1
|
Hachisu K, Tsuchida A, Takada Y, Mizuno M, Ideo H. Galectin-4 Is Involved in the Structural Changes of Glycosphingolipid Glycans in Poorly Differentiated Gastric Cancer Cells with High Metastatic Potential. Int J Mol Sci 2023; 24:12305. [PMID: 37569679 PMCID: PMC10418866 DOI: 10.3390/ijms241512305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Gastric cancer with peritoneal dissemination is difficult to treat surgically, and frequently recurs and metastasizes. Currently, there is no effective treatment for this disease, and there is an urgent need to elucidate the molecular mechanisms underlying peritoneal dissemination and metastasis. Our previous study demonstrated that galectin-4 participates in the peritoneal dissemination of poorly differentiated gastric cancer cells. In this study, the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) of the original (wild), galectin-4 knockout (KO), and rescue cells were investigated to understand the precise mechanisms involved in the galectin-4-mediated regulation of associated molecules, especially with respect to glycosylation. Glycan analysis of the NUGC4 wild type and galectin-4 KO clones with and without peritoneal metastasis revealed a marked structural change in the glycans of neutral GSLs, but not in N-glycan. Furthermore, mass spectrometry (MS) combined with glycosidase digestion revealed that this structural change was due to the presence of the lacto-type (β1-3Galactosyl) glycan of GSL, in addition to the neolacto-type (β1-4Galactosyl) glycan of GSL. Our results demonstrate that galectin-4 is an important regulator of glycosylation in cancer cells and galectin-4 expression affects the glycan profile of GSLs in malignant cancer cells with a high potential for peritoneal dissemination.
Collapse
Affiliation(s)
- Kazuko Hachisu
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (K.H.); (M.M.)
| | - Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (K.H.); (M.M.)
| | - Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| |
Collapse
|
2
|
Acharjee A, Agarwal P, Nash K, Bano S, Rahman T, Gkoutos GV. Immune infiltration and prognostic and diagnostic use of LGALS4 in colon adenocarcinoma and bladder urothelial carcinoma. Am J Transl Res 2021; 13:11353-11363. [PMID: 34786063 PMCID: PMC8581917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Colon adenocarcinoma (COAD) is a common tumor of the gastrointestinal tract with a high mortality rate. Current research has identified many genes associated with immune infiltration that play a vital role in the development of COAD. In this study, we analysed the prognostic and diagnostic features of such immune-related genes in the context of colonic adenocarcinoma (COAD). We analysed 17 overlapping gene expression profiles of COAD and healthy samples obtained from TCGA-COAD and public single-cell sequencing resources, to identify potential therapeutic COAD targets. We evaluated the abundance of immune infiltration with those genes using the TIMER (Tumor Immune Estimation Resource) deconvolution method. Subsequently, we developed predictive and survival models to assess the prognostic value of these genes. The LGALS4 (Galectin-4) gene was found to be significantly (P<0.05) downregulated in COAD and bladder urothelial carcinoma (BLCA) compared to healthy samples. We identified LGALS4 as a prognostic and diagnostic marker for multiple cancer types, including COAD and BLCA. Our analysis reveals a series of novel candidate drug targets, as well as candidate molecular markers, that may explain the pathogenesis of COAD and BLCA. LGALS4 gene is associated with multiple cancer types and is a possible prognostic, as well as diagnostic, marker of COAD and BLCA.
Collapse
Affiliation(s)
- Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of BirminghamB15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation TrustB15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital BirminghamBirmingham, B15 2WB, UK
| | - Prasoon Agarwal
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer ScienceStockholm, Sweden
- Science for Life LaboratorySolna, Sweden
| | - Katrina Nash
- College of Medical and Dental Sciences, University of BirminghamBirmingham, B15 2TT, UK
| | - Subia Bano
- Elvesys Microfluidic Innovation CentreParis 75011, France
| | - Taufiq Rahman
- Department of Pharmacology, Tennis Court Road, University of CambridgeCambridge, CB2 1PD
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of BirminghamB15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation TrustB15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital BirminghamBirmingham, B15 2WB, UK
- MRC Health Data Research UK (HDR UK)
- NIHR Experimental Cancer Medicine CentreBirmingham, B15 2TT, UK
- NIHR Biomedical Research Centre, University Hospital BirminghamBirmingham, B15 2TT, UK
| |
Collapse
|
3
|
Mizutani Y, Omagari D, Hayatsu M, Nameta M, Komiyama K, Mikami Y, Ushiki T. SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role. Cell Adh Migr 2021; 14:195-203. [PMID: 33016205 PMCID: PMC7553583 DOI: 10.1080/19336918.2020.1829264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
To elucidate the underlying mechanism of secretory leukocyte protease inhibitor (SLPI)-induced cell migration, we compared SLPI-deleted human gingival carcinoma Ca9-22 (ΔSLPI) cells and original (wild-type: wt) Ca9-22 cells using several microscopic imaging methods and gene expression analysis. Our results indicated reduced migration of ΔSLPI cells compared to wtCa9-22 cells. The lamellipodia/dorsal ruffles were smaller and moved slower in ΔSLPI cells compared to wtCa9-22 cells. Furthermore, well-developed intermediate filament bundles were observed at the desmosome junction of ΔSLPI cells. In addition, Galectin4 was strongly expressed in ΔSLPI cells, and its forced expression suppressed migration of wtCa9-22 cells. Taken together, SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role.
Collapse
Affiliation(s)
- Yusuke Mizutani
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences , Niigata-shi, Japan.,Office of Institutional Research, Hokkaido University , Kita-ku, Japan
| | - Daisuke Omagari
- Department of Pathology, Nihon University School of Dentistry , Tokyo, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences , Niigata-shi, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University , Niigata-shi, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry , Tokyo, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences , Niigata-shi, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences , Niigata-shi, Japan
| |
Collapse
|
4
|
López-Cortés R, Gómez BB, Vázquez-Estévez S, Pérez-Fentes D, Núñez C. Blood-based protein biomarkers in bladder urothelial tumors. J Proteomics 2021; 247:104329. [PMID: 34298186 DOI: 10.1016/j.jprot.2021.104329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Bladder cancer (BC) is the fifth most common cancer with a high prevalence rate. It is classically classified in two groups, namely non-muscle invasive (NMIBC) and muscle invasive (MIBC). NMIBC accounts for 75% of cases and has a better prognosis than MIBC. However, 30-50% of the NMIBC patients will show recurrences throughout their lives, and about 10-20% of them will progress to MIBC, with frequent metastasis and a reduced survival rate. The diagnosis of bladder cancer is confirmed by direct visualization of the tumour and other mucosal abnormalities with endoscopic excision using cystoscopy and transurethral resection of the bladder (TURBT). An adequate TURBT requires complete resection of all visible tumour with appropriate sampling of the bladder to assess the depth of invasion. However, for many years, researchers have attempted to identify and utilise urinary markers for bladder cancer detection. Voided urine cytology has been the mainstay of urine-based diagnosis of bladder cancer since originally described by Papanicolau and Marshall. Nonetheless, urine cytology has several drawbacks, including a poor sensitivity for low-grade/stage tumours, a lack of interobserver consistency and a variable range of readings (e.g., atypical, atypical-suspicious, non-diagnostic). These shortcomings have inspired the search for more sensitive bladder cancer biomarkers. To bring precision medicine to genitourinary oncology, the analysis of the plasma/serum wide genome and proteome offers promising possibilities.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain
| | - Benito Blanco Gómez
- Urology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002, Lugo, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain
| | - Daniel Pérez-Fentes
- Urology Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), ES15706 Santiago de Compostela, Spain
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain.
| |
Collapse
|
5
|
Bidar N, Rezaei T, Amini M, Jebelli A, Mokhtarzadeh A, Baradaran B. ZNF677 downregulation by promoter hypermethylation as a driver event through gastric tumorigenesis. Exp Mol Pathol 2021; 121:104663. [PMID: 34171355 DOI: 10.1016/j.yexmp.2021.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide, due to poor prognosis and treatment failure; demanding new diagnostic and therapeutic targets. Therefore, in the present study, the methylation and expression status of ZNF677, as a promising tumor suppressor, were investigated in GC. Gene Expression Omnibus (GEO) datasets were used to initially evaluate ZNF677 expression and methylation in GC samples. Confirmation was performed on fifty internal samples, including gastric tumors and adjacent normal specimens, using q-MSP and q-PCR methods. Further validations were done using The Cancer Genome Atlas (TCGA) data on human cancers. The obtained results in silico and experimentally illustrated that ZNF677 is significantly hypermethylated and downregulated through gastric tumorigenesis. ZNF677 methylation levels were also correlated with perineural invasion (p = 0.0382) in internal samples. Furthermore, Spearman's correlation analysis showed that ZNF677 methylation is negatively (r = -0.4614, p < 0.0001) correlated with its mRNA expression levels. ROC curve analysis also illustrated the high diagnostic value of ZNF677 methylation for early detection of GC (AUC = 0.8592). Gene set enrichment analysis further revealed that ZNF677 participates in the regulation of cellular processes such as cell proliferation in GC. Moreover, in addition to hypermethylation in other malignancies, including breast, lung, and colorectal cancers, ZNF677 was hypermethylated in precancerous gastric tissues with intestinal metaplasia, indicating its methylation as a driver event through tumorigenesis. Taken together, our results suggest ZNF677 as a potential tumor suppressor gene, which could be considered as a diagnostic and therapeutic target for GC.
Collapse
Affiliation(s)
- Negar Bidar
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Asiyeh Jebelli
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Kääriäinen A, Pesola V, Dittmann A, Kontio J, Koivunen J, Pihlajaniemi T, Izzi V. Machine Learning Identifies Robust Matrisome Markers and Regulatory Mechanisms in Cancer. Int J Mol Sci 2020; 21:E8837. [PMID: 33266472 PMCID: PMC7700160 DOI: 10.3390/ijms21228837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
The expression and regulation of matrisome genes-the ensemble of extracellular matrix, ECM, ECM-associated proteins and regulators as well as cytokines, chemokines and growth factors-is of paramount importance for many biological processes and signals within the tumor microenvironment. The availability of large and diverse multi-omics data enables mapping and understanding of the regulatory circuitry governing the tumor matrisome to an unprecedented level, though such a volume of information requires robust approaches to data analysis and integration. In this study, we show that combining Pan-Cancer expression data from The Cancer Genome Atlas (TCGA) with genomics, epigenomics and microenvironmental features from TCGA and other sources enables the identification of "landmark" matrisome genes and machine learning-based reconstruction of their regulatory networks in 74 clinical and molecular subtypes of human cancers and approx. 6700 patients. These results, enriched for prognostic genes and cross-validated markers at the protein level, unravel the role of genetic and epigenetic programs in governing the tumor matrisome and allow the prioritization of tumor-specific matrisome genes (and their regulators) for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Anni Kääriäinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Vilma Pesola
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Annalena Dittmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Juho Kontio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Jarkko Koivunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
- Faculty of Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland
- Finnish Cancer Institute, 00130 Helsinki, Finland
| |
Collapse
|
7
|
Ding Y, Cao Q, Wang C, Duan H, Shen H. LGALS4 as a Prognostic Factor in Urothelial Carcinoma of Bladder Affects Cell Functions. Technol Cancer Res Treat 2020; 18:1533033819876601. [PMID: 31558111 PMCID: PMC6767717 DOI: 10.1177/1533033819876601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND To identify the hub genes related to urothelial carcinoma of the bladder prognosis and to understand their underlying mechanism. METHODS The expression profiles of 18 pairs of urothelial carcinoma of the bladder patient tissue and paired adjacent tissue obtained from the Cancer Genome Atlas were performed. Weighted gene coexpression network analysis was employed to screen gene modules and hub genes with significant differential expressions in urothelial carcinoma of the bladder. The hub genes expression in urothelial carcinoma of the bladder tissues was validated by reverse transcription-quantitative polymerase chain reaction. The overall survival curve and disease-free survival curve of prognostic factor (LGALS4) were plotted using the Kaplan-Meier method. Furthermore, LGALS4 messenger RNA and protein expression were also assessed in 2 urothelial carcinoma of the bladder cell lines (T24 and 5637) by quantitative reverse transcription-polymerase chain reaction and Western blot. The functions of urothelial carcinoma of the bladder cells with transfected pcDNA3.1-LGALS4 were identified through MTT assay, plate clone formation assay, flow cytometry, and cell migration experiments. RESULTS LGALS4 was the hub gene of pink module and it was related to prognosis. Higher LGALS4 expression predicted higher probabilities of overall survival and disease-free survival. Overexpression of LGALS4 in urothelial carcinoma of the bladder cells suppressed cell viability and migration but induced apoptosis. CONCLUSION LGALS4 played a critical role in the progression of urothelial carcinoma of the bladder and held a promise to be the biomarker for diagnosis and treatment of urothelial carcinoma of the bladder. It predicted good prognosis of urothelial carcinoma of the bladder and restrained the growth and migration of urothelial carcinoma of the bladder cells.
Collapse
Affiliation(s)
- Yu Ding
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qifeng Cao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chen Wang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huangqi Duan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haibo Shen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
Galectins in prostate and bladder cancer: tumorigenic roles and clinical opportunities. Nat Rev Urol 2020; 16:433-445. [PMID: 31015643 DOI: 10.1038/s41585-019-0183-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced prostate and bladder cancer are two outstanding unmet medical needs for urological oncologists. The high prevalence of these tumours, lack of effective biomarkers and limited effective treatment options highlight the importance of basic research in these diseases. Galectins are a family of β-galactoside-binding proteins that are frequently altered (upregulated or downregulated) in a wide range of tumours and have roles in different stages of tumour development and progression, including immune evasion. In particular, altered expression levels of different members of the galectin family have been reported in prostate and bladder cancers, which, together with the aberrant glycosylation patterns found in tumour cells and the constituent cell types of the tumour microenvironment, can result in malignant transformation and tumour progression. Understanding the roles of galectin family proteins in the development and progression of prostate and bladder cancer could yield key insights to inform the clinical management of these diseases.
Collapse
|
9
|
Zhang GL, Pan LL, Huang T, Wang JH. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer 2019; 10:5883-5890. [PMID: 31737124 PMCID: PMC6843882 DOI: 10.7150/jca.32267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
The previous cancer studies were difficult to reproduce since the tumor tissues were analyzed directly. But the tumor tissues were actually a mixture of different cancer cells. The transcriptome of single-cell was much robust than the transcriptome of a mixed tissue. The single-cell transcriptome had much smaller variance. In this study, we analyzed the single-cell transcriptome of 272 colorectal cancer (CRC) epithelial cells and 160 normal epithelial cells and identified 342 discriminative transcripts using advanced machine learning methods. The most discriminative transcripts were LGALS4, PHGR1, C15orf48, HEPACAM2, PERP, FABP1, FCGBP, MT1G, TSPAN1 and CKB. We further clustered the 342 transcripts into two categories. The upregulated transcripts in CRC epithelial cells were significantly enriched in Ribosome, Protein processing in endoplasmic reticulum, Antigen processing and presentation and p53 signaling pathway. The downregulated transcripts in CRC epithelial cells were significantly enriched in Mineral absorption, Aldosterone-regulated sodium reabsorption and Oxidative phosphorylation pathways. The biological analysis of the discriminative transcripts revealed the possible mechanism of colorectal cancer.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Le-Lin Pan
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Hai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
10
|
Amini M, Foroughi K, Talebi F, Aghagolzade Haji H, Kamali F, Jandaghi P, Hoheisel JD, Manoochehri M. GHSR DNA hypermethylation is a new epigenetic biomarker for gastric adenocarcinoma and beyond. J Cell Physiol 2019; 234:15320-15329. [PMID: 30677130 DOI: 10.1002/jcp.28179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Aberrations of DNA methylation are early events in the development of tumors. In this study, we investigated the DNA methylation status of growth hormone secretagogue receptor (GHSR), a promising pan-cancer biomarker, in gastric cancer (GC). Initially, data sets from DNA methylation and gene expression studies available at Gene Expression Omnibus (GEO) were analyzed. Confirmation was done on primary tumor specimens and adjacent normal stomach tissue samples. Both analyses showed significant hypermethylation of GHSR. For further validation, The Cancer Genome Atlas data on stomach cancer was used. A receiver operating characteristic curve analysis yielded an area under the curve value of 0.85, corroborating its usefulness as a diagnostic marker. A genome-wide comethylation analysis revealed several correlated genes. CREB1 was found to act as an upstream regulator of this gene network. Furthermore, GHSR methylation was found to be a biomarker in several other tumor entities, namely cancers of the bladder, endometrium, esophagus, head and neck, liver, thyroid, kidney, and ovary. Our findings along with previous reports on other types of cancer suggest a high potential of GHSR gene methylation as a pan-cancer biomarker, which could be considered for liquid biopsy applications.
Collapse
Affiliation(s)
- Mohammad Amini
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Kobra Foroughi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hemat Aghagolzade Haji
- Department of Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Kamali
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran, Iran
| | - Pouria Jandaghi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mehdi Manoochehri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Molecular Genetics of Breast Cancer (B072), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Prognostic Values of EPDR1 Hypermethylation and Its Inhibitory Function on Tumor Invasion in Colorectal Cancer. Cancers (Basel) 2018; 10:cancers10100393. [PMID: 30360391 PMCID: PMC6211107 DOI: 10.3390/cancers10100393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023] Open
Abstract
Aberrant DNA methylation is a potential mechanism underlying the development of colorectal cancer (CRC). Thus, identification of prognostic DNA methylation markers and understanding the related molecular functions may offer a new perspective on CRC pathogenesis. To that end, we explored DNA methylation profile changes in CRC subtypes based on the microsatellite instability (MSI) status through genome-wide DNA methylation profiling analysis. Of 34 altered genes, three hypermethylated (epidermal growth factor, EGF; carbohydrate sulfotransferase 10, CHST10; ependymin related 1, EPDR1) and two hypomethylated (bone marrow stromal antigen 2, BST2; Rac family small GTPase 3, RAC3) candidates were further validated in CRC patients. Based on quantitative methylation-specific polymerase chain reaction (Q-MSP), EGF, CHST10 and EPDR1 showed higher hypermethylated levels in CRC tissues than those in adjacent normal tissues, whereas BST2 showed hypomethylation in CRC tissues relative to adjacent normal tissues. Additionally, among 75 CRC patients, hypermethylation of CHST10 and EPDR1 was significantly correlated with the MSI status and a better prognosis. Moreover, EPDR1 hypermethylation was significantly correlated with node negativity and a lower tumor stage as well as with mutations in B-Raf proto-oncogene serine/threonine kinase (BRAF) and human transforming growth factor beta receptor 2 (TGFβR2). Conversely, a negative correlation between the mRNA expression and methylation levels of EPDR1 in CRC tissues and cell lines was observed, revealing that DNA methylation has a crucial function in modulating EPDR1 expression in CRC cells. EPDR1 knockdown by a transient small interfering RNA significantly suppressed invasion by CRC cells, suggesting that decreased EPDR1 levels may attenuate CRC cell invasion. These results suggest that DNA methylation-mediated EPDR1 epigenetic silencing may play an important role in preventing CRC progression.
Collapse
|
12
|
Katzenmaier EM, Kloor M, Gabius HJ, Gebert J, Kopitz J. Analyzing epigenetic control of galectin expression indicates silencing of galectin-12 by promoter methylation in colorectal cancer. IUBMB Life 2017; 69:962-970. [PMID: 29098769 DOI: 10.1002/iub.1690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/07/2017] [Indexed: 12/24/2022]
Abstract
Galectins, a class of lectins with specificity for ß-galactoside containing glycoconjugates, modulate several cellular processes that are involved in the control of normal cell growth, differentiation, cell-cell, and cell matrix interactions. Pathological alterations of the galectin expression pattern have been implicated in the development and progression of cancer. We therefore analyzed epigenetic mechanisms for control of galectin expression in 9 colorectal cancer (CRC) cell lines. Our data demonstrate that expression of galectins-1, -2, -7, -8, and -9 can be regulated by histone acetylation in CRC cell lines. In addition, the same set of galectins was also found to be modulated by DNA methylation. Of particular note, galectin-12 is silenced in all tested CRC cell lines but known to be re-expressed upon butyrate-induced differentiation and present in normal colonic mucosa. Loss of galectin-12 expression in undifferentiated CRC cells is associated with promoter hypermethylation and for the first time we provide detailed methylation analysis of the promoter region. In CRC tumor tissue, galectin-12 expression was downregulated in 66% of CRC tissue specimens as compared to adjacent normal tissue hinting to a possible tumor-suppressing function in CRC. © 2017 IUBMB Life, 69(12):962-970, 2017.
Collapse
Affiliation(s)
- Eva-Maria Katzenmaier
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Hans-Joachim Gabius
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Juergen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center), Heidelberg, Germany
| |
Collapse
|