancer, MBZ significantly reduced the tumor volume (1177 ± 1109 mm3; P ≤ 0.001) and tumor weight (2.30 ± 1.97 g; P ≤ 0.0001) compared to the negative control group (weight 12.45 ± 2.0 g; volume 7346 ± 1077). Also, MBZ increases mean survival time (MST) and increase life span (ILS) percentage in the animal study (51.2 ± 37% vs 93%, respectively). This study suggests that mebendazole strongly and selectively inhibits proliferation and induces apoptosis in colon cancer cells. It may be, accordingly, a promising drug for clinical research and application.
Collapse
Affiliation(s)
- Amin Aliabadi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razie Kiani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Azar Purkhosrow
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Panjehshahin
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Bess A, Berglind F, Mukhopadhyay S, Brylinski M, Alvin C, Fattah F, Wasan KM. Identification of oral therapeutics using an AI platform against the virus responsible for COVID-19, SARS-CoV-2. Front Pharmacol 2023; 14:1297924. [PMID: 38186640 PMCID: PMC10770831 DOI: 10.3389/fphar.2023.1297924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose: This study introduces a sophisticated computational pipeline, eVir, designed for the discovery of antiviral drugs based on their interactions within the human protein network. There is a pressing need for cost-effective therapeutics for infectious diseases (e.g., COVID-19), particularly in resource-limited countries. Therefore, our team devised an Artificial Intelligence (AI) system to explore repurposing opportunities for currently used oral therapies. The eVir system operates by identifying pharmaceutical compounds that mirror the effects of antiviral peptides (AVPs)-fragments of human proteins known to interfere with fundamental phases of the viral life cycle: entry, fusion, and replication. eVir extrapolates the probable antiviral efficacy of a given compound by analyzing its established and predicted impacts on the human protein-protein interaction network. This innovative approach provides a promising platform for drug repurposing against SARS-CoV-2 or any virus for which peptide data is available. Methods: The eVir AI software pipeline processes drug-protein and protein-protein interaction networks generated from open-source datasets. eVir uses Node2Vec, a graph embedding technique, to understand the nuanced connections among drugs and proteins. The embeddings are input a Siamese Network (SNet) and MLPs, each tailored for the specific mechanisms of entry, fusion, and replication, to evaluate the similarity between drugs and AVPs. Scores generated from the SNet and MLPs undergo a Platt probability calibration and are combined into a unified score that gauges the potential antiviral efficacy of a drug. This integrated approach seeks to boost drug identification confidence, offering a potential solution for detecting therapeutic candidates with pronounced antiviral potency. Once identified a number of compounds were tested for efficacy and toxicity in lung carcinoma cells (Calu-3) infected with SARS-CoV-2. A lead compound was further identified to determine its efficacy and toxicity in K18-hACE2 mice infected with SARS-CoV-2. Computational Predictions: The SNet confidently differentiated between similar and dissimilar drug pairs with an accuracy of 97.28% and AUC of 99.47%. Key compounds identified through these networks included Zinc, Mebendazole, Levomenol, Gefitinib, Niclosamide, and Imatinib. Notably, Mebendazole and Zinc showcased the highest similarity scores, while Imatinib, Levemenol, and Gefitinib also ranked within the top 20, suggesting their significant pharmacological potentials. Further examination of protein binding analysis using explainable AI focused on reverse engineering the causality of the networks. Protein interaction scores for Mebendazole and Imatinib revealed their effects on notable proteins such as CDPK1, VEGF2, ABL1, and several tyrosine protein kinases. Laboratory Studies: This study determined that Mebendazole, Gefitinib, Topotecan and to some extent Carfilzomib showed conventional drug-response curves, with IC50 values near or below that of Remdesivir with excellent confidence all above R2>0.91, and no cytotoxicity at the IC50 concentration in Calu-3 cells. Cyclosporine A showed antiviral activity, but also unconventional drug-response curves and low R2 which are explained by the non-dose dependent toxicity of the compound. Additionally, Niclosamide demonstrated a conventional drug-response curve with high confidence; however, its inherent cytotoxicity may be a confounding element that misrepresents true antiviral efficacy, by reflecting cellular damage rather than a genuine antiviral action. Remdesivir was used as a control compound and was evaluated in parallel with the submitted test article and had conventional drug-response curves validating the overall results of the assay. Mebendazole was identified from the cell studies to have efficacy at non-toxic concentrations and were further evaluated in mice infected with SARS-CoV-2. Mebendazole administered to K18-hACE2 mice infected with SARS-CoV-2, resulted in a 44.2% reduction in lung viral load compared to non-treated placebo control respectively. There were no significant differences in body weight and all clinical chemistry determinations evaluated (i.e., kidney and liver enzymes) between the different treatment groups. Conclusion: This research underscores the potential of repurposing existing compounds for treating COVID-19. Our preliminary findings underscore the therapeutic promise of several compounds, notably Mebendazole, in both in vitro and in vivo settings against SARS-CoV-2. Several of the drugs explored, especially Mebendazole, are off-label medication; their cost-effectiveness position them as economical therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Adam Bess
- Department of Computer Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Frej Berglind
- Department of Computer Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Supratik Mukhopadhyay
- Department of Environmental Sciences, Center for Computation & Technology, Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, United States
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Chris Alvin
- Department of Computer Science, Furman University, Greenville, SC, United States
| | - Fanan Fattah
- Department of Urologic Sciences, Faculty of Medicine and the Neglected Global Diseases Initiative, University of British Columbia, Vancouver, BC, Canada
| | - Kishor M. Wasan
- Department of Urologic Sciences, Faculty of Medicine and the Neglected Global Diseases Initiative, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E, Vicente-Romero J. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers (Basel) 2023; 15:cancers15112972. [PMID: 37296934 DOI: 10.3390/cancers15112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Quality pharmacological treatment can improve survival in many types of cancer. Drug repurposing offers advantages in comparison with traditional drug development procedures, reducing time and risk. This systematic review identified the most recent randomized controlled clinical trials that focus on drug repurposing in oncology. We found that only a few clinical trials were placebo-controlled or standard-of-care-alone-controlled. Metformin has been studied for potential use in various types of cancer, including prostate, lung, and pancreatic cancer. Other studies assessed the possible use of the antiparasitic agent mebendazole in colorectal cancer and of propranolol in multiple myeloma or, when combined with etodolac, in breast cancer. We were able to identify trials that study the potential use of known antineoplastics in other non-oncological conditions, such as imatinib for severe coronavirus disease in 2019 or a study protocol aiming to assess the possible repurposing of leuprolide for Alzheimer's disease. Major limitations of these clinical trials were the small sample size, the high clinical heterogeneity of the participants regarding the stage of the neoplastic disease, and the lack of accounting for multimorbidity and other baseline clinical characteristics. Drug repurposing possibilities in oncology must be carefully examined with well-designed trials, considering factors that could influence prognosis.
Collapse
Affiliation(s)
- Ignatios Ioakeim-Skoufa
- WHO Collaborating Centre for Drug Statistics Methodology, Department of Drug Statistics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, NO-0213 Oslo, Norway
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Natalia Tobajas-Ramos
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Enrica Menditto
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Mercedes Aza-Pascual-Salcedo
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Primary Care Pharmacy Service Zaragoza III, Aragon Health Service (SALUD), ES-50017 Zaragoza, Spain
| | - Antonio Gimeno-Miguel
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
| | - Valentina Orlando
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Francisca González-Rubio
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
| | - Ana Fanlo-Villacampa
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Carmen Lasala-Aza
- Pharmacy Service, Virgen de la Victoria University Hospital, ES-29010 Malaga, Spain
| | - Ewelina Ostasz
- Rehabilitation Centre Vikersund Bad AS, NO-3370 Vikersund, Norway
| | - Jorge Vicente-Romero
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| |
Collapse
|
6
|
Servidei T, Sgambato A, Lucchetti D, Navarra P, Ruggiero A. Drug Repurposing in Pediatric Brain Tumors: Posterior Fossa Ependymoma and Diffuse Midline Glioma under the Looking Glass. FRONT BIOSCI-LANDMRK 2023; 28:77. [PMID: 37114548 DOI: 10.31083/j.fbl2804077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Tumors of the Central Nervous System (CNS) represent the leading cause of cancer-related deaths in children. Current treatment options are not curative for most malignant histologies, and intense preclinical and clinical research is needed to develop more effective therapeutic interventions against these tumors, most of which meet the FDA definition for orphan diseases. Increased attention is being paid to the repositioning of already-approved drugs for new anticancer indications as a fast-tracking strategy for identifying new and more effective therapies. Two pediatric CNS tumors, posterior fossa ependymoma (EPN-PF) type A and diffuse midline glioma (DMG) H3K27-altered, share loss of H3K27 trimethylation as a common epigenetic hallmark and display early onset and poor prognosis. These features suggest a potentially common druggable vulnerability. Successful treatment of these CNS tumors raises several challenges due to the location of tumors, chemoresistance, drug blood-brain barrier penetration, and the likelihood of adverse side effects. Recently, increasing evidence demonstrates intense interactions between tumor cell subpopulations and supportive tumor microenvironments (TMEs) including nerve, metabolic, and inflammatory TMEs. These findings suggest the use of drugs, and/or multi-drug combinations, that attack both tumor cells and the TME simultaneously. In this work, we present an overview of the existing evidence concerning the most preclinically validated noncancer drugs with antineoplastic activity. These drugs belong to four pharmacotherapeutic classes: antiparasitic, neuroactive, metabolic, and anti-inflammatory. Preclinical evidence and undergoing clinical trials in patients with brain tumors, with special emphasis on pediatric EPN-PF and DMG, are summarized and critically discussed.
Collapse
Affiliation(s)
- Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore -- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
7
|
Song B, Park EY, Kim KJ, Ki SH. Repurposing of Benzimidazole Anthelmintic Drugs as Cancer Therapeutics. Cancers (Basel) 2022; 14:cancers14194601. [PMID: 36230527 PMCID: PMC9559625 DOI: 10.3390/cancers14194601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Although non-prescription anthelmintics are often used for cancer treatment, there is a lack of information regarding their anti-cancer effects in clinical settings. The aims of our review are to describe the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. The results of the current review illustrate the potential development of anthelmintics as a useful strategy for cancer treatment based on much preclinical evidence. Furthermore, they suggest that more rigorous studies on whole anti-cancer pathways and development strategies, including formulations, could result in significantly enhanced anti-cancer effects of benzimidazoles as a repurposed cancer therapy in clinical settings. Abstract Benzimidazoles have shown significant promise for repurposing as a cancer therapy. The aims of this review are to investigate the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. This review included studies on the anti-cancer effects of 11 benzimidazoles. Largely divided into three parts, i.e., preclinical anti-cancer effects, clinical anti-cancer effects, and pharmacokinetic properties, we examine the characteristics of each benzimidazole and attempt to elucidate its key properties. Although many studies have demonstrated the anti-cancer effects of benzimidazoles, there is limited evidence regarding their effects in clinical settings. This might be because the clinical trials conducted using benzimidazoles failed to restrict their participants with specific criteria including cancer entities, cancer stages, and genetic characteristics of the participants. In addition, these drugs have limitations including low bioavailability, which results in insufficient plasma concentration levels. Additional studies on whole anti-cancer pathways and development strategies, including formulations, could result significant enhancements of the anti-cancer effects of benzimidazoles in clinical situations.
Collapse
Affiliation(s)
- Bomi Song
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
| | - Kwang Joon Kim
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| | - Sung Hwan Ki
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| |
Collapse
|
8
|
Gales L, Forsea L, Mitrea D, Stefanica I, Stanculescu I, Mitrica R, Georgescu M, Trifanescu O, Anghel R, Serbanescu L. Antidiabetics, Anthelmintics, Statins, and Beta-Blockers as Co-Adjuvant Drugs in Cancer Therapy. Medicina (B Aires) 2022; 58:medicina58091239. [PMID: 36143915 PMCID: PMC9503803 DOI: 10.3390/medicina58091239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Over the last years, repurposed agents have provided growing evidence of fast implementation in oncology treatment such as certain antimalarial, anthelmintic, antibiotics, anti-inflammatory, antihypertensive, antihyperlipidemic, antidiabetic agents. In this study, the four agents of choice were present in our patients’ daily treatment for nonmalignant-associated pathology and have known, light toxicity profiles. It is quite common for a given patient’s daily administration schedule to include two or three of these drugs for the duration of their treatment. We chose to review the latest literature concerning metformin, employed as a first-line treatment for type 2 diabetes; mebendazole, as an anthelmintic; atorvastatin, as a cholesterol-lowering drug; propranolol, used in cardiovascular diseases as a nonspecific inhibitor of beta-1 and beta-2 adrenergic receptors. At the same time, certain key action mechanisms make them feasible antitumor agents such as for mitochondrial ETC inhibition, activation of the enzyme adenosine monophosphate-activated protein kinase, amelioration of endogenous hyperinsulinemia, inhibition of selective tyrosine kinases (i.e., VEGFR2, TNIK, and BRAF), and mevalonate pathway inhibition. Despite the abundance of results from in vitro and in vivo studies, the only solid data from randomized clinical trials confirm metformin-related oncological benefits for only a small subset of nondiabetic patients with HER2-positive breast cancer and early-stage colorectal cancer. At the same time, clinical studies confirm metformin-related detrimental/lack of an effect for lung, breast, prostate cancer, and glioblastoma. For atorvastatin we see a clinical oncological benefit in patients and head and neck cancer, with a trend towards radioprotection of critical structures, thus supporting the role of atorvastatin as a promising agent for concomitant association with radiotherapy. Propranolol-related increased outcomes were seen in clinical studies in patients with melanoma, breast cancer, and sarcoma.
Collapse
Affiliation(s)
- Laurentia Gales
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Oncology, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Leyla Forsea
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Mitrea
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Irina Stefanica
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Irina Stanculescu
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Radu Mitrica
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
- Correspondence: ; Tel.: +40-741-964-311
| | - Mihai Georgescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Oana Trifanescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Rodica Anghel
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Luiza Serbanescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
9
|
Fiedler W, Freisleben F, Wellbrock J, Kirschner KN. Mebendazole's Conformational Space and Its Predicted Binding to Human Heat-Shock Protein 90. J Chem Inf Model 2022; 62:3604-3617. [PMID: 35867562 DOI: 10.1021/acs.jcim.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experimental evidence suggests that mebendazole, a popular antiparasitic drug, binds to heat shock protein 90 (Hsp90) and inhibits acute myeloid leukemia cell growth. In this study we use quantum mechanics (QM), molecular similarity, and molecular dynamics (MD) calculations to predict possible binding poses of mebendazole to the adenosine triphosphate (ATP) binding site of Hsp90. Extensive conformational searches and minimization of the five mebendazole tautomers using the MP2/aug-cc-pVTZ theory level resulted in 152 minima. Mebendazole-Hsp90 complex models were subsequently created using the QM optimized conformations and protein coordinates obtained from experimental crystal structures that were chosen through similarity calculations. Nine different poses were identified from a total of 600 ns of explicit solvent, all-atom MD simulations using two different force fields. All simulations support the hypothesis that mebendazole is able to bind to the ATP binding site of Hsp90.
Collapse
Affiliation(s)
- Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Fabian Freisleben
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Karl N Kirschner
- Department of Computer Science, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| |
Collapse
|
10
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
11
|
Eskandari M, Asgharzadeh F, Askarnia-Faal MM, Naimi H, Avan A, Ahadi M, Vossoughinia H, Gharib M, Soleimani A, Naghibzadeh N, Ferns G, Ryzhikov M, Khazaei M, Hassanian SM. Mebendazole, an anti-helminth drug, suppresses inflammation, oxidative stress and injury in a mouse model of ulcerative colitis. Sci Rep 2022; 12:10249. [PMID: 35715495 PMCID: PMC9205960 DOI: 10.1038/s41598-022-14420-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Mebendazole (MBZ) is an efficacious anthelmintic with known anti-inflammatory and fibrinolytic properties. In this study, we aimed to explore the protective effects of this FDA-approved drug against DSS-induced colitis in a murine model either alone or in combination with Sulfasalazine (SSZ), a standard therapy for ulcerative colitis. We found that MBZ significantly improved colitis disease activity index as assessed by changes in body weight, degree of stool consistency, rectal bleeding, and prolapse. We also found that MBZ ameliorated the colon histopathological score by attenuating crypt loss, mucosal damage, and inflammation score in colitis tissues. Similarly, DSS-induced colon shortening, colon weight loss, and increase in spleen weight were all abrogated in the presence of MBZ. Moreover, MBZ decreased inflammation, possibly by reducing oxidative stress markers, suppressing inflammatory cell infiltration, and down-regulation of inflammatory genes in colon tissues. Furthermore, MBZ potently reduced fibrosis by decreasing collagen deposition and down-regulating pro-fibrotic genes including Col 1a1 and Col 1a2 in colitis tissue homogenates. In conclusion, our study showed that this broad-spectrum anthelminthic could be repurposed as a novel therapy for ulcerative colitis without any observed side effects, however, regarding the concerns about the potential toxicity of MBZ in UC patients, future experiments on MBZ therapy in other models of UC is needed to completely address the toxicity concerns.
Collapse
Affiliation(s)
- Moein Eskandari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamideh Naimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Ahadi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Vossoughinia
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Naghibzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Mikhail Ryzhikov
- School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
HPMA Copolymer Mebendazole Conjugate Allows Systemic Administration and Possesses Antitumour Activity In Vivo. Pharmaceutics 2022; 14:pharmaceutics14061201. [PMID: 35745774 PMCID: PMC9229042 DOI: 10.3390/pharmaceutics14061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Mebendazole and other benzimidazole antihelmintics, such as albendazole, fenbendazole, or flubendazole, have been shown to possess antitumour activity, primarily due to their microtubule-disrupting activity. However, the extremely poor water-solubility of mebendazole and other benzimidazoles, resulting in very low bioavailability, is a serious drawback of this class of drugs. Thus, the investigation of their antitumour potential has been limited so far to administering repeated high doses given peroral (p.o.) or to using formulations, such as liposomes. Herein, we report a fully biocompatible, water-soluble, HPMA copolymer-based conjugate bearing mebendazole (P-MBZ; Mw 28–33 kDa) covalently attached through a biodegradable bond, enabling systemic administration. Such an approach not only dramatically improves mebendazole solubility but also significantly prolongs the half-life and ensures tumour accumulation via an enhanced permeation and retention (EPR) effect in vivo. This P-MBZ has remarkable cytostatic and cytotoxic activities in EL-4 T-cell lymphoma, LL2 lung carcinoma, and CT-26 colon carcinoma mouse cell lines in vitro, with corresponding IC50 values of 1.07, 1.51, and 0.814 µM, respectively. P-MBZ also demonstrated considerable antitumour activity in EL-4 tumour-bearing mice when administered intraperitoneal (i.p.), either as a single dose or using 3 intermittent doses. The combination of P-MBZ with immunotherapy based on complexes of IL-2 and anti-IL-2 mAb S4B6, potently stimulating activated and memory CD8+ T cells, as well as NK cells, further improved the therapeutic effect.
Collapse
|
13
|
Sultana T, Jan U, Lee JI. Double Repositioning: Veterinary Antiparasitic to Human Anticancer. Int J Mol Sci 2022; 23:ijms23084315. [PMID: 35457127 PMCID: PMC9029030 DOI: 10.3390/ijms23084315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Drug repositioning, the approach of discovering different uses for existing drugs, has gained enormous popularity in recent years in the anticancer drug discovery field due to the increasing demand for anticancer drugs. Additionally, the repurposing of veterinary antiparasitic drugs for the treatment of cancer is gaining traction, as supported by existing literature. A prominent example is the proposal to implement the use of veterinary antiparasitics such as benzimidazole carbamates and halogenated salicylanilides as novel anticancer drugs. These agents have revealed pronounced anti-tumor activities and gained special attention for “double repositioning”, as they are repurposed for different species and diseases simultaneously, acting via different mechanisms depending on their target. As anticancer agents, these compounds employ several mechanisms, including the inhibition of oncogenic signal transduction pathways of mitochondrial respiration and the inhibition of cellular stress responses. In this review, we summarize and provide valuable information about the experimental, preclinical, and clinical trials of veterinary antiparasitic drugs available for the treatment of various cancers in humans. This review suggests the possibility of new treatment options that could improve the quality of life and outcomes for cancer patients in comparison to the currently used treatments.
Collapse
Affiliation(s)
- Tania Sultana
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
| | - Umair Jan
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
| | - Jeong Ik Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6234
| |
Collapse
|
14
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
15
|
Simbulan-Rosenthal CM, Haribabu Y, Vakili S, Kuo LW, Clark H, Dougherty R, Alobaidi R, Carney B, Sykora P, Rosenthal DS. Employing CRISPR-Cas9 to Generate CD133 Synthetic Lethal Melanoma Stem Cells. Int J Mol Sci 2022; 23:2333. [PMID: 35216449 PMCID: PMC8877091 DOI: 10.3390/ijms23042333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133's anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133. MACS-sorted CD133(+) BAKP cells were conditionally reprogrammed to derive BAKR cells with sustained CD133 expression and MIC features. Compared to BAKP, CD133(+) BAKR exhibit increased cell survival and reduced apoptosis in response to trametinib or the chemotherapeutic dacarbazine (DTIC). CRISPR-Cas9-mediated CD133 knockout in BAKR cells (BAKR-KO) re-sensitized cells to trametinib. CD133 knockout in BAKP and POT cells increased trametinib-induced apoptosis by reducing anti-apoptotic BCL-xL, p-AKT, and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in both trametinib-treated cell lines, coincident with elevated p-AKT, p-BAD, BCL-2, and BCL-xL and decreased activation of BAX and caspases-3 and -9. AKT1/2 siRNA knockdown or inhibition of BCL-2 family members with navitoclax (ABT-263) in BAKP-KO cells further enhanced caspase-mediated apoptotic PARP cleavage. CD133 may therefore activate a survival pathway where (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, (3) decreases BAX activation, and (4) reduces caspases-3 and -9 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. Targeting nodes of the CD133, AKT, or BCL-2 survival pathways with trametinib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.
Collapse
Affiliation(s)
- Cynthia M. Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Yogameenakshi Haribabu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Sahar Vakili
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Li-Wei Kuo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Havens Clark
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Ryan Dougherty
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Ryyan Alobaidi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Bonnie Carney
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
- Firefighters’ Burn and Surgical Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA
| | - Peter Sykora
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
- Amelia Technologies, LLC, 1121 5th St. NW, Washington, DC 20001, USA
| | - Dean S. Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| |
Collapse
|
16
|
Joe NS, Godet I, Milki N, Ain NUI, Oza HH, Riggins GJ, Gilkes DM. Mebendazole prevents distant organ metastases in part by decreasing ITGβ4 expression and cancer stemness. Breast Cancer Res 2022; 24:98. [PMID: 36578038 PMCID: PMC9798635 DOI: 10.1186/s13058-022-01591-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most diagnosed cancer among women. Approximately 15-20% of all breast cancers are highly invasive triple-negative breast cancer (TNBC) and lack estrogen, progesterone, and ERBB2 receptors. TNBC is challenging to treat due to its aggressive nature with far fewer targeted therapies than other breast cancer subtypes. Current treatments for patients with TNBC consist of cytotoxic chemotherapies, surgery, radiation, and in some instances PARP inhibitors and immunotherapy. To advance current therapeutics, we repurposed mebendazole (MBZ), an orally available FDA-approved anthelmintic that has shown preclinical efficacy for cancers. MBZ has low toxicity in humans and efficacy in multiple cancer models including breast cancer, glioblastoma multiforme, medulloblastoma, colon cancer, pancreatic and thyroid cancer. MBZ was well-tolerated in a phase I clinical trial of adults recently diagnosed with glioma. We determined that the half-maximal inhibitory concentration (IC50) of MBZ in four breast cancer cell lines is well within the range reported for other types of cancer. MBZ reduced TNBC cell proliferation, induced apoptosis, and caused G2/M cell cycle arrest. MBZ reduced the size of primary tumors and prevented lung and liver metastases. In addition, we uncovered a novel mechanism of action for MBZ. We found that MBZ reduces integrin β4 (ITGβ4) expression and cancer stem cell properties. ITGβ4 has previously been implicated in promoting "cancer stemness," which may contribute to the efficacy of MBZ. Collectively, our results contribute to a growing body of evidence suggesting that MBZ should be considered as a therapeutic to slow tumor progression and prevent metastasis.
Collapse
Affiliation(s)
- Natalie S. Joe
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Inês Godet
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218 USA
| | - Nubaira Milki
- grid.21107.350000 0001 2171 9311Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
| | - Noor U. I. Ain
- grid.21107.350000 0001 2171 9311NIH NIDDK Short-Term Research Experience Program to Unlock Potential (STEP-UP), The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Harsh H. Oza
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Gregory J. Riggins
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Daniele M. Gilkes
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
17
|
Cyclodextrin Dispersion of Mebendazole and Flubendazole Improves In Vitro Antiproliferative Activity. Processes (Basel) 2021. [DOI: 10.3390/pr9122185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mebendazole and flubendazole are antihelmintic drugs that have re-entered the research spotlight due to their exhibited anticancer effects, thus making them strong candidates as repurposed drugs. However, these benzimidazole derivatives exhibit poor solubility in water and various organic solvents, which limits their bioavailability. With the aim of obtaining an improved drug solubility and increased biological effect, mebendazole and flubendazole were complexed with 2-hydroxypropyl-β-cyclodextrin (HPBCD). The binary 1:1 conjugates were physicochemically evaluated by X-ray diffraction, thermal analysis, and FTIR spectroscopy, revealing the formation of physical mixtures. The increased aqueous solubility of the binary 1:1 conjugates vs. pure benzimidazole compounds was demonstrated by performing dissolution tests. The in vitro antiproliferative activity of mebendazole and flubendazole, as well as their combination with HPBCD, was tested on two cancer cell lines, human melanoma—A375 and pulmonary adenocarcinoma—A549 by the MTT assay. The cytotoxic activity manifested in a dose-dependent manner while the presence of HPBCD increased the antiproliferative activity against the targeted cells. Treatment of A375 and A549 cell lines with the binary conjugates induced a significant inhibition of mitochondrial respiration, as revealed by high-resolution respirometry studies. Molecular docking analysis showed that one of the mechanisms related to MEB and FLU cytotoxic activity may be due to the inhibition of MEK/ERK proteins.
Collapse
|
18
|
Freisleben F, Modemann F, Muschhammer J, Stamm H, Brauneck F, Krispien A, Bokemeyer C, Kirschner KN, Wellbrock J, Fiedler W. Mebendazole Mediates Proteasomal Degradation of GLI Transcription Factors in Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:10670. [PMID: 34639011 PMCID: PMC8508953 DOI: 10.3390/ijms221910670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/31/2023] Open
Abstract
The prognosis of elderly AML patients is still poor due to chemotherapy resistance. The Hedgehog (HH) pathway is important for leukemic transformation because of aberrant activation of GLI transcription factors. MBZ is a well-tolerated anthelmintic that exhibits strong antitumor effects. Herein, we show that MBZ induced strong, dose-dependent anti-leukemic effects on AML cells, including the sensitization of AML cells to chemotherapy with cytarabine. MBZ strongly reduced intracellular protein levels of GLI1/GLI2 transcription factors. Consequently, MBZ reduced the GLI promoter activity as observed in luciferase-based reporter assays in AML cell lines. Further analysis revealed that MBZ mediates its anti-leukemic effects by promoting the proteasomal degradation of GLI transcription factors via inhibition of HSP70/90 chaperone activity. Extensive molecular dynamics simulations were performed on the MBZ-HSP90 complex, showing a stable binding interaction at the ATP binding site. Importantly, two patients with refractory AML were treated with MBZ in an off-label setting and MBZ effectively reduced the GLI signaling activity in a modified plasma inhibitory assay, resulting in a decrease in peripheral blood blast counts in one patient. Our data prove that MBZ is an effective GLI inhibitor that should be evaluated in combination to conventional chemotherapy in the clinical setting.
Collapse
Affiliation(s)
- Fabian Freisleben
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Franziska Modemann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Hauke Stamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Alexander Krispien
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Karl N. Kirschner
- Department of Computer Science, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany;
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| |
Collapse
|
19
|
Studenovský M, Rumlerová A, Kostka L, Etrych T. HPMA-Based Polymer Conjugates for Repurposed Drug Mebendazole and Other Imidazole-Based Therapeutics. Polymers (Basel) 2021; 13:polym13152530. [PMID: 34372133 PMCID: PMC8347626 DOI: 10.3390/polym13152530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the antitumor potential of benzimidazole anthelmintics, such as mebendazole and its analogues, have been reported to have minimal side effects, in addition to their well-known anti-parasitic abilities. However, their administration is strongly limited owing to their extremely poor solubility, which highly depletes their overall bioavailability. This study describes the design, synthesis, and physico-chemical properties of polymer-mebendazole nanomedicines for drug repurposing in cancer therapy. The conjugation of mebendazole to water-soluble and biocompatible polymer carrier was carried out via biodegradable bond, relying on the hydrolytic action of lysosomal hydrolases for mebendazole release inside the tumor cells. Five low-molecular-weight mebendazole derivatives, differing in their inner structure, and two polymer conjugates differing in their linker structure, were synthesized. The overall synthetic strategy was designed to enable the modification and polymer conjugation of most benzimidazole-based anthelmintics, such as albendazole, fenbendazole or albendazole, besides the mebendazole. Furthermore, the described methodology may be suitable for conjugation of other biologically active compounds with a heterocyclic N-H group in their molecules.
Collapse
|
20
|
Mebendazole disrupts stromal desmoplasia and tumorigenesis in two models of pancreatic cancer. Oncotarget 2021; 12:1326-1338. [PMID: 34262644 PMCID: PMC8274724 DOI: 10.18632/oncotarget.28014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The five-year survival rate for metastatic pancreatic cancer is currently only 3%, which increases to 13% with local invasion only and to 39% with localized disease at diagnosis. Here we evaluated repurposed mebendazole, an approved anthelminthic drug, to determine how mebendazole might work at the different stages of pancreatic cancer formation and progression. We asked if mebendazole could prevent initiation of pancreatic intraepithelial neoplasia precursor lesions, interfere with stromal desmoplasia, or suppress tumor growth and liver metastasis. In both the Kras LSL.G12D/+; Pdx1-Cre (KC) mouse model of caerulein-induced inflammatory pancreatitis and the Kras LSL.G12D/+; Tp53 R172H/+; Pdx1-Cre (KPC) mouse model of advanced pancreatic cancer, mebendazole significantly reduced pancreas weight, dysplasia and intraepithelial neoplasia formation, compared to controls. Mebendazole significantly reduced trichrome-positive fibrotic connective tissue and α-SMA-positive activated pancreatic stellate cells that heralds fibrogenesis. In the aggressive KPC model, mebendazole significantly suppressed pancreatic tumor growth, both as an early and late intervention. Mebendazole reduced the overall incidence of pancreatic cancer and severity of liver metastasis in KPC mice. Using early models of pancreatic cancer, treatment with mebendazole resulted in less inflammation, decreased dysplasia, with the later stage model additionally showing a decreased tumor burden, less advanced tumors, and a reduction of metastasis. We conclude that mebendazole should be investigated further as a component of adjuvant therapy to slow progression and prevent metastasis, and well as for primary prevention in the highest risk patients.
Collapse
|
21
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
22
|
Martinez-Escobar A, Luna-Callejas B, Ramón-Gallegos E. CRISPR-dCas9-Based Artificial Transcription Factors to Improve Efficacy of Cancer Treatment With Drug Repurposing: Proposal for Future Research. Front Oncol 2021; 10:604948. [PMID: 33614489 PMCID: PMC7887379 DOI: 10.3389/fonc.2020.604948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Due to the high resistance that cancer has shown to conventional therapies, it is difficult to treat this disease, particularly in advanced stages. In recent decades, treatments have been improved, being more specific according to the characteristics of the tumor, becoming more effective, less toxic, and invasive. Cancer can be treated by the combination of surgery, radiation therapy, and/or drug administration, but therapies based on anticancer drugs are the main cancer treatment. Cancer drug development requires long-time preclinical and clinical studies and is not cost-effective. Drug repurposing is an alternative for cancer therapies development since it is faster, safer, easier, cheaper, and repurposed drugs do not have serious side effects. However, cancer is a complex, heterogeneous, and highly dynamic disease with multiple evolving molecular constituents. This tumor heterogeneity causes several resistance mechanisms in cancer therapies, mainly the target mutation. The CRISPR-dCas9-based artificial transcription factors (ATFs) could be used in cancer therapy due to their possibility to manipulate DNA to modify target genes, activate tumor suppressor genes, silence oncogenes, and tumor resistance mechanisms for targeted therapy. In addition, drug repurposing combined with the use of CRISPR-dCas9-based ATFs could be an alternative cancer treatment to reduce cancer mortality. The aim of this review is to describe the potential of the repurposed drugs combined with CRISPR-dCas9-based ATFs to improve the efficacy of cancer treatment, discussing the possible advantages and disadvantages.
Collapse
Affiliation(s)
- Alejandro Martinez-Escobar
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Benjamín Luna-Callejas
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
23
|
Cortés H, Reyes-Hernández OD, Alcalá-Alcalá S, Bernal-Chávez SA, Caballero-Florán IH, González-Torres M, Sharifi-Rad J, González-Del Carmen M, Figueroa-González G, Leyva-Gómez G. Repurposing of Drug Candidates for Treatment of Skin Cancer. Front Oncol 2021; 10:605714. [PMID: 33489912 PMCID: PMC7821387 DOI: 10.3389/fonc.2020.605714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Skin cancers are highly prevalent malignancies that affect millions of people worldwide. These include melanomas and nonmelanoma skin cancers. Melanomas are among the most dangerous cancers, while nonmelanoma skin cancers generally exhibit a more benign clinical pattern; however, they may sometimes be aggressive and metastatic. Melanomas typically appear in body regions exposed to the sun, although they may also appear in areas that do not usually get sun exposure. Thus, their development is multifactorial, comprising endogenous and exogenous risk factors. The management of skin cancer depends on the type; it is usually based on surgery, chemotherapy, immunotherapy, and targeted therapy. In this respect, oncological treatments have demonstrated some progress in the last years; however, current therapies still present various disadvantages such as little cell specificity, recurrent relapses, high toxicity, and increased costs. Furthermore, the pursuit of novel medications is expensive, and the authorization for their clinical utilization may take 10-15 years. Thus, repositioning of drugs previously approved and utilized for other diseases has emerged as an excellent alternative. In this mini-review, we aimed to provide an updated overview of drugs' repurposing to treat skin cancer and discuss future perspectives.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Octavio D. Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | | | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
24
|
Rivas-Barragan D, Mubeen S, Guim Bernat F, Hofmann-Apitius M, Domingo-Fernández D. Drug2ways: Reasoning over causal paths in biological networks for drug discovery. PLoS Comput Biol 2020; 16:e1008464. [PMID: 33264280 PMCID: PMC7735677 DOI: 10.1371/journal.pcbi.1008464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/14/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.
Collapse
Affiliation(s)
- Daniel Rivas-Barragan
- Barcelona Supercomputing Center, Barcelona, Spain
- Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Fraunhofer Center for Machine Learning, Germany
| | | | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Fraunhofer Center for Machine Learning, Germany
| |
Collapse
|
25
|
Gallia GL, Holdhoff M, Brem H, Joshi AD, Hann CL, Bai RY, Staedtke V, Blakeley JO, Sengupta S, Jarrell TC, Wollett J, Szajna K, Helie N, Mattox AK, Ye X, Rudek MA, Riggins GJ. Mebendazole and temozolomide in patients with newly diagnosed high-grade gliomas: results of a phase 1 clinical trial. Neurooncol Adv 2020; 3:vdaa154. [PMID: 33506200 PMCID: PMC7817892 DOI: 10.1093/noajnl/vdaa154] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Mebendazole is an anthelmintic drug introduced for human use in 1971 that extends survival in preclinical models of glioblastoma and other brain cancers. Methods A single-center dose-escalation and safety study of mebendazole in 24 patients with newly diagnosed high-grade gliomas in combination with temozolomide was conducted. Patients received mebendazole in combination with adjuvant temozolomide after completing concurrent radiation plus temozolomide. Dose-escalation levels were 25, 50, 100, and 200 mg/kg/day of oral mebendazole. A total of 15 patients were enrolled at the highest dose studied of 200 mg/kg/day. Trough plasma levels of mebendazole were measured at 4, 8, and 16 weeks. Results Twenty-four patients (18 glioblastoma and 6 anaplastic glioma) were enrolled with a median age of 49.8 years. Four patients (at 200 mg/kg) developed elevated grade 3 alanine aminotransferase (ALT) and/or aspartate transaminase (AST) after 1 month, which reversed with lower dosing or discontinuation. Plasma levels of mebendazole were variable but generally increased with dose. Kaplan–Meier analysis showed a 21-month median overall survival with 41.7% of patients alive at 2 years and 25% at 3 and 4 years. Median progression-free survival (PFS) from the date of diagnosis for 17 patients taking more than 1 month of mebendazole was 13.1 months (95% confidence interval [CI]: 8.8–14.6 months) but for 7 patients who received less than 1 month of mebendazole PFS was 9.2 months (95% CI: 5.8–13.0 months). Conclusion Mebendazole at doses up to 200 mg/kg demonstrated long-term safety and acceptable toxicity. Further studies are needed to determine mebendazole’s efficacy in patients with malignant glioma.
Collapse
Affiliation(s)
- Gary L Gallia
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Henry Brem
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Avadhut D Joshi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ren-Yuan Bai
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - T Che Jarrell
- Milestone Regulatory Experts, Gulfport, Florida, USA
| | - Jessica Wollett
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Szajna
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole Helie
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Austin K Mattox
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michelle A Rudek
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregory J Riggins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Ariey-Bonnet J, Carrasco K, Le Grand M, Hoffer L, Betzi S, Feracci M, Tsvetkov P, Devred F, Collette Y, Morelli X, Ballester P, Pasquier E. In silico molecular target prediction unveils mebendazole as a potent MAPK14 inhibitor. Mol Oncol 2020; 14:3083-3099. [PMID: 33021050 PMCID: PMC7718943 DOI: 10.1002/1878-0261.12810] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The concept of polypharmacology involves the interaction of drug molecules with multiple molecular targets. It provides a unique opportunity for the repurposing of already-approved drugs to target key factors involved in human diseases. Herein, we used an in silico target prediction algorithm to investigate the mechanism of action of mebendazole, an antihelminthic drug, currently repurposed in the treatment of brain tumors. First, we confirmed that mebendazole decreased the viability of glioblastoma cells in vitro (IC50 values ranging from 288 nm to 2.1 µm). Our in silico approach unveiled 21 putative molecular targets for mebendazole, including 12 proteins significantly upregulated at the gene level in glioblastoma as compared to normal brain tissue (fold change > 1.5; P < 0.0001). Validation experiments were performed on three major kinases involved in cancer biology: ABL1, MAPK1/ERK2, and MAPK14/p38α. Mebendazole could inhibit the activity of these kinases in vitro in a dose-dependent manner, with a high potency against MAPK14 (IC50 = 104 ± 46 nm). Its direct binding to MAPK14 was further validated in vitro, and inhibition of MAPK14 kinase activity was confirmed in live glioblastoma cells. Consistent with biophysical data, molecular modeling suggested that mebendazole was able to bind to the catalytic site of MAPK14. Finally, gene silencing demonstrated that MAPK14 is involved in glioblastoma tumor spheroid growth and response to mebendazole treatment. This study thus highlighted the role of MAPK14 in the anticancer mechanism of action of mebendazole and provides further rationale for the pharmacological targeting of MAPK14 in brain tumors. It also opens new avenues for the development of novel MAPK14/p38α inhibitors to treat human diseases.
Collapse
Affiliation(s)
- Jeremy Ariey-Bonnet
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Kendall Carrasco
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Marion Le Grand
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Laurent Hoffer
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Stéphane Betzi
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Mikael Feracci
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Philipp Tsvetkov
- CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Pharm, Aix Marseille Université, France
| | - Francois Devred
- CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Pharm, Aix Marseille Université, France
| | - Yves Collette
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Xavier Morelli
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Pedro Ballester
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Eddy Pasquier
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| |
Collapse
|
27
|
Naeem A, Dakshanamurthy S, Walthieu H, Parasido E, Avantaggiati M, Tricoli L, Kumar D, Lee RJ, Feldman A, Noon MS, Byers S, Rodriguez O, Albanese C. Predicting new drug indications for prostate cancer: The integration of an in silico proteochemometric network pharmacology platform with patient-derived primary prostate cells. Prostate 2020; 80:1233-1243. [PMID: 32761925 PMCID: PMC7540414 DOI: 10.1002/pros.24050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Drug repurposing enables the discovery of potential cancer treatments using publically available data from over 4000 published Food and Drug Administration approved and experimental drugs. However, the ability to effectively evaluate the drug's efficacy remains a challenge. Impediments to broad applicability include inaccuracies in many of the computational drug-target algorithms and a lack of clinically relevant biologic modeling systems to validate the computational data for subsequent translation. METHODS We have integrated our computational proteochemometric systems network pharmacology platform, DrugGenEx-Net, with primary, continuous cultures of conditionally reprogrammed (CR) normal and prostate cancer (PCa) cells derived from treatment-naive patients with primary PCa. RESULTS Using the transcriptomic data from two matched pairs of benign and tumor-derived CR cells, we constructed drug networks to describe the biological perturbation associated with each prostate cell subtype at multiple levels of biological action. We prioritized the drugs by analyzing these networks for statistical coincidence with the drug action networks originating from known and predicted drug-protein targets. Prioritized drugs shared between the two patients' PCa cells included carfilzomib (CFZ), bortezomib (BTZ), sulforaphane, and phenethyl isothiocyanate. The effects of these compounds were then tested in the CR cells, in vitro. We observed that the IC50 values of the normal PCa CR cells for CFZ and BTZ were higher than their matched tumor CR cells. Transcriptomic analysis of CFZ-treated CR cells revealed that genes involved in cell proliferation, proteases, and downstream targets of serine proteases were inhibited while KLK7 and KLK8 were induced in the tumor-derived CR cells. CONCLUSIONS Given that the drugs in the database are extremely well-characterized and that the patient-derived cells are easily scalable for high throughput drug screening, this combined in vitro and in silico approach may significantly advance personalized PCa treatment and for other cancer applications.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
- Ministry of Public Health, Doha, Qatar
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Henry Walthieu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Maria Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Lucas Tricoli
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Deepak Kumar
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Richard J Lee
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Adam Feldman
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Muhammad S Noon
- Data Science Institute, University of Arizona, Tuscon, Arizona
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
- Center for Translational Imaging, Georgetown University Medical Center, Washington DC
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
- Center for Translational Imaging, Georgetown University Medical Center, Washington DC
| |
Collapse
|
28
|
Nath J, Paul R, Ghosh SK, Paul J, Singha B, Debnath N. Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sci 2020; 258:118189. [DOI: 10.1016/j.lfs.2020.118189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
|
29
|
Son DS, Lee ES, Adunyah SE. The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs. Immune Netw 2020; 20:e29. [PMID: 32895616 PMCID: PMC7458798 DOI: 10.4110/in.2020.20.e29] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The development of refractory tumor cells limits therapeutic efficacy in cancer by activating mechanisms that promote cellular proliferation, migration, invasion, metastasis, and survival. Benzimidazole anthelmintics have broad-spectrum action to remove parasites both in human and veterinary medicine. In addition to being antiparasitic agents, benzimidazole anthelmintics are known to exert anticancer activities, such as the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, anti-angiogenesis, and blockage of glucose transport. These antitumorigenic effects even extend to cancer cells resistant to approved therapies and when in combination with conventional therapeutics, enhance anticancer efficacy and hold promise as adjuvants. Above all, these anthelmintics may offer a broad, safe spectrum to treat cancer, as demonstrated by their long history of use as antiparasitic agents. The present review summarizes central literature regarding the anticancer effects of benzimidazole anthelmintics, including albendazole, parbendazole, fenbendazole, mebendazole, oxibendazole, oxfendazole, ricobendazole, and flubendazole in cancer cell lines, animal tumor models, and clinical trials. This review provides valuable information on how to improve the quality of life in patients with cancers by increasing the treatment options and decreasing side effects from conventional therapy.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
30
|
Veschi S, Ronci M, Lanuti P, De Lellis L, Florio R, Bologna G, Scotti L, Carletti E, Brugnoli F, Di Bella MC, Bertagnolo V, Marchisio M, Cama A. Integrative proteomic and functional analyses provide novel insights into the action of the repurposed drug candidate nitroxoline in AsPC-1 cells. Sci Rep 2020; 10:2574. [PMID: 32054977 PMCID: PMC7018951 DOI: 10.1038/s41598-020-59492-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
We recently identified nitroxoline as a repurposed drug candidate in pancreatic cancer (PC) showing a dose-dependent antiproliferative activity in different PC cell lines. This antibiotic is effective in several in vitro and animal cancer models. To date, the mechanisms of nitroxoline anticancer action are largely unknown. Using shotgun proteomics we identified 363 proteins affected by nitroxoline treatment in AsPC-1 pancreatic cancer cells, including 81 consistently deregulated at both 24- and 48-hour treatment. These proteins previously unknown to be affected by nitroxoline were mostly downregulated and interconnected in a single highly-enriched network of protein-protein interactions. Integrative proteomic and functional analyses revealed nitroxoline-induced downregulation of Na/K-ATPase pump and β-catenin, which associated with drastic impairment in cell growth, migration, invasion, increased ROS production and induction of DNA damage response. Remarkably, nitroxoline induced a previously unknown deregulation of molecules with a critical role in cell bioenergetics, which resulted in mitochondrial depolarization. Our study also suggests that deregulation of cytosolic iron homeostasis and of co-translational targeting to membrane contribute to nitroxoline anticancer action. This study broadens our understanding of the mechanisms of nitroxoline action, showing that the drug modulates multiple proteins crucial in cancer biology and previously unknown to be affected by nitroxoline.
Collapse
Affiliation(s)
- Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Rosalba Florio
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Federica Brugnoli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | - Valeria Bertagnolo
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Marchisio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
31
|
Khan HJ, Rohondia SO, Othman Ahmed ZS, Zalavadiya N, Dou QP. Increasing opportunities of drug repurposing for treating breast cancer by the integration of molecular, histological, and systemic approaches. DRUG REPURPOSING IN CANCER THERAPY 2020:121-172. [DOI: 10.1016/b978-0-12-819668-7.00005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci Rep 2019; 9:19095. [PMID: 31836811 PMCID: PMC6911098 DOI: 10.1038/s41598-019-55666-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Sorafenib (SO) is a multi-kinase inhibitor that targets upstream signals in the MAPK pathway. Drug resistance and transient survival benefits are the main obstacles associated with SO treatment in Hepatocellular carcinoma (HCC) patients. Mebendazole (MBZ), an anthelmintic agent, has demonstrated activity against various cancer types. Therefore, we aimed to investigate the possible mechanisms of MBZ other than its anti-tubulin activity. MBZ (100 mg/kg/day, P.O.) was administered to N-nitrosodiethylamine-induced HCC mice as a monotherapeutic agent or in combination with SO. Our results revealed that MBZ decreased AFP levels, improved liver function and histology and increased survival in HCC mice, particularly when administered in combination with SO. MBZ also reduced hepatic inflammation and fibrogenesis as evidenced by reductions in TNF-α and TGF-β1 levels, respectively. Increased hepatic caspases-3 and -9 and decreased BCL-2 levels suggest induced-cell death. In addition, MBZ demonstrated anti-angiogenic, anti-metastatic, and anti-proliferative effects, as indicated by reduced VEGF levels, MMP-2:TIMP-1 ratios, and reduced cyclin D1 levels and Ki67 immunostaining, respectively. Our main finding was that MBZ targeted downstream signal of the MAPK pathway by inhibiting ERK1/2 phosphorylation. Targeting downstream MAPK signalling by MBZ and upstream signalling by SO is a novel approach to minimizing resistance and prolonging survival.
Collapse
|
33
|
Mebendazole for Differentiation Therapy of Acute Myeloid Leukemia Identified by a Lineage Maturation Index. Sci Rep 2019; 9:16775. [PMID: 31727951 PMCID: PMC6856101 DOI: 10.1038/s41598-019-53290-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023] Open
Abstract
Accurate assessment of changes in cellular differentiation status in response to drug treatments or genetic perturbations is crucial for understanding tumorigenesis and developing novel therapeutics for human cancer. We have developed a novel computational approach, the Lineage Maturation Index (LMI), to define the changes in differentiation state of hematopoietic malignancies based on their gene expression profiles. We have confirmed that the LMI approach can detect known changes of differentiation state in both normal and malignant hematopoietic cells. To discover novel differentiation therapies, we applied this approach to analyze the gene expression profiles of HL-60 leukemia cells treated with a small molecule drug library. Among multiple drugs that significantly increased the LMIs, we identified mebendazole, an anti-helminthic clinically used for decades with no known significant toxicity. We tested the differentiation activity of mebendazole using primary leukemia blast cells isolated from human acute myeloid leukemia (AML) patients. We determined that treatment with mebendazole induces dramatic differentiation of leukemia blast cells as shown by cellular morphology and cell surface markers. Furthermore, mebendazole treatment significantly extended the survival of leukemia-bearing mice in a xenograft model. These findings suggest that mebendazole may be utilized as a low toxicity therapeutic for human acute myeloid leukemia and confirm the LMI approach as a robust tool for the discovery of novel differentiation therapies for cancer.
Collapse
|
34
|
Guerini AE, Triggiani L, Maddalo M, Bonù ML, Frassine F, Baiguini A, Alghisi A, Tomasini D, Borghetti P, Pasinetti N, Bresciani R, Magrini SM, Buglione M. Mebendazole as a Candidate for Drug Repurposing in Oncology: An Extensive Review of Current Literature. Cancers (Basel) 2019; 11:cancers11091284. [PMID: 31480477 PMCID: PMC6769799 DOI: 10.3390/cancers11091284] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Anticancer treatment efficacy is limited by the development of refractory tumor cells characterized by increased expression and activity of mechanisms promoting survival, proliferation, and metastatic spread. The present review summarizes the current literature regarding the use of the anthelmintic mebendazole (MBZ) as a repurposed drug in oncology with a focus on cells resistant to approved therapies, including so called “cancer stem cells”. Mebendazole meets many of the characteristics desirable for a repurposed drug: good and proven toxicity profile, pharmacokinetics allowing to reach therapeutic concentrations at disease site, ease of administration and low price. Several in vitro studies suggest that MBZ inhibits a wide range of factors involved in tumor progression such as tubulin polymerization, angiogenesis, pro-survival pathways, matrix metalloproteinases, and multi-drug resistance protein transporters. Mebendazole not only exhibits direct cytotoxic activity, but also synergizes with ionizing radiations and different chemotherapeutic agents and stimulates antitumoral immune response. In vivo, MBZ treatment as a single agent or in combination with chemotherapy led to the reduction or complete arrest of tumor growth, marked decrease of metastatic spread, and improvement of survival. Further investigations are warranted to confirm the clinical anti-neoplastic activity of MBZ and its safety in combination with other drugs in a clinical setting.
Collapse
Affiliation(s)
| | - Luca Triggiani
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Marta Maddalo
- Department of Radiation Oncology, ASST Spedali Civili of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Marco Lorenzo Bonù
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Francesco Frassine
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Anna Baiguini
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Alessandro Alghisi
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| | - Davide Tomasini
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy.
| | - Paolo Borghetti
- Department of Radiation Oncology, Spedali Civili of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy
| | - Nadia Pasinetti
- Radiation Oncology Service, ASST Valcamonica, 25040 Esine, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, Unit of Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | - Michela Buglione
- Department of Radiation Oncology, Brescia University, 25123 Brescia, Italy
| |
Collapse
|
35
|
CD133 Is Associated with Increased Melanoma Cell Survival after Multikinase Inhibition. JOURNAL OF ONCOLOGY 2019; 2019:6486173. [PMID: 31379943 PMCID: PMC6662463 DOI: 10.1155/2019/6486173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
FDA-approved kinase inhibitors are now used for melanoma, including combinations of the MEK inhibitor trametinib, and BRAF inhibitor dabrafenib for BRAFV600 mutations. NRAS-mutated cell lines are also sensitive to MEK inhibition in vitro, and NRAS-mutated tumors have also shown partial response to MEK inhibitors. However, melanoma still has high recurrence rates due to subpopulations, sometimes described as “melanoma initiating cells,” resistant to treatment. Since CD133 is a putative cancer stem cell marker for different cancers, associated with decreased survival, we examined resistance of patient-derived CD133(+) and CD133(-) melanoma cells to MAPK inhibitors. Human melanoma cells were exposed to increasing concentrations of trametinib and/or dabrafenib, either before or after separation into CD133(+) and CD133(-) subpopulations. In parental CD133-mixed lines, the percentages of CD133(+) cells increased significantly (p<0.05) after high-dose drug treatment. Presorted CD133(+) cells also exhibited significantly greater (p<0.05) IC50s for single and combination MAPKI treatment. siRNA knockdown revealed a causal relationship between CD133 and drug resistance. Microarray and qRT-PCR analyses revealed that ten of 18 ABC transporter genes were significantly (P<0.05) upregulated in the CD133(+) subpopulation, while inhibition of ABC activity increased sensitivity, suggesting a mechanism for increased drug resistance of CD133(+) cells.
Collapse
|
36
|
Mebendazole Potentiates Radiation Therapy in Triple-Negative Breast Cancer. Int J Radiat Oncol Biol Phys 2018; 103:195-207. [PMID: 30196056 DOI: 10.1016/j.ijrobp.2018.08.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE The lack of a molecular target in triple-negative breast cancer (TNBC) makes it one of the most challenging breast cancers to treat. Radiation therapy (RT) is an important treatment modality for managing breast cancer; however, we previously showed that RT can also reprogram a fraction of the surviving breast cancer cells into breast cancer-initiating cells (BCICs), which are thought to contribute to disease recurrence. In this study, we characterize mebendazole (MBZ) as a drug with potential to prevent the occurrence of radiation-induced reprogramming and improve the effect of RT in patients with TNBC. METHODS AND MATERIALS A high-throughput screen was used to identify drugs that prevented radiation-induced conversion of TNBC cells into cells with a cancer-initiating phenotype and exhibited significant toxicity toward TNBC cells. MBZ was one of the drug hits that fulfilled these criteria. In additional studies, we used BCIC markers and mammosphere-forming assays to investigate the effect of MBZ on the BCIC population. Staining with propidium iodide, annexin-V, and γ-H2AX was used to determine the effect of MBZ on cell cycle, apoptosis, and double-strand breaks. Finally, the potential for MBZ to enhance the effect of RT in TNBC was evaluated in vitro and in vivo. RESULTS MBZ efficiently depletes the BCIC pool and prevents the ionizing radiation-induced conversion of breast cancer cells into therapy-resistant BCICs. In addition, MBZ arrests cells in the G2/M phase of the cell cycle and causes double-strand breaks and apoptosis. MBZ sensitizes TNBC cells to ionizing radiation in vitro and in vivo, resulting in improved tumor control in a human xenograft model of TNBC. CONCLUSIONS The data presented in this study support the repurposing of MBZ as a combination treatment with RT in patients with TNBC.
Collapse
|
37
|
Affiliation(s)
- James E Barrett
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|