1
|
Otero-Mateo M, Estrany Jr F, Arcas-Márquez S, Moya-Borrego L, Castellano G, Castany M, Alemany R, Fillat C. KPC pancreatic cancer cells are a novel immunocompetent murine model supporting human adenovirus replication and tumor oncolysis. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200928. [PMID: 39877727 PMCID: PMC11773232 DOI: 10.1016/j.omton.2024.200928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Oncolytic adenoviral therapy is a promising approach for pancreatic cancer treatment. However, the limited capacity of murine cells to produce infectious viral progeny precludes the full evaluation of the virotherapy in a suitable immunocompetent mouse model. Here, we report that the murine KPC-I cell line, established from pancreatic tumors developed in LSL-K r as G12D ; LSL-T r p53 R172H ; Pdx-Cre mice, is susceptible to adenoviral replication and generates a progeny of infective virions similar to those from infected human A549 cells. A comparative study with the semipermissive murine CMT64.6 cells reveals that adenoviral infection of KPC-I cells substantially increases the release of infective particles, with a correlating enhanced susceptibility to adenovirus-induced autophagy. Remarkably, systemic delivery of the oncolytic adenovirus AdNuPARE1A in athymic mice bearing KPC-I tumors results in significant inhibition of tumor growth. Moreover, KPC-I tumors in immunocompetent mice with intratumoral administration of AdNuPARE1A or ICOVIR15kDelE3 display significant antitumoral effects, with evidence of adenoviral replication. Collectively, our data show that KPC-I cells are permissive to human oncolytic adenovirus replication, rendering KPC-I syngeneic tumors an interesting model to evaluate the multifaceted antitumor activities of oncolytic adenovirus.
Collapse
Affiliation(s)
- Marc Otero-Mateo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Francesc Estrany Jr
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Programa de Biomedicina. Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sabrina Arcas-Márquez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Laura Moya-Borrego
- Cancer Immunotherapy Group, Oncobell and iProCURE Programs, IDIBELL-Institut Català d’Oncologia, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Giancarlo Castellano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Miquel Castany
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ramon Alemany
- Cancer Immunotherapy Group, Oncobell and iProCURE Programs, IDIBELL-Institut Català d’Oncologia, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
2
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
3
|
An J, Hu X, Liu F. Current understanding of cancer stem cells: Immune evasion and targeted immunotherapy in gastrointestinal malignancies. Front Oncol 2023; 13:1114621. [PMID: 36910604 PMCID: PMC9996315 DOI: 10.3389/fonc.2023.1114621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
As a relatively rare population of cancer cells existing in the tumor microenvironment, cancer stem cells (CSCs) possess properties of immune privilege to evade the attack of immune system, regulated by the microenvironment of CSCs, the so-called CSCs niche. The bidirectional interaction of CSCs with tumor microenvironment (TME) components favors an immunosuppressive shelter for CSCs' survival and maintenance. Gastrointestinal cancer stem cells (GCSCs) are broadly regarded to be intimately involved in tumor initiation, progression, metastasis and recurrence, with elevated tumor resistance to conventional therapies, which pose a major hindrance to the clinical efficacy for treated patients with gastrointestinal malignancies. Thus, a multitude of efforts have been made to combat and eradicate GCSCs within the tumor mass. Among diverse methods of targeting CSCs in gastrointestinal malignancies, immunotherapy represents a promising strategy. And the better understanding of GCSCs immunomodulation and immunoresistance mechanisms is beneficial to guide and design novel GCSCs-specific immunotherapies with enhanced immune response and clinical efficacy. In this review, we have gathered available and updated information to present an overview of the immunoevasion features harbored by cancer stem cells, and we focus on the description of immune escape strategies utilized by CSCs and microenvironmental regulations underlying CSCs immuno-suppression in the context of gastrointestinal malignancies. Importantly, this review offers deep insights into recent advances of CSC-targeting immunotherapeutic approaches in gastrointestinal cancers.
Collapse
Affiliation(s)
- Junyi An
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Hu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
5
|
Raimondi G, Gea-Sorlí S, Otero-Mateo M, Fillat C. Inhibition of miR-222 by Oncolytic Adenovirus-Encoded miRNA Sponges Promotes Viral Oncolysis and Elicits Antitumor Effects in Pancreatic Cancer Models. Cancers (Basel) 2021; 13:3233. [PMID: 34203557 PMCID: PMC8267801 DOI: 10.3390/cancers13133233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Oncolytic adenoviruses (OA) are envisioned as a therapeutic option for patients with cancer, designed to preferentially replicate in cancer cells. However, the high number of genetic alterations in tumors can generate a context in which adenoviruses have difficulties replicating. Abnormal miRNAs expression is a trademark of pancreatic cancer, with several oncogenic miRNAs playing essential roles in cancer-associated pathways. The perturbed miRNome induces reprogramming of gene expression in host cells that can impact the complex interplay between cellular processes and viral replication. We have studied the effects of overexpressed miRNAs on oncolytic adenoviral activity and identified miRNAs modulators of adenoviral oncolysis in pancreatic cancer cells. Inhibition of the highly upregulated miR-222 sensitized cancer cells to oncolysis. To provide a therapeutic application to this insight, we engineered the oncolytic adenovirus AdNuPARmE1A with miR-222 binding sites, working as sponges to withdraw the miRNA from the cellular environment. AdNuPAR-E-miR222-S mediated-decrease of miR-222 expression in pancreatic cancer cells strongly improved the viral yield and enhanced the adenoviral cytotoxic effects. Antitumoral studies confirmed a high activity for AdNuPARmE1A-miR222-S in vivo, controlling tumor progression more effectively than the scrambled control virus in xenografts. We demonstrated that the increased antitumor potency of the novel oncolytic virus resulted from the combinatory effects of miR-222 oncomiR inhibition and the restoration of miR-222 target genes activity enhancing viral fitness.
Collapse
Affiliation(s)
- Giulia Raimondi
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
| | - Sabrina Gea-Sorlí
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Marc Otero-Mateo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
6
|
Mato-Berciano A, Morgado S, Maliandi MV, Farrera-Sal M, Gimenez-Alejandre M, Ginestà MM, Moreno R, Torres-Manjon S, Moreno P, Arias-Badia M, Rojas LA, Capellà G, Alemany R, Cascallo M, Bazan-Peregrino M. Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies: VCN-11. J Control Release 2021; 332:517-528. [PMID: 33675877 DOI: 10.1016/j.jconrel.2021.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022]
Abstract
Tumor targeting and intratumoral virus spreading are key features for successful oncolytic virotherapy. VCN-11 is a novel oncolytic adenovirus, genetically modified to express hyaluronidase (PH20) and display an albumin-binding domain (ABD) on the hexon. ABD allows the virus to self-coat with albumin when entering the bloodstream and evade neutralizing antibodies (NAbs). Here, we validate VCN-11 mechanism of action and characterize its toxicity. VCN-11 replication, hyaluronidase activity and binding to human albumin to evade NAbs was evaluated. Toxicity and efficacy of VCN-11 were assessed in mice and hamsters. Tumor targeting, and antitumor activity was analyzed in the presence of NAbs in several tumor models. VCN-11 induced 450 times more cytotoxicity in tumor cells than in normal cells. VCN-11 hyaluronidase production was confirmed by measuring PH20 activity in vitro and in virus-infected tumor areas in vivo. VCN-11 evaded NAbs from different sources and tumor targeting was demonstrated in the presence of high levels of NAbs in vivo, whereas the control virus without ABD was neutralized. VCN-11 showed a low toxicity profile in athymic nude mice and Syrian hamsters, allowing treatments with high doses and fractionated administrations without major toxicities (up to 1.2x1011vp/mouse and 7.5x1011vp/hamster). Fractionated intravenous administrations improved circulation kinetics and tumor targeting. VCN-11 antitumor efficacy was demonstrated in the presence of NAbs against Ad5 and itself. Oncolytic adenovirus VCN-11 disrupts tumor matrix and displays antitumor effects even in the presence of NAbs. These features make VCN-11 a safe promising candidate to test re-administration in clinical trials.
Collapse
Affiliation(s)
| | - Sara Morgado
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
| | | | - Martí Farrera-Sal
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain; Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | | | - Mireia M Ginestà
- Hereditary Cancer Program, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Hereditary Cancer Program, Catalan Institute of Oncology- ICO, L'Hospitalet de Llobregat, Spain; CIBERONC, Barcelona, Spain
| | - Rafael Moreno
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | - Silvia Torres-Manjon
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | - Paz Moreno
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Luis A Rojas
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | - Gabriel Capellà
- Hereditary Cancer Program, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Hereditary Cancer Program, Catalan Institute of Oncology- ICO, L'Hospitalet de Llobregat, Spain; CIBERONC, Barcelona, Spain
| | - Ramon Alemany
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain; Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | - Manel Cascallo
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
| | | |
Collapse
|
7
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2021; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
8
|
Raimondi G, Mato-Berciano A, Pascual-Sabater S, Rovira-Rigau M, Cuatrecasas M, Fondevila C, Sánchez-Cabús S, Begthel H, Boj SF, Clevers H, Fillat C. Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine 2020; 56:102786. [PMID: 32460166 PMCID: PMC7251378 DOI: 10.1016/j.ebiom.2020.102786] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic patient-derived organoids (PDOs) are a well-established model for studying pancreatic ductal adenocarcinoma (PDAC) carcinogenesis and are potential predictors of clinical responses to chemotherapy. Oncolytic virotherapy is envisioned as a novel treatment modality for pancreatic cancer, and candidate viruses are being tested in clinical trials. Here, we explore the feasibility of using PDOs as a screening platform for the oncolytic adenovirus (OA) response. METHODS Organoids were established from healthy pancreas and PDAC tissues and assessed for infectivity, oncoselectivity, and patient-dependent sensitivity to OA. Antitumour effects were studied in vivo in organoid xenografts. Further evaluation of oncolytic responses was conducted in organoids derived from orthotopic models or metastastic tissues. FINDINGS Oncolytic adenoviruses display good selectivity, with replication only in organoids derived from PDAC tumours. Furthermore, responses of PDOs to a set of OAs reveal individual differences in cytotoxicity as well as in synergism with standard chemotherapy. Adenoviral cytotoxicity in PDOs is predictive of antitumour efficacy in a subcutaneous xenograft setting. Organoids from orthotopic tumours and metastases in nude mice mirror the viral preference of PDOs, indicating that PDO sensitivity to OAs could be informative about responses in both primary tumours and metastatic foci. INTERPRETATION Our data imply that pancreatic PDOs can serve as predictive tools for screening for sensitivity to OA.
Collapse
Affiliation(s)
- Giulia Raimondi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Mato-Berciano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Cuatrecasas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Pathology department. Hospital Clínic, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Constantino Fondevila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Digestive and General Surgery Department, Hospital Clinic, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Santiago Sánchez-Cabús
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Digestive and General Surgery Department, Hospital Clinic, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Harry Begthel
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, the Netherlands
| | - Sylvia F Boj
- Foundation Hubrecht Organoid Technology, Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, the Netherlands; Princess Maxima Center, Utrecht, the Netherlands
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
9
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Brugada-Vilà P, Cascante A, Lázaro MÁ, Castells-Sala C, Fornaguera C, Rovira-Rigau M, Albertazzi L, Borros S, Fillat C. Oligopeptide-modified poly(beta-amino ester)s-coated AdNuPARmE1A: Boosting the efficacy of intravenously administered therapeutic adenoviruses. Theranostics 2020; 10:2744-2758. [PMID: 32194832 PMCID: PMC7052890 DOI: 10.7150/thno.40902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Oncolytic adenoviruses are used as agents for the treatment of cancer. However, their potential is limited due to the high seroprevalence of anti-adenovirus neutralizing antibodies (nAbs) within the population and the rapid liver sequestration when systemically administered. To overcome these challenges, we explored using nanoparticle formulation to boost the efficacy of systemic oncolytic adenovirus administration. Methods: Adenovirus were conjugated with PEGylated oligopeptide-modified poly(β-amino ester)s (OM-pBAEs). The resulting coated viral formulation was characterized in terms of surface charge, size, aggregation state and morphology and tested for anti-adenovirus nAbs evasion and activity in cancer cells. In vivo pharmacokinetics, biodistribution, tumor targeting, and immunogenicity studies were performed. The antitumor efficacy of the oncolytic adenovirus AdNuPARmE1A coated with OM-pBAEs (SAG101) in the presence of nAbs was evaluated in pancreatic ductal adenocarcinoma (PDAC) mouse models. Toxicity of the coated formulation was analyzed in vivo in immunocompetent mice. Results: OM-pBAEs conjugated to adenovirus and generated discrete nanoparticles with a neutral charge and an optimal size. The polymeric coating with the reporter AdGFPLuc (CPEG) showed enhanced transduction and evasion of antibody neutralization in vitro. Moreover, systemic intravenous administration of the formulation showed improved blood circulation and reduced liver sequestration, substantially avoiding activation of nAb production. OM-pBAEs coating of the oncolytic adenovirus AdNuPARmE1A (SAG101) improved its oncolytic activity in vitro and enhanced antitumor efficacy in PDAC mouse models. The coated formulation protected virions from neutralization by nAbs, as antitumor efficacy was preserved in their presence but was completely lost in mice that received the non-formulated AdNuPARmE1A. Finally, coated-AdNuPARmE1A showed reduced toxicity when high doses of the formulation were administered. Conclusions: The developed technology represents a promising improvement for future clinical cancer therapy using oncolytic adenoviruses.
Collapse
|
11
|
Jin J, Zhu Y, Sun F, Chen Z, Chen S, Li Y, Li W, Li M, Cui C, Cui Y, Yin X, Li S, Zhao J, Yan G, Li X, Jin N. Synergistic antitumor effect of the combination of a dual cancer-specific oncolytic adenovirus and cisplatin on lung cancer cells. Oncol Lett 2018; 16:6275-6282. [PMID: 30405762 PMCID: PMC6202551 DOI: 10.3892/ol.2018.9470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022] Open
Abstract
The effect of the combination of a recombinant adenovirus (ATV) expressing a specific apoptin protein and cisplatin on human lung cancer cells (A549 cells) was determined. The inhibitory effects of ATV and cisplatin, ATV alone, or cisplatin alone on the migration and invasion of A549 cells were evaluated in vitro using cell proliferation, wound healing, Transwell migration and Matrigel invasion assays. The tumor inhibition effect on A549 cells in vivo was assessed by observing the tumor growth and survival rate of nude mice with subcutaneous tumor xenografts grown from implanted A549 cells after treatment with ATV, cisplatin, or ATV combined with cisplatin. The proliferation (P<0.01), migration (P<0.01), and invasion (P<0.01) on A549 cells was suppressed significantly by ATV, cisplatin, and ATV and cisplatin, in a dose- and time-dependent manner. The inhibition of tumor growth in transplanted nude mice in the ATV combined with cisplatin group was significantly higher than that displayed in the other groups, and the survival rate of the combined treatment group was significantly higher than that of the group treated with cisplatin alone. The results indicated that the combined application of ATV and cisplatin could reduce toxicity and showed a synergistic effect in reducing tumor growth and increasing survival. Thus, there is a potential research value in treating tumors using the combination of ATV and cisplatin, which provides a foundation for future preclinical studies on this antitumor treatment.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yilong Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Fei Sun
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhifei Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Shuang Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Wenjie Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Min Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Chuanxin Cui
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Yingli Cui
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Xunzhi Yin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Shanzhi Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Jin Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Guo Yan
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiao Li
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China.,Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Ningyi Jin
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China.,Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| |
Collapse
|
12
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
13
|
Molins EAG, Jusko WJ. Assessment of Three-Drug Combination Pharmacodynamic Interactions in Pancreatic Cancer Cells. AAPS JOURNAL 2018; 20:80. [PMID: 29951754 DOI: 10.1208/s12248-018-0235-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
The pharmacodynamic interactions among trifluoperazine (TFP), gemcitabine (GEM), and paclitaxel (PTX) were assessed in pancreatic cancer cells (PANC-1). The phenothiazine TFP was chosen for its potential activity on cancer stem cells, while GEM and PTX cause apoptosis. Effects of each drug alone and in various combinations on cell growth inhibition of PANC-1 cells were studied in vitro to determine the drug-specific parameters and assess the nature of drug interactions. Joint inhibition (JI) and competitive inhibition (CI) equations were applied with a ψ interaction term. TFP fully inhibited growth of cells (Imax = 1) with an IC50 = 9887 nM. Near-maximum inhibition was achieved for GEM (Imax = 0.825) and PTX (Imax= 0.844) with an IC50 = 17.4 nM for GEM and IC50 = 7.08 nM for PTX. Estimates of an interaction term ψ revealed that the combination of TFP-GEM was apparently synergistic; close to additivity, the combination TFP-PTX was antagonistic. The interaction of GEM-PTX was additive, and TFP-GEM-PTX was synergistic but close to additive. The combination of TFP IC60-GEM IC60-PTX IC60 seemed optimal in producing inhibition of PANC-1 cells with an inhibitory effect of 82.1-90.2%. The addition of ψ terms to traditional interaction equations allows assessment of the degree of perturbation of assumed mechanisms.
Collapse
Affiliation(s)
- Emilie A G Molins
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214, USA.,Ciblage Thérapeutique en Oncologie, Faculté de médecine Lyon-sud, Université Lyon 1, 69921, Oullins, France
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214, USA.
| |
Collapse
|
14
|
De Luca R, Blasi L, Alù M, Gristina V, Cicero G. Clinical efficacy of nab-paclitaxel in patients with metastatic pancreatic cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1769-1775. [PMID: 29950811 PMCID: PMC6016012 DOI: 10.2147/dddt.s165851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose Pancreatic carcinoma is the neoplasia with the major mortality, and main standard treatments in this cancer increase survival but do not lead to complete recovery of the patient. The aim of this study was to evaluate the efficacy of Abraxane® (nab-paclitaxel) in Italian patients with metastatic pancreatic cancer (MPC). Patients and methods We conducted a retrospective analysis of 80 patients. Overall survival (OS) was the primary end point for evaluating the efficacy of nab-paclitaxel in combination with gemcitabine treatment, while carbohydrate antigen 19-9 (CA 19-9) reduction, safety, progression-free survival (PFS), overall response rate and reduction in pain were secondary end points. Results The median OS was 8 months, and the median PFS was 5 months. A considerable difference in CA 19-9 before and after treatment was observed. Descriptive and correlation analyses were done to examine the relationship between CA 19-9 response and OS. Linear regression analysis between OS and CA 19-9 response revealed that CA 19-9 is an important predictor of OS, showing a positive correlation. Conclusion Nab-paclitaxel is a well-tolerated and effective treatment for patients affected by MPC. The drug showed an improved tolerability profile, significant pain relief and an increase in survival rate.
Collapse
Affiliation(s)
- Rossella De Luca
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Livio Blasi
- Medical Oncology Unit, ARNAS Hospital Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Massimiliano Alù
- Medical Oncology Unit, ARNAS Hospital Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Cicero
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Chaurasiya S, Chen NG, Warner SG. Oncolytic Virotherapy versus Cancer Stem Cells: A Review of Approaches and Mechanisms. Cancers (Basel) 2018; 10:E124. [PMID: 29671772 PMCID: PMC5923379 DOI: 10.3390/cancers10040124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence suggests that a subset of cells within tumors are resistant to conventional treatment modalities and may be responsible for disease recurrence. These cells are called cancer stem cells (CSC), which share properties with normal stem cells including self-renewal, pluripotency, drug resistance, and the ability to maintain quiescence. While most conventional therapies can efficiently destroy rapidly dividing cancer cells comprising the bulk of a tumor, they often fail to kill the less abundant and quiescent CSCs. Furthermore, killing of only differentiated cells in the tumor may actually allow for enrichment of CSCs and thereby portend a bad prognosis. Therefore, targeting of CSCs is important to achieve long-term success in cancer therapy. Oncolytic viruses represent a completely different class of therapeutics that can kill cancer cells in a variety of ways, which differ from those of conventional therapies. Hence, CSCs that are inherently resistant to conventional therapies may be susceptible to oncolytic virus-mediated killing. Recent studies have shown that oncolytic viruses can efficiently kill CSCs in many types of cancer. Here, we discuss the mechanism through which CSCs can escape conventional therapies and how they may still be susceptible to different classes of oncolytic viruses. Furthermore, we provide a summary of recent studies that have tested oncolytic viruses on CSCs of different origins and discuss possible future directions for this fascinating subset of oncolytic virus research.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
16
|
Personalized Nanomedicine: A Revolution at the Nanoscale. J Pers Med 2017; 7:jpm7040012. [PMID: 29023366 PMCID: PMC5748624 DOI: 10.3390/jpm7040012] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/24/2022] Open
Abstract
Nanomedicine is an interdisciplinary research field that results from the application of nanotechnology to medicine and has the potential to significantly improve some current treatments. Specifically, in the field of personalized medicine, it is expected to have a great impact in the near future due to its multiple advantages, namely its versatility to adapt a drug to a cohort of patients. In the present review, the properties and requirements of pharmaceutical dosage forms at the nanoscale, so-called nanomedicines, are been highlighted. An overview of the main current nanomedicines in pre-clinical and clinical development is presented, detailing the challenges to the personalization of these therapies. Next, the process of development of novel nanomedicines is described, from their design in research labs to their arrival on the market, including considerations for the design of nanomedicines adapted to the requirements of the market to achieve safe, effective, and quality products. Finally, attention is given to the point of view of the pharmaceutical industry, including regulation issues applied to the specific case of personalized medicine. The authors expect this review to be a useful overview of the current state of the art of nanomedicine research and industrial production, and the future opportunities of personalized medicine in the upcoming years. The authors encourage the development and marketing of novel personalized nanomedicines.
Collapse
|
17
|
Giordano G, Pancione M, Olivieri N, Parcesepe P, Velocci M, Di Raimo T, Coppola L, Toffoli G, D’Andrea MR. Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions. World J Gastroenterol 2017; 23:5875-5886. [PMID: 28932079 PMCID: PMC5583572 DOI: 10.3748/wjg.v23.i32.5875] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/03/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PDAC) is an aggressive and chemoresistant disease, representing the fourth cause of cancer related deaths in western countries. Majority of patients have unresectable, locally advanced or metastatic disease at time of diagnosis and the 5-year survival rate in these conditions is extremely low. For more than a decade gemcitabine has been the cornerstone of metastatic PDAC treatment, although survival benefit was very poor. PDAC cells are surrounded by an intense desmoplastic reaction that may create a barrier to the drugs penetration within the tumor. Recently PDAC stroma has been addressed as a potential therapeutic target. Nano albumin bound (Nab)-paclitaxel is an innovative molecule depleting tumor stroma, through interaction between albumin and secreted protein acidic and rich in cysteine. Addition of nab-paclitaxel to gemcitabine has showed activity and efficacy in metastatic PDAC first-line treatment improving survival and overall response rate vs gemcitabine alone in the MPACT phase III study. This combination represents one of the standards of care in advanced PDAC therapy and is suitable to a broader spectrum of patients compared to other schedules. Nab-paclitaxel is under investigation as a backbone of chemotherapy in novel combinations with target agents or immunotherapy in locally advanced or metastatic PDAC. In this article, we provide an updated and critical overview about the role of nab-paclitaxel in PDAC treatment based on the latest advances in preclinical and clinical research. Furthermore, we focus on the use of nab-paclitaxel within the context of metastatic PDAC treatment landscape and we discuss about future implications in the light of current clinical ongoing trials.
Collapse
Affiliation(s)
- Guido Giordano
- Medical Oncology Unit, San Filippo Neri Hospital, 00135 Roma, Italy
- CRO Aviano National Cancer Institute, 33081 Aviano, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Nunzio Olivieri
- Department of Biology, University of Naples, Federico II, Via Mezzocannone, 80134 Napoli, Italy
| | - Pietro Parcesepe
- Department of Pathology and Diagnostics, University of Verona Strada, 37134 Verona, Italy
| | - Marianna Velocci
- Medical Oncology Unit, San Filippo Neri Hospital, 00135 Roma, Italy
| | - Tania Di Raimo
- Medical Oncology Unit, San Filippo Neri Hospital, 00135 Roma, Italy
| | - Luigi Coppola
- Anatomic Pathology Unit, San Filippo Neri, 00135 Roma, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO-National Cancer Institute Via F, 33081 Aviano (Pordenone), Italy
| | | |
Collapse
|