1
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
2
|
Pathogenic Effects and Potential Regulatory Mechanisms of Tea Polyphenols on Obesity. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2579734. [PMID: 31312655 PMCID: PMC6595166 DOI: 10.1155/2019/2579734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 11/29/2022]
Abstract
Overweight and obesity are major threats to human health. Tea polyphenols exert multiple beneficial effects on human health and may play a positive regulatory role in fat assumption. However, how tea polyphenols contribute to the regulation of fat metabolism remains unclear to date. Small RNA expression profile can be regulated by tea polyphenols in adipocytes. Therefore, tea polyphenols may regulate fat metabolism by controlling small RNA-associated biological processes. In this study, we developed a systematic research platform based on mouse models and performed small RNA sequencing to identify the specific role of small RNAs in the regulatory effect of tea polyphenols on fat metabolism. We compared the expression levels of different small RNA subtypes, including piRNAs and miRNAs, and identified a group of differentially expressed small RNAs in the experimental and control groups. Most of these small RNAs participate in lipid metabolism, suggesting that small RNAs play a significant role in tea polyphenol-associated obesity and related pathogenesis. Furthermore, gene ontology and KEGG pathway enrichment indicated that small RNAs influence the regulatory effects of tea polyphenols on obesity, revealing the potential pathogenic mechanisms for such nutritional disease.
Collapse
|
3
|
Kong Q, Quan X, Du J, Tai Y, Liu W, Zhang J, Zhang X, Mu Y, Liu Z. Endo-siRNAs regulate early embryonic development by inhibiting transcription of long terminal repeat sequence in pig†. Biol Reprod 2019; 100:1431-1439. [PMID: 30883641 DOI: 10.1093/biolre/ioz042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 03/16/2019] [Indexed: 11/12/2022] Open
Abstract
Activity of some endogenous retroviruses (ERVs) has been proven to be important for development of early mammalian embryo. However, abnormal activation of ERVs can also cause genetic diseases due to their ability to retrotranspose, so the regulatory mechanism to limit transcription of ERVs needs to be clarified. Endogenous small interfering RNA (endo-siRNA) has been reported to protect cells against transposable elements (TEs). Here, we determined the role of ERVs long terminal repeat sequences (LTRs) derived endo-siRNAs (LTR-siRNAs) on inhibition of the activity of ERVs during early embryonic development in pig. Seven most highly expressed LTR-siRNAs were identified in porcine zygote by high-throughput small RNA sequencing. We verified that the biogenesis of the LTR-siRNAs was DICER-dependent and they were generated from double-stranded RNA (dsRNA) formed by sense and antisense transcripts of LTRs. And, the expression of sense and antisense of LTRs might be due to the loss of DNA methylation at some LTR loci. Furthermore, we showed that the LTR-siRNAs could regulate early embryonic development by repression of LTRs expression at a post-transcriptional level. So, we propose here, during early embryonic development when epigenetic reprogramming occurs, the endo-siRNA pathway acts as a sophisticated balance of regulatory mechanism for ERV activity.
Collapse
Affiliation(s)
- Qingran Kong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Xue Quan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Jiawei Du
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Yurong Tai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Wanxin Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Xiaolei Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| |
Collapse
|
4
|
Endo-siRNAs repress expression of SINE1B during in vitro maturation of porcine oocyte. Theriogenology 2019; 135:19-24. [PMID: 31189122 DOI: 10.1016/j.theriogenology.2019.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
Approximately 40% of mammalian genome is made of transposable elements (TEs), and during specific biological processes, such as gametogenesis, they may be activated by global demethylation, so strict silencing mechanism is indispensable for genomic stability. Here, we performed small RNA-seq on Dicer1 knockdown (KD) oocytes in pig, and observed short interspersed nuclear elements 1B (SINE1B) derived endogenous small interfering RNAs (endo-siRNAs), termed SINE1B-siRNAs, were significantly decreased and their biogenesis was dependent on Dicer1 and transcript of SINE1B. Furthermore, by injection of mimics and inhibitors of the SINE1B-siRNAs into germinal vesicle-stage (GV-stage) oocytes, we found the maturation rate was significantly decreased by SINE1B-siRNAs, indicating the SINE1B-siRNAs are indispensible for in vitro maturation (IVM) of porcine oocyte. To figure out the mechanism, we checked the expression pattern and DNA methylation status of SINE1B during IVM of porcine oocytes, and demonstrated the SINE1B-siRNAs could repress SINE1B expression induced by hypomethylation at a post-transcriptional level. Our results suggest that during gametogenesis when the erasure of DNA methylation occurs, endo-siRNAs act as a chronic response to limit retrotransposon activation.
Collapse
|
5
|
Nimble and Ready to Mingle: Transposon Outbursts of Early Development. Trends Genet 2018; 34:806-820. [DOI: 10.1016/j.tig.2018.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
|
6
|
Nuttinck F. Oocyte related factors impacting on embryo quality: relevance for in vitro embryo production. Anim Reprod 2018; 15:271-277. [PMID: 34178150 PMCID: PMC8202467 DOI: 10.21451/1984-3143-ar2018-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The outcome of pregnancy is closely linked to early events that occur during the onset of embryogenesis.
The first stages in embryonic development are mainly governed by the storage of maternal factors
present in the oocyte at the time of fertilisation. In this review, we outline the different
classes of oocyte transcripts that may be involved in activation of the embryonic genome as
well as those associated with epigenetic reprogramming, imprinting maintenance or the control
of transposon mobilisation during preimplantation development. We also report the influence
of cumulus-oocyte crosstalk during the maturation process on the oocyte transcriptome and
how in vitro procedures can affect these interactions.
Collapse
|
7
|
Tan H, Wu C, Jin L. A Possible Role for Long Interspersed Nuclear Elements-1 (LINE-1) in Huntington's Disease Progression. Med Sci Monit 2018; 24:3644-3652. [PMID: 29851926 PMCID: PMC6007493 DOI: 10.12659/msm.907328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recent studies have shown that increased mobilization of Long Interspersed Nuclear Elements-1 (L1) can promote the pathophysiology of multiple neurological diseases. However, its role in Huntington's disease (HD) remains unknown. MATERIAL AND METHODS R6/2 mice - a common mouse model of HD - were used to evaluate changes in L1 mobilization. Pyrosequencing was used to evaluate methylation content changes. L1-ORF1 and L1-ORF2 expression analysis were evaluated by RT-PCR and immunoblotting. Changes in pro-survival signaling were evaluated by L1-ORF overexpression studies and validated in the mouse model by immunohistochemistry and immunoblotting. RESULTS We found an increased mobilization of L1 elements in the caudate genome of R6/2 mice (p<0.05) - a common mouse model of HD - but not in wild-type mice. Subsequent pyrosequencing and expression analysis showed that the L1 elements were hypomethylated and their respective ORFs were overexpressed in the affected tissues. In addition, a significant decrease in the pro-survival proteins such as the phosphoproteins of AKT target proteins, mTORC1 activity, and AMPK alpha levels was observed with the increase in the expression L1-ORF2. CONCLUSIONS These findings indicate that hyperactive retrotransposition of L1 triggers a downstream signaling pathway affecting the neuronal survival pathways via downregulation of mTORC1 activity and AMPKalpha and increasing apoptosis in neurons.
Collapse
Affiliation(s)
- Huiping Tan
- Reproductive Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chunlin Wu
- Reproductive Medicine Center, Wuhan No. 1 Hospital, Wuhan, Hubei, P.R. China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
8
|
Cosacak MI, Yiğit H, Kizil C, Akgül B. Re-Arrangements in the Cytoplasmic Distribution of Small RNAs Following the Maternal-to-Zygotic Transition in Drosophila Embryos. Genes (Basel) 2018; 9:genes9020082. [PMID: 29439397 PMCID: PMC5852578 DOI: 10.3390/genes9020082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/13/2023] Open
Abstract
Small ribonucleic acids (RNAs) are known to regulate gene expression during early development. However, the dynamics of interaction between small RNAs and polysomes during this process is largely unknown. To investigate this phenomenon, 0–1 h and 7–8 h Drosophila melanogaster embryos were fractionated on sucrose density gradients into four fractions based on A254 reading (1) translationally inactive messenger ribonucleoprotein (mRNP), (2) 60S, (3) monosome, and (4) polysome. Comparative analysis of deep-sequencing reads from fractionated and un-fractionated 0–1 h and 7–8 h embryos revealed development-specific co-sedimentation pattern of small RNAs with the cellular translation machinery. Although most micro RNAs (miRNAs) did not have a specific preference for any state of the translational machinery, we detected fraction-specific enrichment of a few miRNAs such as dme-miR-1-3p, -184-3p, 5-5p and 263-5p. More interestingly, we observed changes in the subcellular location of a subset of miRNAs in fractionated embryos despite no measurable difference in their amount in unfractionated embryos. Transposon-derived endo small interfering RNAs (siRNAs) were over-expressed in 7–8 h embryos and associated mainly with the mRNP fraction. In contrast, transposon-derived PIWI-interacting RNAs (piRNA), which were more abundant in 0–1 h embryos, co-sedimented primarily with the polysome fractions. These results suggest that there appears to be a complex interplay among the small RNAs with respect to their polysome-cosedimentation pattern during early development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Mehmet Ilyas Cosacak
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstr. 18, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany.
| | - Hatice Yiğit
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstr. 18, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany.
| | - Bünyamin Akgül
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
| |
Collapse
|