1
|
Payungwong T, Angkulkrerkkrai K, Chaiboonchoe A, Lausoontornsiri W, Jirawatnotai S, Chindavijak S. Comparison of mutation landscapes of pretreatment versus recurrent squamous cell carcinoma of the oral cavity: The possible mechanism of resistance to standard treatment. Cancer Rep (Hoboken) 2024; 7:e2004. [PMID: 38477073 DOI: 10.1002/cnr2.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND A high recurrent rate of oral squamous cell carcinoma (OSCC) is a major concern in head and neck cancer treatment. The study of the genetic mutation landscape in recurrent OSCC may provide information on certain mutations associated with the pathobiology and treatment response of the OSCC. AIM We investigated the mutation landscape of matched pretreatment and recurrent tumors to understand the influence of genetic mutations on the pathobiology and clinical outcomes in OSCC. METHODS AND RESULTS We sequenced 33 formalin-fixed paraffin-embedded (FFPE) recurrent tumors, primary tumors, and primary tumors before recurrence that matched the recurrent tumors collected from Rajavithi Hospital during 2019-2021. We identified recurrent mutations from these samples by the Oncomine Ion Torrent-based next-generation sequencing on the 517 cancer-associated gene panel. From the results, we found that the most commonly mutated gene in the cohort is a histone methyltransferase KMT2D (54.55%), implicating that aberrance in epigenetic regulation may play a role in oral cancer tumorigenesis. Functional protein association network analysis of the gene frequently mutated in the recurrent tumors showed enrichment of genes that regulate the cancer cell cycle, that is, MRE11A, CDKN2A, and CYLD. This finding was confirmed in the primary-recurring matched pair. We found that recurrent tumors possess a small but recurring group of genes, with presumably the subclonal mutations driving the recurrence of the tumor, suggesting that the recurrent disease originated from a small fraction of the cancer cell that survives standard treatment. These genes were absent in the primary tumor with a good response to the standard treatment. On the other hand, we found an enrichment of DNA repair genes, namely ATR, BRCA1, BRCA2, RAD50, and MUTYH, in nonrecurrent tumors suggesting that the mutations in the DNA repair pathway may at least partially explain the different response to the standard treatment. CONCLUSIONS Our pilot study identified pathways of carcinogenesis in oral cancer and specific gene sets that indicate treatment responses and prognoses in this group of patients.
Collapse
Affiliation(s)
- Tongchai Payungwong
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Krittaya Angkulkrerkkrai
- Center of Excellence of Otolaryngology Head and Neck Surgery, Rajavithi Hospital, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somjin Chindavijak
- Center of Excellence of Otolaryngology Head and Neck Surgery, Rajavithi Hospital, Bangkok, Thailand
| |
Collapse
|
2
|
Mishra R. Oral tumor heterogeneity, its implications for patient monitoring and designing anti-cancer strategies. Pathol Res Pract 2024; 253:154953. [PMID: 38039738 DOI: 10.1016/j.prp.2023.154953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Oral cancer tumors occur in the mouth and are mainly derived from oral mucosa linings. It is one of the most common and fatal malignant diseases worldwide. The intratumor heterogeneity (ITH) of oral cancerous tumor is vast, so it is challenging to study and interpret. Due to environmental selection pressures, ITH arises through diverse genetic, epigenetic, and metabolic alterations. The ITH also talks about peri-tumoral vascular/ lymphatic growth, perineural permeation, tumor necrosis, invasion, and clonal expansion/ the coexistence of multiple subclones in a single tumor. The heterogeneity offers tumors the adaptability to survive, induce growth/ metastasis, and, most importantly, escape antitumor therapy. Unfortunately, the ITH is prioritized less in determining disease pathology than the traditional TNM classifications or tumor grade. Understanding ITH is challenging, but with the advancement of technology, this ITH can be decoded. Tumor genomics, proteomics, metabolomics, and other modern analyses can provide vast information. This information in clinics can assist in understanding a tumor's severity and be used for diagnostic, prognostic, and therapeutic decision-making. Lastly, the oral tumor ITH can lead to individualized, targeted therapy strategies fighting against OC.
Collapse
Affiliation(s)
- Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Kamre, Ranchi 835 222, Jharkhand, India.
| |
Collapse
|
3
|
Cao Y, Dong H, Li G, Wei H, Xie C, Tuo Y, Chen N, Yu D. Temporal and spatial characteristics of tumor evolution in a mouse model of oral squamous cell carcinoma. BMC Cancer 2022; 22:1209. [PMID: 36424557 PMCID: PMC9694863 DOI: 10.1186/s12885-022-10256-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives We aimed to elucidate the temporal and spatial characteristics of tumor evolution in an oral squamous cell carcinoma (OSCC) mouse model with higher burden of lymphatic metastasis through high-throughput sequencing. Methods The OSCC model was established in 9 mice. DNA was extracted from the tumors of primary tongue lesions and disseminated tumor cells (DTCs) of submandibular gland lymph nodes and bone marrow, and then whole genome sequencing was performed. After bioinformatics analysis, somatic single-nucleotide variants (SSNVs) and copy number variations (CNVs) data were obtained. Based on SSNVs, clonal architecture and ancestor-descendant relationships among tumor cell subclones were elucidated. Results A total of 238 tumor-related SSNVs with 120 high-frequency mutated genes were obtained from 36 samples of 9 mice by whole-genome sequencing. The number of unique SSNVs in the primary lesion, submandibular lymph node and bone marrow was greater than the number of shared SSNVs. Furthermore, the primary lesion-originated subclones, which were identified by SSNVs, were also detected in submandibular lymph nodes in the early stage of oral carcinogenesis. Moreover, at different histopathological stages, unique subclones were also identified in DTCs isolated from lymph nodes. Conclusion Tumor heterogeneity is significant in primary tumor cells and disseminated tumor cells. OSCC cells probably disseminate to lymph nodes in the early stage of oral carcinogenesis. OSCC is characterized by polyclonal dissemination, and the evolutionary trajectory of DTCs is potentially dominated by the tumor microenvironment.
Collapse
|
4
|
Prognostic Value of Molecular Intratumor Heterogeneity in Primary Oral Cancer and Its Lymph Node Metastases Assessed by Mass Spectrometry Imaging. Molecules 2022; 27:molecules27175458. [PMID: 36080226 PMCID: PMC9458238 DOI: 10.3390/molecules27175458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Different aspects of intra-tumor heterogeneity (ITH), which are associated with the development of cancer and its response to treatment, have postulated prognostic value. Here we searched for potential association between phenotypic ITH analyzed by mass spectrometry imaging (MSI) and prognosis of head and neck cancer. The study involved tissue specimens resected from 77 patients with locally advanced oral squamous cell carcinoma, including 37 patients where matched samples of primary tumor and synchronous lymph node metastases were analyzed. A 3-year follow-up was available for all patients which enabled their separation into two groups: with no evidence of disease (NED, n = 41) and with progressive disease (PD, n = 36). After on-tissue trypsin digestion, peptide maps of all cancer regions were segmented using an unsupervised approach to reveal their intrinsic heterogeneity. We found that intra-tumor similarity of spectra was higher in the PD group and diversity of clusters identified during image segmentation was higher in the NED group, which indicated a higher level of ITH in patients with more favorable outcomes. Signature of molecular components that correlated with long-term outcomes could be associated with proteins involved in the immune functions. Furthermore, a positive correlation between ITH and histopathological lymphocytic host response was observed. Hence, we proposed that a higher level of ITH revealed by MSI in cancers with a better prognosis could reflect the presence of heterotypic components of tumor microenvironment such as infiltrating immune cells enhancing the response to the treatment.
Collapse
|
5
|
Kim S, Lee JW, Park YS. The Application of Next-Generation Sequencing to Define Factors Related to Oral Cancer and Discover Novel Biomarkers. Life (Basel) 2020; 10:E228. [PMID: 33023080 PMCID: PMC7599837 DOI: 10.3390/life10100228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of next-generation sequencing in the realm of DNA sequencing technology, it is not often used in the investigation of oral squamous cell carcinoma (OSCC). Oral cancer is one of the most frequently occurring malignancies in some parts of the world and has a high mortality rate. Patients with this malignancy are likely to have a poor prognosis and may suffer from severe facial deformity or mastication problems even after successful treatment. Therefore, a thorough understanding of this malignancy is essential to prevent and treat it. This review sought to highlight the contributions of next-generation sequencing (NGS) in unveiling the genetic alterations and differential expressions of miRNAs involved in OSCC progression. By applying an appropriate eligibility criterion, we selected relevant studies for review. Frequently identified mutations in genes such as TP53, NOTCH1, and PIK3CA are discussed. The findings of existing miRNAs (e.g., miR-21) as well as novel discoveries pertaining to OSCC are also covered. Lastly, we briefly mention the latest findings in targeted gene therapy and the potential use of miRNAs as biomarkers. Our goal is to encourage researchers to further adopt NGS in their studies and give an overview of the latest findings of OSCC treatment.
Collapse
Affiliation(s)
| | | | - Young-Seok Park
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03968, Korea; (S.K.); (J.W.L.)
| |
Collapse
|
6
|
PET/MRI and genetic intrapatient heterogeneity in head and neck cancers. Strahlenther Onkol 2020; 196:542-551. [PMID: 32211941 DOI: 10.1007/s00066-020-01606-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE The relation between functional imaging and intrapatient genetic heterogeneity remains poorly understood. The aim of our study was to investigate spatial sampling and functional imaging by FDG-PET/MRI to describe intrapatient tumour heterogeneity. METHODS Six patients with oropharyngeal cancer were included in this pilot study. Two tumour samples per patient were taken and sequenced by next-generation sequencing covering 327 genes relevant in head and neck cancer. Corresponding regions were delineated on pretherapeutic FDG-PET/MRI images to extract apparent diffusion coefficients and standardized uptake values. RESULTS Samples were collected within the primary tumour (n = 3), within the primary tumour and the involved lymph node (n = 2) as well as within two independent primary tumours (n = 1). Genetic heterogeneity of the primary tumours was limited and most driver gene mutations were found ubiquitously. Slightly increasing heterogeneity was found between primary tumours and lymph node metastases. One private predicted driver mutation within a primary tumour and one in a lymph node were found. However, the two independent primary tumours did not show any shared mutations in spite of a clinically suspected field cancerosis. No conclusive correlation between genetic heterogeneity and heterogeneity of PET/MRI-derived parameters was observed. CONCLUSION Our limited data suggest that single sampling might be sufficient in some patients with oropharyngeal cancer. However, few driver mutations might be missed and, if feasible, spatial sampling should be considered. In two independent primary tumours, both lesions should be sequenced. Our data with a limited number of patients do not support the concept that multiparametric PET/MRI features are useful to guide biopsies for genetic tumour characterization.
Collapse
|
7
|
Prognostic impact of intra-field heterogeneity in oral squamous cell carcinoma. Virchows Arch 2019; 476:585-595. [PMID: 31468114 DOI: 10.1007/s00428-019-02656-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 01/02/2023]
Abstract
Genetic heterogeneity displayed by tumour cells (intratumoural heterogeneity, ITH) represents a diagnostic challenge when assessing tumour mutational profile. In oral squamous cell carcinoma (OSCC), ITH may be found both in tumour cells and in adjacent mucosa. Genetic heterogeneity of the adjacent mucosa can be interpreted as evidence of the field cancerization (field heterogeneity, FH). The aim of the study was to investigate the impact of intratumoural and intrafield heterogeneity on locoregional control. Ten OSCC patients (5 recurrent and 5 nonrecurrent) were studied. Multiple areas were sampled from the bulk of the tumour and the adjacent nonneoplastic mucosa. A panel of 10 tumour-specific OSCC driver genes was analysed for each sample and was used to calculate heterogeneity. Values were compared among recurrent and nonrecurrent OSCC. Mutational analysis highlighted that a single tumour sample has limited accuracy in assessing the genetic profiles of tumours. High values of ITH considering shared mutations between specimens were found in both recurrent and non-recurrent OSCC (p = 0.095). On the contrary, the intrafield genetic heterogeneity was significantly less frequently in the non-recurrent OSCC group (p = 0.032). Heterogeneity within each specimen calculated with variant allele frequency confirmed that there was better discrimination between recurrent and nonrecurrent groups using nonneoplastic adjacent mucosa than tumour tissue (p value 0.0006 and 0.0048 respectively). In agreement with the theory of field cancerization, intrafield genetic heterogeneity correlates with a higher risk of developing loco-regional recurrences and second primaries. In order to reduce the ITH effects, analysis of multiple tumour areas should be encouraged.
Collapse
|
8
|
de Roest RH, Mes SW, Poell JB, Brink A, van de Wiel MA, Bloemena E, Thai E, Poli T, Leemans CR, Brakenhoff RH. Molecular Characterization of Locally Relapsed Head and Neck Cancer after Concomitant Chemoradiotherapy. Clin Cancer Res 2019; 25:7256-7265. [DOI: 10.1158/1078-0432.ccr-19-0628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/23/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
|
9
|
Tabatabaeifar S, Larsen MJ, Thomassen M, Larsen SR, Kruse TA, Sørensen JA. The Optimal Sequencing Depth of Tumor Biopsies for Identifying Clonal Cell Populations. J Mol Diagn 2019; 21:790-795. [PMID: 31158525 DOI: 10.1016/j.jmoldx.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
Abstract
The tumor content of a biopsy and the average depth of coverage are two essential aspects when performing DNA sequencing using next-generation sequencing technologies. The heterogeneous nature of cancer necessitates the identification of distinct clonal cell populations to better understand and treat cancer. Deep sequencing enables researchers to identify these populations, but no consensus on an optimal depth exists for identifying clonal populations. Data from eight deep-sequenced oral squamous cell carcinoma biopsies obtained from three stage IV patients, with various degrees of tumor content, were used to randomly down sample the depth before being subjected to cluster analysis. An increase in coverage resulted in an increase in resolution for clusters of mutations, enabling the identification of distinct clonal cell populations and clonal events. From a depth of 800×, limited gain in resolution can be achieved; and from a depth of 1200×, the resolution stabilizes. Overall, researchers should aim for an average depth of 1000× to 1200× when performing deep sequencing. The tumor content will, however, dictate the resolution and fidelity of the analysis, as an increase in tumor complexity increases the need for higher tumor content.
Collapse
Affiliation(s)
- Siavosh Tabatabaeifar
- Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Martin J Larsen
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Stine R Larsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Torben A Kruse
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jens A Sørensen
- Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Gabusi A, Gissi DB, Tarsitano A, Asioli S, Marchetti C, Montebugnoli L, Foschini MP, Morandi L. Intratumoral Heterogeneity in Recurrent Metastatic Squamous Cell Carcinoma of the Oral Cavity: New Perspectives Afforded by Multiregion DNA Sequencing and mtDNA Analysis. J Oral Maxillofac Surg 2019; 77:440-455. [PMID: 30321517 DOI: 10.1016/j.joms.2018.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
|
11
|
Zammit AP, Sinha R, Cooper CL, Perry CFL, Frazer IH, Tuong ZK. Examining the contribution of smoking and HPV towards the etiology of oral cavity squamous cell carcinoma using high-throughput sequencing: A prospective observational study. PLoS One 2018; 13:e0205406. [PMID: 30308005 PMCID: PMC6181346 DOI: 10.1371/journal.pone.0205406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Oral cavity Squamous Cell Carcinoma (OCSCC) is a common form of head and neck cancer throughout the developed and developing world. However, the etiology of OCSCC is still unclear. Here, we explored the extent to which tobacco use, Human Papillomavirus (HPV) infection and genetic and transcriptomic changes contributed to the oncogenesis of OCSCC. In a prospective observational study, we analysed fresh tissue biopsies from 45 OCSCC collected from 51 subjects presenting with OCSCC to the Brisbane Head and Neck Clinics between 2013 and 2015. Exploration of the genetic and transcriptomic landscape of the biopsies were performed using RNA sequencing (RNA-seq) and whole exome sequencing. HPV associated tumours were determined using p16 staining of histological sections and RNA sequencing. Patient demographics including tumor location within the oral cavity, and history of tobacco and alcohol use were correlated with genomic and transcriptomics analyses. About 4.5% of OCSCC were HPV associated. The most frequent mutations in the OCSCC samples were in the TP53 and CDKN2A genes, but no association of specific mutations with HPV or tobacco use was observed. Using weighted gene co-expression network analysis to explore the RNA-seq data, tumors from participants with a history of tobacco use showed a significant trend towards increased mammalian target of Rapamycin (mTOR) signaling and decreased mitochondrial respiration. In conclusion, HPV was shown to be an uncommon association with OCSCC and changes in TP53 transcriptional regulation, mTOR signaling and mitochondrial function were associated with a history of tobacco use. Larger data sets will be required to enable detection of differences which may help with development of personalized therapeutics in the future.
Collapse
Affiliation(s)
- Andrew P. Zammit
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Rohit Sinha
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Caroline L. Cooper
- Department of Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Southside Clinical Unit, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | | | - Ian H. Frazer
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
- * E-mail:
| | - Zewen K. Tuong
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
12
|
Zhong L, Liu Y, Wang K, He Z, Gong Z, Zhao Z, Yang Y, Gao X, Li F, Wu H, Zhang S, Chen L. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer 2018; 18:911. [PMID: 30241505 PMCID: PMC6151070 DOI: 10.1186/s12885-018-4806-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Traditional therapeutics have encountered a bottleneck caused by diagnosis delay and subjective and unreliable assessment. Biomarkers can overcome this bottleneck and guide us toward personalized precision medicine for oral squamous cell carcinoma. To achieve this, it is important to efficiently and accurately screen out specific biomarkers from among the huge number of molecules. Progress in omics-based high-throughput technology has laid a solid foundation for biomarker discovery. With credible and systemic biomarker models, more precise and personalized diagnosis and assessment would be achieved and patients would be more likely to be cured and have a higher quality of life. However, this is not straightforward owing to the complexity of molecules involved in tumorigenesis. In this context, there is a need to focus on tumor heterogeneity and homogeneity, which are discussed in detail. In this review, we aim to provide an understanding of biomarker discovery and application for precision medicine of oral squamous cell carcinoma, and have a strong belief that biomarker will pave the road toward future precision medicine.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yutong Liu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Kai Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhili Zhao
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yaocheng Yang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Xiaofei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Fangjie Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Hanjiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| | - Lin Chen
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
13
|
Chen HH, Yu HI, Yang MH, Tarn WY. DDX3 Activates CBC-eIF3-Mediated Translation of uORF-Containing Oncogenic mRNAs to Promote Metastasis in HNSCC. Cancer Res 2018; 78:4512-4523. [PMID: 29921696 DOI: 10.1158/0008-5472.can-18-0282] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
Mutated or dysregulated DDX3 participates in the progression and metastasis of cancer via its multiple roles in regulating gene expression and cellular signaling. Here, we show that the high expression levels of DDX3 in head and neck squamous cell carcinoma (HNSCC) correlate with lymph node metastasis and poor prognosis and demonstrate that DDX3 is essential for the proliferation, invasion, and metastasis of oral squamous cell carcinoma (OSCC) cells. Microarray analyses revealed that DDX3 is required for the expression of a set of pro-metastatic genes, including ATF4-modulated genes in an aggressive OSCC cell line. DDX3 activated translation of ATF4 and a set of its downstream targets, all of which contain upstream open reading frames (uORF). DDX3 promoted translation of these targets, likely by skipping the inhibitory uORF. DDX3 specifically enhanced the association of the cap-binding complex (CBC) with uORF-containing mRNAs and facilitated recruitment of the eukaryotic initiation factor 3 (eIF3). CBC and certain eIF3 subunits contributed to the expression of metastatic-related gene expression. Taken together, our results indicate a role for the novel DDX3-CBC-eIF3 translational complex in promoting metastasis.Significance: The discovery of DDX3-mediated expression of oncogenic uORF-containing genes expands knowledge on translational control mechanisms and provides potential targets for cancer therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4512/F1.large.jpg Cancer Res; 78(16); 4512-23. ©2018 AACR.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
14
|
Barrett TF, Gill CM, Miles BA, Iloreta AMC, Bakst RL, Fowkes M, Brastianos PK, Bederson JB, Shrivastava RK. Brain metastasis from squamous cell carcinoma of the head and neck: a review of the literature in the genomic era. Neurosurg Focus 2018; 44:E11. [DOI: 10.3171/2018.2.focus17761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) affects nearly 500,000 individuals globally each year. With the rise of human papillomavirus (HPV) in the general population, clinicians are seeing a concomitant rise in HPV-related HNSCC. Notably, a hallmark of HPV-related HNSCC is a predilection for unique biological and clinical features, which portend a tendency for hematogenous metastasis to distant locations, such as the brain. Despite the classic belief that HNSCC is restricted to local spread via passive lymphatic drainage, brain metastases (BMs) are a rare complication that occurs in less than 1% of all HNSCC cases. Time between initial diagnosis of HNSCC and BM development can vary considerably. Some patients experience more than a decade of disease-free survival, whereas others present with definitive neurological symptoms that precede primary tumor detection. The authors systematically review the current literature on HNSCC BMs and discuss the current understanding of the effect of HPV status on the risk of developing BMs in the modern genomic era.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary Fowkes
- 4Pathology, Mount Sinai Medical Center, New York, New York; and
| | - Priscilla K. Brastianos
- 5Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
15
|
Silva EMR, Freitas VM, Bautz WG, de Barros LAP, da Gama de Souza LN. Immunohistochemical Study of Laminin-332 γ2 Chain and MMP-9 in High Risk of Malignant Transformation Oral Lesions and OSCC. J Oral Maxillofac Res 2018; 9:e3. [PMID: 29707182 PMCID: PMC5913416 DOI: 10.5037/jomr.2018.9103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/10/2018] [Indexed: 11/16/2022]
Abstract
Objectives Oral squamous cell carcinoma is associated with alterations in basement membrane. Laminin-332 is present in basal lamina and performs multiple biologic effects by γ2 chain. Matrix metalloproteinase acts disrupting extracellular components and was related to poor prognosis in cancer. Here, molecular profile of laminin-332 γ2 chain and matrix metalloproteinase-9 was assessed in oral lesions. Material and Methods The expression of laminin-332 γ2 chain and matrix metalloproteinase-9 (MMP-9) was examined by immunohistochemistry in 10 patients with high risk of malignant transformation oral lesions and 26 cases of oral squamous cell carcinoma (OSCC). Associations between microscopic and clinicopathologic features were established. Results Immunostaining of laminin-332 γ2 chain in high risk oral lesions was most detected in basement membrane which is continuous, while the majority of OSCC cases showed a discontinuous membrane (P = 0.001). It was observed a positive reaction for γ2 chain in invasive fronts and a higher expression in epithelial compartment of smoking patients with OSCC (P < 0.0001). In epithelium, MMP-9 expression was presented in all layers with no difference between lesions. However, an elevated immunostaining in stromal cells was associated with male patients (P = 0.0054), older than 60 years (P = 0.0101) and with OSCC. Conclusions Present study results support the hypothesis of changes in molecules expression in high risk oral lesions and oral squamous cell carcinoma. A relation between clinical and molecule profile was observed. Those molecules may represent a useful tool to predict oral cancer behaviour.
Collapse
Affiliation(s)
| | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São PauloBrazil
| | - Willian Grassi Bautz
- Department of Morphology, Health of Sciences Center, Federal University of Espírito SantoBrazil
| | | | | |
Collapse
|
16
|
Kanatas A, Chengot P, Ong TK, Ho MW, Sethi N, Taylor M, Glover A, Wood HM. Genomic analysis to assess disease progression and recurrence in patients with oral squamous cell carcinoma: - a preliminary study. Br J Oral Maxillofac Surg 2018; 56:198-205. [PMID: 29395453 DOI: 10.1016/j.bjoms.2018.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/09/2018] [Indexed: 12/27/2022]
Abstract
We studied the progression from dysplasia to invasive carcinoma and subsequent second primaries or locoregional recurrences in 11 patients with recurrent squamous cell carcinoma (SCC). Between one and six samples were sequenced/patient. DNA samples were prepared, and libraries multiplexed to between 40 and 80 samples/lane of an Illumina HiSeq 3000 and sequenced with 2×100bp paired end sequencing. Copy number data were generated by CNAnorm (Bioconductor package). Samples of recurrent SCC showed unique patterns of descent when compared with earlier samples from the primary tumour, and three main patterns emerged. In four patients there was convincing evidence that the later lesion was descended directly from cells from the first, and in a further four there were no detectable genomic events between the two lesions. Three patients had some shared events between the early and later lesions, but although there were enough differences to deduce that the two lesions had a shared ancestor, they were not directly descended from each other. We present the patients' characteristics in detail, including the overall survival in each group. There was a distinct genomic pattern after a second episode of SCC in all the groups. A larger study that uses similar methods and a longer duration could provide reliable conclusions with respect to survival. With the use of new techniques, genomic data can be available to clinical teams during the planning of treatment.
Collapse
Affiliation(s)
- A Kanatas
- Leeds Teaching Hospitals and St James Institute of Oncology and Leeds Dental Institute.
| | - P Chengot
- Leeds Teaching Hospitals and St James Institute of Oncology.
| | - T K Ong
- Leeds Teaching Hospitals and St James Institute of Oncology and Leeds Dental Institute.
| | - M W Ho
- Leeds Teaching Hospitals and St James Institute of Oncology and Leeds Dental Institute.
| | | | | | | | - H M Wood
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
17
|
Rai V, Mukherjee R, Ghosh AK, Routray A, Chakraborty C. "Omics" in oral cancer: New approaches for biomarker discovery. Arch Oral Biol 2017; 87:15-34. [PMID: 29247855 DOI: 10.1016/j.archoralbio.2017.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In this review paper, we explored the application of "omics" approaches in the study of oral cancer (OC). It will provide a better understanding of how "omics" approaches may lead to novel biomarker molecules or molecular signatures with potential value in clinical practice. A future direction of "omics"-driven research in OC is also discussed. METHODS Studies on "omics"-based approaches [genomics/proteomics/transcriptomics/metabolomics] were investigated for differentiating oral squamous cell carcinoma,oral sub-mucous fibrosis, oral leukoplakia, oral lichen planus, oral erythroplakia from normal cases. Electronic databases viz., PubMed, Springer, and Google Scholar were searched. RESULTS One eighty-one studies were included in this review. The review shows that the fields of genomics, transcriptomics, proteomics, and metabolomics-based marker identification have implemented advanced tools to screen early changes in DNA, RNA, protein, and metabolite expression in OC population. CONCLUSIONS It may be concluded that despite advances in OC therapy, symptomatic presentation occurs at an advanced stage, where various curative treatment options become very limited. A molecular level study is essential for detecting an OC biomarker at an early stage. Modern "Omics" strategies can potentially make a major contribution to meet this need.
Collapse
Affiliation(s)
- Vertika Rai
- School of Medical Science and Technology, IIT Kharagpur, India
| | | | | | | | | |
Collapse
|
18
|
Niehr F, Eder T, Pilz T, Konschak R, Treue D, Klauschen F, Bockmayr M, Türkmen S, Jöhrens K, Budach V, Tinhofer I. Multilayered Omics-Based Analysis of a Head and Neck Cancer Model of Cisplatin Resistance Reveals Intratumoral Heterogeneity and Treatment-Induced Clonal Selection. Clin Cancer Res 2017; 24:158-168. [PMID: 29061642 DOI: 10.1158/1078-0432.ccr-17-2410] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Platinum-based drugs, in particular cisplatin (cis-diamminedichloridoplatinum(II), CDDP), are used for treatment of squamous cell carcinoma of the head and neck (SCCHN). Despite initial responses, CDDP treatment often results in chemoresistance, leading to therapeutic failure. The role of primary resistance at subclonal level and treatment-induced clonal selection in the development of CDDP resistance remains unknown.Experimental Design: By applying targeted next-generation sequencing, fluorescence in situ hybridization, microarray-based transcriptome, and mass spectrometry-based phosphoproteome analysis to the CDDP-sensitive SCCHN cell line FaDu, a CDDP-resistant subline, and single-cell derived subclones, the molecular basis of CDDP resistance was elucidated. The causal relationship between molecular features and resistant phenotypes was determined by siRNA-based gene silencing. The clinical relevance of molecular findings was validated in patients with SCCHN with recurrence after CDDP-based chemoradiation and the TCGA SCCHN dataset.Results: Evidence of primary resistance at clonal level and clonal selection by long-term CDDP treatment was established in the FaDu model. Resistance was associated with aneuploidy of chromosome 17, increased TP53 copy-numbers and overexpression of the gain-of-function (GOF) mutant variant p53R248L siRNA-mediated knockdown established a causal relationship between mutant p53R248L and CDDP resistance. Resistant clones were also characterized by increased activity of the PI3K-AKT-mTOR pathway. The poor prognostic value of GOF TP53 variants and mTOR pathway upregulation was confirmed in the TCGA SCCHN cohort.Conclusions: Our study demonstrates a link of intratumoral heterogeneity and clonal evolution as important mechanisms of drug resistance in SCCHN and establishes mutant GOF TP53 variants and the PI3K/mTOR pathway as molecular targets for treatment optimization. Clin Cancer Res; 24(1); 158-68. ©2017 AACR.
Collapse
Affiliation(s)
- Franziska Niehr
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Theresa Eder
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Tanja Pilz
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany
| | - Robert Konschak
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Denise Treue
- Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Frederick Klauschen
- German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany.,Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Michael Bockmayr
- Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Seval Türkmen
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Human Genetics, Berlin, Germany
| | - Korinna Jöhrens
- Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Volker Budach
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany
| | - Ingeborg Tinhofer
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| |
Collapse
|
19
|
Investigating a case of possible field cancerization in oral squamous cell carcinoma by the use of next-generation sequencing. Oral Oncol 2017; 68:74-80. [DOI: 10.1016/j.oraloncology.2017.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 11/22/2022]
|