1
|
Xu L, Fan YH, Zhang XJ, Bai L. Unraveling the relationship between histone methylation and nonalcoholic fatty liver disease. World J Hepatol 2024; 16:703-715. [PMID: 38818286 PMCID: PMC11135277 DOI: 10.4254/wjh.v16.i5.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 05/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits. Its complexity stems from genetic predisposition, environmental influences, and metabolic factors. Epigenetic processes govern various cellular functions such as transcription, chromatin structure, and cell division. In NAFLD, these epigenetic tendencies, especially the process of histone methylation, are intricately intertwined with fat accumulation in the liver. Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis. While early-stage NAFLD is reversible, its progression to severe stages becomes almost irreversible. Therefore, early detection and intervention in NAFLD are crucial, and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Yu-Hong Fan
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430060, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Rajan PK, Udoh UAS, Nakafuku Y, Pierre SV, Sanabria J. Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma. Cells 2023; 12:2367. [PMID: 37830582 PMCID: PMC10572209 DOI: 10.3390/cells12192367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome. We have recently reported that the normalization of this pathway exhibited tumor suppressor activity in MASH-HCC. We hypothesized that dysregulated signaling from the ATP1A1, mediated by cellular metabolic stress, promotes aberrant epigenetic modifications including abnormal post-translational histone modifications and dysfunctional autophagic activity, leading to HCC development and progression. Increased H3K9 acetylation (H3K9ac) and H3K9 tri-methylation (H3K9me3) were observed in human HCC cell lines, HCC-xenograft and MASH-HCC mouse models, and epigenetic changes were associated with decreased cell autophagy in HCC cell lines. Inhibition of the pro-autophagic transcription factor FoxO1 was associated with elevated protein carbonylation and decreased levels of reduced glutathione (GSH). In contrast, normalization of the ATP1A1 signaling significantly decreased H3K9ac and H3K9me3, in vitro and in vivo, with concomitant nuclear localization of FoxO1, heightening cell autophagy and cancer-cell apoptotic activities in treated HCC cell lines. Our results showed the critical role of the ATP1A1 signalosome in HCC development and progression through epigenetic modifications and impaired cell autophagy activity, highlighting the importance of the ATP1A1 pathway as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Utibe-Abasi S. Udoh
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Yuto Nakafuku
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Sandrine V. Pierre
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Juan Sanabria
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44100, USA
| |
Collapse
|
3
|
Ye J, Wu J, Liu B. Therapeutic strategies of dual-target small molecules to overcome drug resistance in cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188866. [PMID: 36842765 DOI: 10.1016/j.bbcan.2023.188866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/28/2023]
Abstract
Despite some advances in targeted therapeutics of human cancers, curative cancer treatment still remains a tremendous challenge due to the occurrence of drug resistance. A variety of underlying resistance mechanisms to targeted cancer drugs have recently revealed that the dual-target therapeutic strategy would be an attractive avenue. Compared to drug combination strategies, one agent simultaneously modulating two druggable targets generally shows fewer adverse reactions and lower toxicity. As a consequence, the dual-target small molecule has been extensively explored to overcome drug resistance in cancer therapy. Thus, in this review, we focus on summarizing drug resistance mechanisms of cancer cells, such as enhanced drug efflux, deregulated cell death, DNA damage repair, and epigenetic alterations. Based upon the resistance mechanisms, we further discuss the current therapeutic strategies of dual-target small molecules to overcome drug resistance, which will shed new light on exploiting more intricate mechanisms and relevant dual-target drugs for future cancer therapeutics.
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhao Wu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Fu J, Yu M, Xu W, Yu S. High Expression of G9a Induces Cisplatin Resistance in Hepatocellular Carcinoma. CELL JOURNAL 2023; 25:118-125. [PMID: 36840458 PMCID: PMC9968374 DOI: 10.22074/cellj.2022.557564.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 02/26/2023]
Abstract
OBJECTIVE Chemotherapeutic drug resistance is the main obstacle that affects the efficacy of current therapies of hepatocellular carcinoma (HCC), which needs to be addressed urgently. High expression of histone methyltransferase G9a was reported to play a pivotal role in the progression of HCC. Regulatory mechanism of aberrant activation of G9a in HCC and the association with subsequent cisplatin (DDP) resistance still remains ambiguous. This study strived to investigate mechanism of G9a overexpression and its impact on cisplatin resistance in HCC cells. MATERIALS AND METHODS In this experimental study, we investigated effects of different concentrations of cisplatin in combination with BIX-01294 or PR-619 on viability and apoptosis of HuH7 and SNU387 cells via CCK-8 kit and flow cytometric analysis, respectively. Colony formation capacity was applied to evaluate effect of cisplatin with or without BIX-01294 on cell proliferation, and western blotting was used to verify expression level of the related proteins. Global mRNA expression profile analysis was adopted to identify differentially expressed genes associated with overexpression of G9a. RESULTS We observed that overexpression of G9a admittedly promoted cisplatin resistance in HCC cells. Global mRNA expression profile analysis after G9a inhibition showed that DNA repair and cell cycle progression were downregulated. Moreover, we identified that deubiquitination enzymes (DUBs) stabilized high expression of G9a in HCC through deubiquitination. Additionally, cisplatin could significantly inhibit proliferation of DUBs-deficient HCC cells, while promoting their apoptosis. CONCLUSION Collectively, our data indicated that DUBs stabilize G9a through deubiquitination, thereby participating in the cisplatin resistance of HCC cells. The elucidation of this mechanism contributes to propose a potential alternative intervention strategy for the treatment of HCC patients harboring high G9a levels.
Collapse
Affiliation(s)
- Junhao Fu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua,
Zhejiang Province, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Shian Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua,
Zhejiang Province, China,Department of Hepatobiliary and Pancreatic SurgeryAffiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiang ProvinceChina
| |
Collapse
|
5
|
Histone methylation in pre-cancerous liver diseases and hepatocellular carcinoma: recent overview. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1594-1605. [PMID: 36650321 DOI: 10.1007/s12094-023-03078-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the prevalent form of liver cancer in adults and the fourth most common cause of cancer-related death worldwide. HCC predominantly arises in the context of cirrhosis as a result of chronic liver disease, injury and inflammation. Full-blown HCC has poor prognosis because it is highly aggressive and resistant to therapy. Consequently, interventions that can prevent or restrain HCC emergence from pre-cancerous diseased liver are a desirable strategy. Histone methylation is a dynamic, reversible epigenetic modification involving the addition or removal of methyl groups from lysine, arginine or glutamine residues. Aberrant activity of histone methylation writers, erases and readers has been implicated in several cancer types, including HCC. In this review, we provide an overview of research on the role of histone methylation in pre-cancerous and cancerous HCC published over the last 5 years. In particular, we present the evidence linking environmental factors such as diet, viral infections and carcinogenic agents with dysregulation of histone methylation during liver cancer progression with the aim to highlight future therapeutic possibilities.
Collapse
|
6
|
Shi Y, Chen Y, Chen L, Sun J, Chen G. A mild protocol for the synthesis of N-methyltransferase G9a inhibitor BIX-01294. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Selective histone methyltransferase G9a inhibition reduces metastatic development of Ewing sarcoma through the epigenetic regulation of NEU1. Oncogene 2022; 41:2638-2650. [PMID: 35354905 PMCID: PMC9054661 DOI: 10.1038/s41388-022-02279-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Ewing sarcoma (EWS) is an aggressive bone and soft tissue tumor with high susceptibility to metastasize. The underlying molecular mechanisms leading to EWS metastases remain poorly understood. Epigenetic changes have been implicated in EWS tumor growth and progression. Linking epigenetics and metastases may provide insight into novel molecular targets in EWS and improve its treatment. Here, we evaluated the effects of a selective G9a histone methyltransferase inhibitor (BIX01294) on EWS metastatic process. Our results showed that overexpression of G9a in tumors from EWS patients correlates with poor prognosis. Moreover, we observe a significantly higher expression of G9a in metastatic EWS tumor as compared to either primary or recurrent tumor. Using functional assays, we demonstrate that pharmacological G9a inhibition using BIX01294 disrupts several metastatic steps in vitro, such as migration, invasion, adhesion, colony formation and vasculogenic mimicry. Moreover, BIX01294 reduces tumor growth and metastases in two spontaneous metastases mouse models. We further identified the sialidase NEU1 as a direct target and effector of G9a in the metastatic process in EWS. NEU1 overexpression impairs migration, invasion and clonogenic capacity of EWS cell lines. Overall, G9a inhibition impairs metastases in vitro and in vivo through the overexpression of NEU1. G9a has strong potential as a prognostic marker and may be a promising therapeutic target for EWS patients.
Collapse
|
8
|
Madrazo E, González-Novo R, Ortiz-Placín C, García de Lacoba M, González-Murillo Á, Ramírez M, Redondo-Muñoz J. Fast H3K9 methylation promoted by CXCL12 contributes to nuclear changes and invasiveness of T-acute lymphoblastic leukemia cells. Oncogene 2022; 41:1324-1336. [PMID: 34999734 DOI: 10.1038/s41388-021-02168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
T-acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that comprises the accumulation of malignant T-cells. Despite current therapies, failure to conventional treatments and relapse are frequent in children with T-ALL. It is known that the chemokine CXCL12 modulates leukemia survival and dissemination; however, our understanding of molecular mechanisms used by T-ALL cells to infiltrate and respond to leukemia cells-microenvironment interactions is still vague. In the present study, we showed that CXCL12 promoted H3K9 methylation in cell lines and primary T-ALL cells within minutes. We thus identified that CXCL12-mediated H3K9 methylation affected the global chromatin configuration and the nuclear mechanics of T-ALL cells. Importantly, we characterized changes in the genomic profile of T-ALL cells associated with rapid CXCL12 stimulation. We showed that blocking CXCR4 and protein kinase C (PKC) impaired the H3K9 methylation induced by CXCL12 in T-ALL cells. Finally, blocking H3K9 methyltransferases reduced the efficiency of T-ALL cells to deform their nuclei, migrate across confined spaces, and home to spleen and bone marrow in vivo models. Together, our data show novel functions for CXL12 as a master regulator of nuclear deformability and epigenetic changes in T-ALL cells, and its potential as a promising pharmacological target against T-ALL dissemination.
Collapse
Affiliation(s)
- Elena Madrazo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Cándido Ortiz-Placín
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Mario García de Lacoba
- Bioinformatics and Biostatistics Unit, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - África González-Murillo
- Department of Paediatric Haematology & Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
- Health Research Institute La Princesa, Madrid, Spain
| | - Manuel Ramírez
- Department of Paediatric Haematology & Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
- Health Research Institute La Princesa, Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
9
|
Nachiyappan A, Gupta N, Taneja R. EHMT1/EHMT2 in EMT, Cancer Stemness and Drug Resistance: Emerging Evidence and Mechanisms. FEBS J 2021; 289:1329-1351. [PMID: 34954891 DOI: 10.1111/febs.16334] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/25/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Metastasis, therapy failure and tumor recurrence are major clinical challenges in cancer. The interplay between tumor initiating cells (TICs) and Epithelial-Mesenchymal transition (EMT) drives tumor progression and spread. Recent advances have highlighted the involvement of epigenetic deregulation in these processes. The Euchromatin Histone Lysine Methyltransferase 1 (EHMT1) and Euchromatin Histone Lysine Methyltransferase 2 (EHMT2) that primarily mediate histone 3 lysine 9 di-methylation (H3K9me2), as well as methylation of non-histone proteins, are now recognized to be aberrantly expressed in many cancers. Their deregulated expression is associated with EMT, cellular plasticity and therapy resistance. In this review, we summarize evidence of their myriad roles in cancer metastasis, stemness and drug resistance. We discuss cancer-type specific molecular targets, context-dependent mechanisms and future directions of research in targeting EHMT1/EHMT2 for the treatment of cancer.
Collapse
Affiliation(s)
- Alamelu Nachiyappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| | - Neelima Gupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| |
Collapse
|
10
|
Poulard C, Noureddine LM, Pruvost L, Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life (Basel) 2021; 11:life11101082. [PMID: 34685453 PMCID: PMC8541646 DOI: 10.3390/life11101082] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
G9a is a lysine methyltransferase catalyzing the majority of histone H3 mono- and dimethylation at Lys-9 (H3K9), responsible for transcriptional repression events in euchromatin. G9a has been shown to methylate various lysine residues of non-histone proteins and acts as a coactivator for several transcription factors. This review will provide an overview of the structural features of G9a and its paralog called G9a-like protein (GLP), explore the biochemical features of G9a, and describe its post-translational modifications and the specific inhibitors available to target its catalytic activity. Aside from its role on histone substrates, the review will highlight some non-histone targets of G9a, in order gain insight into their role in specific cellular mechanisms. Indeed, G9a was largely described to be involved in embryonic development, hypoxia, and DNA repair. Finally, the involvement of G9a in cancer biology will be presented.
Collapse
Affiliation(s)
- Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence:
| | - Lara M. Noureddine
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90565, Lebanon
| | - Ludivine Pruvost
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
11
|
Histone Methyltransferase G9a-Promoted Progression of Hepatocellular Carcinoma Is Targeted by Liver-Specific Hsa-miR-122. Cancers (Basel) 2021; 13:cancers13102376. [PMID: 34069116 PMCID: PMC8157135 DOI: 10.3390/cancers13102376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Targeting epigenetic alterations in hepatocellular carcinoma (HCC) provides therapeutic options in addition to traditional treatments. The aim of our study was to evaluate the potential of targeting histone methyltransferase G9a in the development of a therapeutic target. We confirmed the prognostic values of mRNA and protein levels of G9a expression in HCC respectively from public database and tissue microarray. We also confirmed the aggressive phenotypes supported by G9a in both HBV+ and HBV− HCC cells. The identification of a regulation axis between liver-specific tumor suppressor miR-122 and G9a further supported the important roles of G9a during the tumorigenesis and progression of HCC. Combination of lower miR-122 and higher G9a levels may provide prognostic potential for poor clinical outcomes and therapeutic potential for epigenetic targeting therapies. Abstract Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers, which is the second most lethal tumor worldwide. Epigenetic deregulation is a common trait observed in HCC. Recently, increasing evidence suggested that the G9a histone methyltransferase might be a novel regulator of HCC development. However, several HCC cell lines were recently noted to have HeLa cell contamination or to have been derived from non-hepatocellular origin, suggesting that functional validation of G9a in proper HCC models is still required. Herein, we first confirmed that higher G9a messenger RNA and protein expression levels were correlated with poor overall survival (OS) and disease-free survival (DFS) rates of HCC patients from The Cancer Genome Atlas (TCGA) dataset and our recruited HCC cohort. In an in vitro functional evaluation of HCC cells, HCC36 (hepatitis B virus-positive (HBV+) and Mahlavu (HBV−)) cells showed that G9a participated in promoting cell proliferation, colony formation, and migration/invasion abilities. Moreover, orthotopic inoculation of G9a-depleted Mahlavu cells in NOD-SCID mice also resulted in a significantly decreased tumor burden compared to the control group. Furthermore, after surveying microRNA (miRNA; miR) prediction databases, we identified the liver-specific miR-122 as a G9a-targeting miRNA. In various HCC cell lines, we observed that miR-122 expression levels tended to be inversely correlated to G9a expression levels. In clinical HCC specimens, a significant inverse correlation of miR-122 and G9a mRNA expression levels was also observed. Functionally, the colony formation and invasive ability were attenuated in miR-122-overexpressing HCC cells. HCC patients with low miR-122 and high G9a expression levels had the worst OS and DFS rates compared to others. Together, our results confirmed the importance of altered G9a expression during HCC progression and discovered that a novel liver-specific miR-122-G9a regulatory axis exists.
Collapse
|
12
|
Nakatsuka T, Tateishi K, Kato H, Fujiwara H, Yamamoto K, Kudo Y, Nakagawa H, Tanaka Y, Ijichi H, Ikenoue T, Ishizawa T, Hasegawa K, Tachibana M, Shinkai Y, Koike K. Inhibition of histone methyltransferase G9a attenuates liver cancer initiation by sensitizing DNA-damaged hepatocytes to p53-induced apoptosis. Cell Death Dis 2021; 12:99. [PMID: 33468997 PMCID: PMC7815717 DOI: 10.1038/s41419-020-03381-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
While the significance of acquired genetic abnormalities in the initiation of hepatocellular carcinoma (HCC) has been established, the role of epigenetic modification remains unknown. Here we identified the pivotal role of histone methyltransferase G9a in the DNA damage-triggered initiation of HCC. Using liver-specific G9a-deficient (G9aΔHep) mice, we revealed that loss of G9a significantly attenuated liver tumor initiation caused by diethylnitrosamine (DEN). In addition, pharmacological inhibition of G9a attenuated the DEN-induced initiation of HCC. After treatment with DEN, while the induction of γH2AX and p53 were comparable in the G9aΔHep and wild-type livers, more apoptotic hepatocytes were detected in the G9aΔHep liver. Transcriptome analysis identified Bcl-G, a pro-apoptotic Bcl-2 family member, to be markedly upregulated in the G9aΔHep liver. In human cultured hepatoma cells, a G9a inhibitor, UNC0638, upregulated BCL-G expression and enhanced the apoptotic response after treatment with hydrogen peroxide or irradiation, suggesting an essential role of the G9a-Bcl-G axis in DNA damage response in hepatocytes. The proposed mechanism was that DNA damage stimuli recruited G9a to the p53-responsive element of the Bcl-G gene, resulting in the impaired enrichment of p53 to the region and the attenuation of Bcl-G expression. G9a deletion allowed the recruitment of p53 and upregulated Bcl-G expression. These results demonstrate that G9a allows DNA-damaged hepatocytes to escape p53-induced apoptosis by silencing Bcl-G, which may contribute to the tumor initiation. Therefore, G9a inhibition can be a novel preventive strategy for HCC.
Collapse
Affiliation(s)
- Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, 2-2-6 Bakurocho, Chuo-ku, Tokyo, 103-0002, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takeaki Ishizawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
13
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
14
|
Hwang S, Kim S, Kim K, Yeom J, Park S, Kim I. Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein. BMB Rep 2020. [PMID: 32684241 PMCID: PMC7704221 DOI: 10.5483/bmbrep.2020.53.11.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been impli-cated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.
Collapse
Affiliation(s)
- Supyong Hwang
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Korea
| | - Soyoung Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Korea
| | - Kyungkon Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Korea
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jeonghun Yeom
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Korea
| | - Sojung Park
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Korea
| | - Inki Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Korea
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
15
|
Ma W, Han C, Zhang J, Song K, Chen W, Kwon H, Wu T. The Histone Methyltransferase G9a Promotes Cholangiocarcinogenesis Through Regulation of the Hippo Pathway Kinase LATS2 and YAP Signaling Pathway. Hepatology 2020; 72:1283-1297. [PMID: 31990985 PMCID: PMC7384937 DOI: 10.1002/hep.31141] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly malignant epithelial tumor of the biliary tree with poor prognosis. In the current study, we present evidence that the histone-lysine methyltransferase G9a is up-regulated in human CCA and that G9a enhances CCA cell growth and invasiveness through regulation of the Hippo pathway kinase large tumor suppressor 2 (LATS2) and yes-associated protein (YAP) signaling pathway. APPROACH AND RESULTS Kaplan-Meier survival analysis revealed that high G9a expression is associated with poor prognosis of CCA patients. In experimental systems, depletion of G9a by small interfering RNA/short hairpin RNA or inhibition of G9a by specific pharmacological inhibitors (UNC0642 and UNC0631) significantly inhibited human CCA cell growth in vitro and in severe combined immunodeficient mice. Increased G9a expression was also observed in mouse CCA induced by hydrodynamic tail vein injection of notch intracellular domain (NICD) and myr-Akt. Administration of the G9a inhibitor UNC0642 to NICD/Akt-injected mice reduced the growth of CCA, in vivo. These findings suggest that G9a inhibition may represent an effective therapeutic strategy for the treatment of CCA. Mechanistically, our data show that G9a-derived dimethylated H3K9 (H3K9me2) silenced the expression of the Hippo pathway kinase LATS2, and this effect led to subsequent activation of oncogenic YAP. Consequently, G9a depletion or inhibition reduced the level of H3K9me2 and restored the expression of LATS2 leading to YAP inhibition. CONCLUSIONS Our findings provide evidence for an important role of G9a in cholangiocarcinogenesis through regulation of LATS2-YAP signaling and suggest that this pathway may represent a potential therapeutic target for CCA treatment.
Collapse
|
16
|
Amjadi M, Hallaj T, Hildebrandt N. A sensitive homogeneous enzyme assay for euchromatic histone-lysine-N-methyltransferase 2 (G9a) based on terbium-to-quantum dot time-resolved FRET. ACTA ACUST UNITED AC 2020; 11:173-179. [PMID: 34336605 PMCID: PMC8314039 DOI: 10.34172/bi.2021.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
![]()
Introduction: Histone modifying enzymes include several classes of enzymes that are responsible for various post-translational modifications of histones such as methylation and acetylation. They are important epigenetic factors, which may involve several diseases and so their assay, as well as screening of their inhibitors, are of great importance. Herein, a bioassay based on terbium-to-quantum dot (Tb-to-QD) time-resolved Förster resonance energy transfer (TR-FRET) was developed for monitoring the activity of G9a, the euchromatic histone-lysine N-methyltransferase 2. Overexpression of G9a has been reported in some cancers such as ovarian carcinoma, lung cancer, multiple myeloma and brain cancer. Thus, inhibition of this enzyme is important for therapeutic purposes. Methods: In this assay, a biotinylated peptide was used as a G9a substrate in conjugation with streptavidin-coated ZnS/CdSe QD as FRET acceptor, and an anti-mark antibody labeled with Tb as a donor. Time-resolved fluorescence was used for measuring FRET ratios. Results: We examined three QDs, with emission wavelengths of 605, 655 and 705 nm, as FRET acceptors and investigated FRET efficiency between the Tb complex and each of them. Since the maximum FRET efficiency was obtained for Tb to QD705 (more than 50%), this pair was exploited for designing the enzyme assay. We showed that the method has excellent sensitivity and selectivity for the determination of G9a at concentrations as low as 20 pM. Furthermore, the designed assay was applied for screening of an enzyme inhibitor, S-(5’-Adenosyl)-L-homocysteine (SAH). Conclusion: It was shown that Tb-to-QD FRET is an outstanding platform for developing a homogenous assay for the G9a enzyme and its inhibitors. The obtained results confirmed that this assay was quite sensitive and could be used in the field of inhibitor screening.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, Orsay, France.,Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
17
|
Rugo HS, Jacobs I, Sharma S, Scappaticci F, Paul TA, Jensen-Pergakes K, Malouf GG. The Promise for Histone Methyltransferase Inhibitors for Epigenetic Therapy in Clinical Oncology: A Narrative Review. Adv Ther 2020; 37:3059-3082. [PMID: 32445185 PMCID: PMC7467409 DOI: 10.1007/s12325-020-01379-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic processes are essential for normal development and the maintenance of tissue-specific gene expression in mammals. Changes in gene expression and malignant cellular transformation can result from disruption of epigenetic mechanisms, and global disruption in the epigenetic landscape is a key feature of cancer. The study of epigenetics in cancer has revealed that human cancer cells harbor both genetic alterations and epigenetic abnormalities that interplay at all stages of cancer development. Unlike genetic mutations, epigenetic aberrations are potentially reversible through epigenetic therapy, providing a therapeutically relevant treatment option. Histone methyltransferase inhibitors are emerging as an epigenetic therapy approach with great promise in the field of clinical oncology. The recent accelerated approval of the enhancer of zeste homolog 2 (EZH2; also known as histone-lysine N-methyltransferase EZH2) inhibitor tazemetostat for metastatic or locally advanced epithelioid sarcoma marks the first approval of such a compound for the treatment of cancer. Many other histone methyltransferase inhibitors are currently in development, some of which are being tested in clinical studies. This review focuses on histone methyltransferase inhibitors, highlighting their potential in the treatment of cancer. We also discuss the role for such epigenetic drugs in overcoming epigenetically driven drug resistance mechanisms, and their value in combination with other therapeutic approaches such as immunotherapy.
Collapse
|
18
|
Gu M, Toh TB, Hooi L, Lim JJ, Zhang X, Chow EKH. Nanodiamond-Mediated Delivery of a G9a Inhibitor for Hepatocellular Carcinoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45427-45441. [PMID: 31718136 DOI: 10.1021/acsami.9b16323] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high mortality but limited therapeutic options. Epigenetic regulations including DNA methylation and histone modification control gene expressions and play a crucial role during tumorigenesis. G9a, also known as EHMT2 (euchromatic histone-lysine N-methyltransferase 2), is a histone methyltransferase predominantly responsible for dimethylation of histone H3 lysine 9 (H3K9). G9a has been shown to play a key role in promoting tumor progression. Recent studies have identified that G9a is a critical mediator of HCC pathogenesis. UNC0646 is a G9a inhibitor that has shown potent in vitro efficacy. However, due to its water insolubility, the in vivo efficacy of UNC0646 is not satisfactory. In this study, nanodiamonds (NDs) were utilized as a drug delivery platform to improve in vivo delivery of this small-molecule inhibitor. Our results showed that ND-UNC0646 complexes could be rapidly synthesized by physical adsorption, meanwhile possessing favorable drug delivery properties and was able to improve the dispersibility of UNC0646 in water, therefore making it amenable for intravenous administration. The release profile of UNC0646 from ND-UNC0646 was demonstrated to be pH-responsive. Moreover, ND-UNC0646 maintained the biological functionality of UNC0646, with higher efficacy in reducing H3K9 methylation as well as enhanced invasion suppressive effects. Most importantly, increased in vivo efficacy was demonstrated using an orthotopic HCC mouse model, which paves the way of translating this small-molecule inhibitor toward HCC treatment. Our work demonstrates the potential of NDs in the clinical application for HCC treatment.
Collapse
Affiliation(s)
- Mengjie Gu
- Department of Pharmacology, Yong Loo Lin School of Medicine , National University of Singapore , 117600 , Singapore
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health , National University of Singapore , 117456 , Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Xiyun Zhang
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
- Department of Medicine, Yong Loo Lin School of Medicine , National University of Singapore , 119228 , Singapore
| | - Edward Kai-Hua Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine , National University of Singapore , 117600 , Singapore
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
- The N.1 Institute for Health , National University of Singapore , 117456 , Singapore
| |
Collapse
|
19
|
Abstract
Aim: The druggability of epigenetic targets has prompted researchers to develop small-molecule therapeutics. However, no systematic assessment has ever been done to investigate the chemical space of epigenetic modulators. Herein, we report a comprehensive chemoinformatic analysis of epigenetic ligands from EpiDBase, HEMD, ChEMBL and PubChem databases. Results: Nearly, 0.45 × 106 ligands were analyzed for assay interference compounds, target profiling, drug-like properties and hit prioritization. After eliminating approximately 96,000 problematic compounds, the remaining 0.36 × 106 compounds were studied for their physicochemical distributions, principal component analysis and hit prioritization. More than 30% of assay interference compounds were determined for many proteins. Conclusion: This systematic assessment of epigenetic ligands will help in the enrichment of screening libraries with high-quality compounds and thus, the generation of efficacious drug candidates.
Collapse
|
20
|
Fan X, Jin S, Li Y, Khadaroo PA, Dai Y, He L, Zhou D, Lin H. Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:8947-8963. [PMID: 31802937 PMCID: PMC6801489 DOI: 10.2147/cmar.s225606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is well known as a growth and invasion suppressor and belongs to the large cadherin family. Loss of E-cadherin is widely known as the hallmark of epithelial-to-mesenchymal transition (EMT) with the involvement of transcription factors such as Snail, Slug, Twist and Zeb1/2. Tumor cells undergoing EMT could migrate to distant sites and become metastases. Recently, numerous studies have revealed how the expression of E-cadherin is regulated by different kinds of genetic and epigenetic alteration, which are implicated in several crucial transcription factors and pathways. E-cadherin signaling plays an important role in hepatocellular carcinoma (HCC) initiation and progression considering the highly mutated frequency of CTNNB1 (27%). Combining the data from The Cancer Genome Atlas (TCGA) database and previous studies, we have summarized the roles of gene mutations, chromosome instability, DNA methylation, histone modifications and non-coding RNA in E-cadherin in HCC. In this review, we discuss the current understanding of the relationship between these modifications and HCC. Perspectives on E-cadherin-related research in HCC are provided.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Parikshit Asutosh Khadaroo
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
21
|
Hu Y, Zheng Y, Dai M, Wang X, Wu J, Yu B, Zhang H, Cui Y, Kong W, Wu H, Yu X. G9a and histone deacetylases are crucial for Snail2-mediated E-cadherin repression and metastasis in hepatocellular carcinoma. Cancer Sci 2019; 110:3442-3452. [PMID: 31432592 PMCID: PMC6825017 DOI: 10.1111/cas.14173] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Functional E-cadherin loss, a hallmark of epithelial-mesenchymal transition (EMT), is important for metastasis. However, the mechanism of Snail2 in hepatocellular carcinoma (HCC) EMT and metastasis remains unclear. Here, we showed that Snail2 was upregulated in primary HCC, and significantly increased during transforming growth factor-β-induced liver cell EMT. Snail2-overexpressing and knockdown cell lines have been established to determine its function in EMT in HCC. H3K9 methylation was upregulated and H3K4 and H3K56 acetylation were downregulated at the E-cadherin promoter in Snail2-overexpressing cancer cells. Furthermore, Snail2 interacted with G9a and histone deacetylases (HDACs) to form a complex to suppress E-cadherin transcription. Snail2 overexpression enhanced migration and invasion in HCC cells, whereas G9a and HDAC inhibition significantly reversed this effect. Moreover, Snail2 overexpression in cancer cells increased tumor metastasis and shortened survival time in mice, whereas G9a and HDAC inhibitors extended survival. Our study not only reveals a critical mechanism underlying the epigenetic regulation of EMT but also suggests novel treatment strategies for HCC.
Collapse
Affiliation(s)
- Yue Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yayuan Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Mingrui Dai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xueju Wang
- Pathology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
22
|
Yang LN, Ning ZY, Wang L, Yan X, Meng ZQ. HSF2 regulates aerobic glycolysis by suppression of FBP1 in hepatocellular carcinoma. Am J Cancer Res 2019; 9:1607-1621. [PMID: 31497345 PMCID: PMC6726997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023] Open
Abstract
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. Recent years have witnessed the progress in uncovering the importance of HSFs in cancer cell oncogenesis, progression and metastasis. However, their roles in hepatocellular carcinoma (HCC) proliferation and the underlying mechanism have seldom been discussed. The present study aims to uncover the two important HSFs members HSF1 and HSF2 in hepatocellular carcinoma (HCC). By using the Cancer Genome Atlas (TCGA) dataset analysis, we investigated the prognosis value of HSF1 and HSF2 in HCC and identified HSF2 as a prediction factor of overall survival of HCC. In vitro cell line studies demonstrated that silencing HSF2 expression could decrease the proliferation in HCC cells. In depth mechanism analysis demonstrated that HSF2 promoted cell proliferation via positive regulation of aerobic glycolysis, and HSF2 interacted with euchromatic histone lysine methyltransferase 2 (EHMT2) to epigenetically silence fructose-bisphosphatase 1 (FBP1), which is a tumor suppressor and negative regulator of aerobic glycolysis in HCC. HSF2 expression indicated unfavorable prognosis of HCC patients and it could regulate aerobic glycolysis by suppression of FBP1 to support uncontrolled proliferation of HCC cells.
Collapse
Affiliation(s)
- Li-Na Yang
- Cancer Institute, Fudan University Shanghai Cancer CenterShanghai, China
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
| | - Zhou-Yu Ning
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Lai Wang
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Xia Yan
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Zhi-Qiang Meng
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
23
|
Cao H, Li L, Yang D, Zeng L, Yewei X, Yu B, Liao G, Chen J. Recent progress in histone methyltransferase (G9a) inhibitors as anticancer agents. Eur J Med Chem 2019; 179:537-546. [PMID: 31276898 DOI: 10.1016/j.ejmech.2019.06.072] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
Epigenetics is the study of heritable changes in gene expression without changing the DNA sequence - a change in phenotype without a change in genotype. Epigenetic abnormalities can lead to serious diseases such as cancer in organisms. Histone methylation is one of the several manifestations of epigenetics, and requires specific enzymes to catalyze, for example, G9a, which is a histone methyl transferase. G9a catalyzes the methylation of histone 3 lysine 9 (H3K9) and histone 3 lysine 27 (H3K27). In addition, G9a also plays an essential role in DNA replication, damage and repair, and gene expression by regulating DNA methylation. Moreover, G9a has been found to be overexpressed in many tumor cells and is associated with the occurrence and development of tumors. Because of its unique characteristics, G9a has become a very promising target for anti-cancer agents. Over the last decade, dozens of G9a inhibitors have been discovered as potential anticancer therapeutic agents. In this review, we summarize and classify current G9a inhibitors, the challenges and future direction are also discussed in detail.
Collapse
Affiliation(s)
- Hao Cao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liming Zeng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xie Yewei
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
24
|
H3K18Ac as a Marker of Cancer Progression and Potential Target of Anti-Cancer Therapy. Cells 2019; 8:cells8050485. [PMID: 31121824 PMCID: PMC6562857 DOI: 10.3390/cells8050485] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation and deacetylation are posttranslational modifications (PTMs) which affect the regulation of chromatin structure and its remodeling. Acetylation of histone 3 at lysine placed on position 18 (H3K18Ac) plays an important role in driving progression of many types of cancer, including breast, colon, lung, hepatocellular, pancreatic, prostate, and thyroid cancer. The aim of this review is to analyze and discuss the newest findings regarding the role of H3K18Ac and acetylation of other histones in carcinogenesis. We summarize the level of H3K18Ac in different cancer cell lines and analyze its association with patients’ outcomes, including overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS). Finally, we describe future perspectives of cancer therapeutic strategies based on H3K18 modifications.
Collapse
|
25
|
Genome-Wide Mapping of Bivalent Histone Modifications in Hepatic Stem/Progenitor Cells. Stem Cells Int 2019; 2019:9789240. [PMID: 31065285 PMCID: PMC6466853 DOI: 10.1155/2019/9789240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 01/20/2023] Open
Abstract
The "bivalent domain," a distinctive histone modification signature, is characterized by repressive trimethylation of histone H3 at lysine 27 (H3K27me3) and active trimethylation of histone H3 at lysine 4 (H3K4me3) marks. Maintenance and dynamic resolution of these histone marks play important roles in regulating differentiation processes in various stem cell systems. However, little is known regarding their roles in hepatic stem/progenitor cells. In the present study, we conducted the chromatin immunoprecipitation (ChIP) assay followed by high-throughput DNA sequencing (ChIP-seq) analyses in purified delta-like 1 protein (Dlk+) hepatic stem/progenitor cells and successfully identified 562 genes exhibiting bivalent domains within 2 kb of the transcription start site. Gene ontology analysis revealed that these genes were enriched in developmental functions and differentiation processes. Microarray analyses indicated that many of these genes exhibited derepression after differentiation toward hepatocyte and cholangiocyte lineages. Among these, 72 genes, including Cdkn2a and Sox4, were significantly upregulated after differentiation toward hepatocyte or cholangiocyte lineages. Knockdown of Sox4 in Dlk+ cells suppressed colony propagation and resulted in increased numbers of albumin+/cytokeratin 7+ progenitor cells in colonies. These findings implicate that derepression of Sox4 expression is required to induce normal differentiation processes. In conclusion, combined ChIP-seq and microarray analyses successfully identified bivalent genes. Functional analyses of these genes will help elucidate the epigenetic machinery underlying the terminal differentiation of hepatic stem/progenitor cells.
Collapse
|
26
|
Qadi SA, Hassan MA, Sheikh RA, Baothman OA, Zamzami MA, Choudhry H, Al-Malki AL, Albukhari A, Alhosin M. Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic Mechanisms. Epigenet Insights 2019; 12:2516865719839011. [PMID: 31058255 PMCID: PMC6452588 DOI: 10.1177/2516865719839011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
The epigenetic silencing of tumor suppressor genes (TSGs) is a common finding in several solid and hematological tumors involving various epigenetic readers and writers leading to enhanced cell proliferation and defective apoptosis. Thymoquinone (TQ), the major biologically active compound of black seed oil, has demonstrated anticancer activities in various tumors by targeting several pathways. However, its effects on the epigenetic code of cancer cells are largely unknown. In the present study, we performed RNA sequencing to investigate the anticancer mechanisms of TQ-treated T-cell acute lymphoblastic leukemia cell line (Jurkat cells) and examined gene expression using different tools. We found that many key epigenetic players, including ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1), DNMT1,3A,3B, G9A, HDAC1,4,9, KDM1B, and KMT2A,B,C,D,E, were downregulated in TQ-treated Jurkat cells. Interestingly, several TSGs, such as DLC1, PPARG, ST7, FOXO6, TET2, CYP1B1, SALL4, and DDIT3, known to be epigenetically silenced in various tumors, including acute leukemia, were upregulated, along with the upregulation of several downstream pro-apoptotic genes, such as RASL11B, RASD1, GNG3, BAD, and BIK. Data obtained from RNA sequencing were confirmed using quantitative reverse transcription polymerase chain reaction (RT-qPCR) in Jurkat cells, as well as in a human breast cancer cell line (MDA-MB-468 cells). We found that the decrease in cell proliferation and in the expression of UHRF1, DNMT1, G9a, and HDAC1 genes in both cancer cell (Jurkat cells and MDA-MB-468 cells) lines depends on the TQ dose. Our results indicate that the use of TQ as an epigenetic drug represents a promising strategy for epigenetic therapy for both solid and blood tumors by targeting both DNA methylation and histone post-translational modifications.
Collapse
Affiliation(s)
- Shahad A Qadi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A Hassan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine and Health Sciences, Hadhramout University, Mukalla, Yemen
| | - Ryan A Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman As Baothman
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ashwag Albukhari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Alhosin
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Filipczak PT, Leng S, Tellez CS, Do KC, Grimes MJ, Thomas CL, Walton-Filipczak SR, Picchi MA, Belinsky SA. p53-Suppressed Oncogene TET1 Prevents Cellular Aging in Lung Cancer. Cancer Res 2019; 79:1758-1768. [PMID: 30622117 DOI: 10.1158/0008-5472.can-18-1234] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
Abstract
The role of transcriptional regulator ten-eleven translocation methylcytosine dioxygenease 1 (TET1) has not been well characterized in lung cancer. Here we show that TET1 is overexpressed in adenocarcinoma and squamous cell carcinomas. TET1 knockdown reduced cell growth in vitro and in vivo and induced transcriptome reprogramming independent of its demethylating activity to affect key cancer signaling pathways. Wild-type p53 bound the TET1 promoter to suppress transcription, while p53 transversion mutations were most strongly associated with high TET1 expression. Knockdown of TET1 in p53-mutant cell lines induced senescence through a program involving generalized genomic instability manifested by DNA single- and double-strand breaks and induction of p21 that was synergistic with cisplatin and doxorubicin. These data identify TET1 as an oncogene in lung cancer whose gain of function via loss of p53 may be exploited through targeted therapy-induced senescence. SIGNIFICANCE: These studies identify TET1 as an oncogene in lung cancer whose gain of function following loss of p53 may be exploited by targeted therapy-induced senescence.See related commentary by Kondo, p. 1751.
Collapse
Affiliation(s)
| | - Shuguang Leng
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Carmen S Tellez
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kieu C Do
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Marcie J Grimes
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Cynthia L Thomas
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Maria A Picchi
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | |
Collapse
|
28
|
Nakamura M, Chiba T, Kanayama K, Kanzaki H, Saito T, Kusakabe Y, Kato N. Epigenetic dysregulation in hepatocellular carcinoma: an up-to-date review. Hepatol Res 2019; 49:3-13. [PMID: 30238570 DOI: 10.1111/hepr.13250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
Abstract
Due to the advances made in research based on next generation sequencers, it is now possible to detect and analyze epigenetic abnormalities associated with cancer. DNA methylation, various histone modifications, chromatin remodeling, and non-coding RNA-associated gene silencing are considered to be transcriptional regulatory mechanisms associated with gene expression changes. The breakdown of this precise regulatory system is involved in the transition to cancer. The important role of epigenetic regulation can be observed from the high rate of genetic mutations and abnormal gene expression leading to a breakdown in epigenetic gene expression regulation seen in hepatocellular carcinoma (HCC). Based on an understanding of epigenomic abnormalities associated with pathological conditions, these findings will lead the way to diagnosis and treatment. In particular, in addition to the fact that there are few choices in terms of extant drug therapies aimed at HCC, there are limits to their antitumor effects. The clinical application of epigenetic therapeutic agents for HCC has only just begun, and future developments are expected.
Collapse
Affiliation(s)
- Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
29
|
The Methylation Status of the Epigenome: Its Emerging Role in the Regulation of Tumor Angiogenesis and Tumor Growth, and Potential for Drug Targeting. Cancers (Basel) 2018; 10:cancers10080268. [PMID: 30103412 PMCID: PMC6115976 DOI: 10.3390/cancers10080268] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Approximately 50 years ago, Judah Folkman raised the concept of inhibiting tumor angiogenesis for treating solid tumors. The development of anti-angiogenic drugs would decrease or even arrest tumor growth by restricting the delivery of oxygen and nutrient supplies, while at the same time display minimal toxic side effects to healthy tissues. Bevacizumab (Avastin)—a humanized monoclonal anti VEGF-A antibody—is now used as anti-angiogenic drug in several forms of cancers, yet with variable results. Recent years brought significant progresses in our understanding of the role of chromatin remodeling and epigenetic mechanisms in the regulation of angiogenesis and tumorigenesis. Many inhibitors of DNA methylation as well as of histone methylation, have been successfully tested in preclinical studies and some are currently undergoing evaluation in phase I, II or III clinical trials, either as cytostatic molecules—reducing the proliferation of cancerous cells—or as tumor angiogenesis inhibitors. In this review, we will focus on the methylation status of the vascular epigenome, based on the genomic DNA methylation patterns with DNA methylation being mainly transcriptionally repressive, and lysine/arginine histone post-translational modifications which either promote or repress the chromatin transcriptional state. Finally, we discuss the potential use of “epidrugs” in efficient control of tumor growth and tumor angiogenesis.
Collapse
|
30
|
Lu H, Lei X, Zhang Q. Liver-specific knockout of histone methyltransferase G9a impairs liver maturation and dysregulates inflammatory, cytoprotective, and drug-processing genes. Xenobiotica 2018; 49:740-752. [PMID: 29912608 DOI: 10.1080/00498254.2018.1490044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methyltransferase G9a is essential for a key gene silencing mark, histone H3 dimethylation at lysine-9 (H3K9me2). Hepatic G9a expression is down-regulated by xenobiotics and diabetes. However, little is known about the role of G9a in liver. Thus, we generated mice with liver-specific knockout (Liv-KO) of G9a. Adult G9a Liv-KO mice had marked loss of H3K9me2 proteins in liver, without overt liver injury or infiltration of inflammatory cells. However, G9a-null livers had ectopic induction of certain genes normally expressed in neural and immune systems. Additionally, G9a-null livers had moderate down-regulation of cytoprotective genes, markedly altered expression of certain important drug-processing genes, elevated endogenous reactive oxygen species, induction of ER stress marker Chop, but decreased glutathione and nuclear Nrf2. microRNA-383, a negative regulator of the PI3K/Akt pathway, was strongly induced in G9a Liv-KO mice. After LPS treatment, G9a Liv-KO mice had aggravated lipid peroxidation and proinflammatory response. Taken together, the present study demonstrates that G9a regulates liver maturation by silencing neural and proinflammatory genes but maintaining/activating cytoprotective and drug-processing genes, in which the G9a/miR-383/PI3K/Akt/Nrf2 (Chop) pathways may play important roles. G9a deficiency due to genetic polymorphism and/or environmental exposure may alter xenobiotic metabolism and aggravate inflammation and liver dysfunction.
Collapse
Affiliation(s)
- Hong Lu
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| | - Xiaohong Lei
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| | - Qinghao Zhang
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| |
Collapse
|
31
|
Kim SY, Hong M, Heo SH, Park S, Kwon TK, Sung YH, Oh Y, Lee S, Yi GS, Kim I. Inhibition of euchromatin histone-lysine N-methyltransferase 2 sensitizes breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through reactive oxygen species-mediated activating transcription factor 4-C/EBP homologous protein-death receptor 5 pathway activation. Mol Carcinog 2018; 57:1492-1506. [PMID: 29964331 DOI: 10.1002/mc.22872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been characterized as an anti-cancer therapeutic agent with prominent cancer cell selectivity over normal cells. However, breast cancer cells are generally resistant to TRAIL, thus limiting its therapeutic potential. In this study, we found that BIX-01294, a selective inhibitor of euchromatin histone methyltransferase 2/G9a, is a strong TRAIL sensitizer in breast cancer cells. The combination of BIX-01294 and TRAIL decreased cell viability and led to an increase in the annexin V/propidium iodide-positive cell population, DNA fragmentation, and caspase activation. BIX-01294 markedly increased death receptor 5 (DR5) expression, while silencing of DR5 using small interfering RNAs abolished the TRAIL-sensitizing effect of BIX-01294. Specifically, BIX-01294 induced C/EBP homologous protein (CHOP)-mediated DR5 gene transcriptional activation and DR5 promoter activation was induced by upregulation of the protein kinase R-like endoplasmic reticulum kinase-mediated activating transcription factor 4 (ATF4). Moreover, inhibition of reactive oxygen species by N-acetyl-L-cysteine efficiently blocked BIX-01294-induced DR5 upregulation by inhibiting ATF4/CHOP expression, leading to diminished sensitization to TRAIL. These findings suggest that BIX-01294 sensitizes breast cancer cells to TRAIL by upregulating ATF4/CHOP-dependent DR5 expression with a reactive oxygen species-dependent manner. Furthermore, combination treatment with BIX-01294 and TRAIL suppressed tumor growth and induced apoptosis in vivo. In conclusion, we found that epigenetic regulation can contribute to the development of resistance to cancer therapeutics such as TRAIL, and further studies of unfolded protein responses and the associated epigenetic regulatory mechanisms may lead to the discovery of new molecular targets for effective cancer therapy.
Collapse
Affiliation(s)
- So Young Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - MiNa Hong
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Seung-Ho Heo
- Department of Convergence Medicine, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Sojung Park
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Young Hoon Sung
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yumin Oh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Seulki Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Inki Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Chen Y, Liu X, Li Y, Quan C, Zheng L, Huang K. Lung Cancer Therapy Targeting Histone Methylation: Opportunities and Challenges. Comput Struct Biotechnol J 2018; 16:211-223. [PMID: 30002791 PMCID: PMC6039709 DOI: 10.1016/j.csbj.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is one of the most common malignancies. In spite of the progress made in past decades, further studies to improve current therapy for lung cancer are required. Dynamically controlled by methyltransferases and demethylases, methylation of lysine and arginine residues on histone proteins regulates chromatin organization and thereby gene transcription. Aberrant alterations of histone methylation have been demonstrated to be associated with the progress of multiple cancers including lung cancer. Inhibitors of methyltransferases and demethylases have exhibited anti-tumor activities in lung cancer, and multiple lead candidates are under clinical trials. Here, we summarize how histone methylation functions in lung cancer, highlighting most recent progresses in small molecular inhibitors for lung cancer treatment.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- DUSP3, dual-specificity phosphatase 3
- EMT, epithelial-to-mesenchymal transition
- Elk1, ETS-domain containing protein
- HDAC, histone deacetylase
- Histone demethylase
- Histone demethylation
- Histone methylation
- Histone methyltransferase
- IHC, immunohistochemistry
- Inhibitors
- KDMs, lysine demethylases
- KLF2, Kruppel-like factor 2
- KMTs, lysine methyltransferases
- LSDs, lysine specific demethylases
- Lung cancer
- MEP50, methylosome protein 50
- NSCLC, non-small cell lung cancer
- PAD4, peptidylarginine deiminase 4
- PCNA, proliferating cell nuclear antigen
- PDX, patient-derived xenografts
- PRC2, polycomb repressive complex 2
- PRMTs, protein arginine methyltrasferases
- PTMs, posttranslational modifications
- SAH, S-adenosyl-L-homocysteine
- SAM, S-adenosyl-L-methionine
- SCLC, small cell lung cancer
- TIMP3, tissue inhibitor of metalloproteinase 3
Collapse
Affiliation(s)
- Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Xinran Liu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chuntao Quan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
33
|
Chen RJ, Shun CT, Yen ML, Chou CH, Lin MC. Methyltransferase G9a promotes cervical cancer angiogenesis and decreases patient survival. Oncotarget 2017; 8:62081-62098. [PMID: 28977928 PMCID: PMC5617488 DOI: 10.18632/oncotarget.19060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Research suggests that the epigenetic regulator G9a, a H3K9 histone methyltransferase, is involved in cancer invasion and metastasis. Here we show that G9a is linked to cancer angiogenesis and poor patient survival. Invasive cervical cancer has a higher G9a expression than cancer precursors or normal epithelium. Pharmacological inhibition and genetic silencing of G9a suppresses H3K9 methylation, cancer cell proliferation, angiogenesis, and cancer cell invasion/migration, but not apoptosis. Microarray and quantitative reverse transcription polymerase chain reaction analyses reveal that G9a induces a cohort of angiogenic factors that include angiogenin, interleukin-8, and C-X-C motif chemokine ligand 16. Depressing G9a by either pharmacological inhibitor or gene knock down significantly reduces angiogenic factor expression. Moreover, promoting G9a gene expression augments transcription and angiogenic function. A luciferase reporter assay suggests that knockdown of G9a inhibits transcriptional activation of interleukin-8. G9a depletion suppresses xenograft tumor growth in mouse model, which is linked to a decrease in microvessel density and proliferating cell nuclear antigen expression. Clinically, higher G9a expression correlates with poorer survival for cancer patients. For patients’ primary tumors a positive correlation between G9a expression and microvessel density also exists. In addition to increasing tumor cell proliferation, G9a promotes tumor angiogenesis and reduces the patient survival rate. G9a may possess great value for targeted therapies.
Collapse
Affiliation(s)
- Ruey-Jien Chen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University, Taipei 100, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Chieh Lin
- Department of Pathology, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|