1
|
Ghazi R, Ibrahim TK, Nasir JA, Gai S, Ali G, Boukhris I, Rehman Z. Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review. RSC Adv 2025; 15:11587-11616. [PMID: 40230636 PMCID: PMC11995399 DOI: 10.1039/d5ra00728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Iron-oxide nanoparticles (IONPs) have garnered substantial attention in both research and technological domains due to their exceptional chemical and physical properties. These nanoparticles have mitigated the adverse effects of conventional treatment procedures by facilitating advanced theranostic approaches in integration with biomedicine. These IONPs have been extensively utilized in MRI (as contrast agents in diagnosis), drug delivery (as drug carriers), and hyperthermia (treatment), demonstrating promising results with potential for further enhancement. This study elucidates the operational principles of these NPs during diagnosis, drug delivery, and treatment, and emphasizes their precision and efficacy in transporting therapeutic agents to targeted sites without drug loss. It also analyses various challenges associated with the application of these IONPs in this field, such as biocompatibility, agglomeration, and toxicity. Furthermore, diverse strategies have been delineated to address these challenges. Overall, this review provides a comprehensive overview of the applications of IONPs in the field of biomedicine and treatment, along with the associated challenges. It offers significant assistance to researchers, professionals, and clinicians in the field of biomedicine.
Collapse
Affiliation(s)
- Rizwana Ghazi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Talib K Ibrahim
- Department of Petroleum Engineering, College of Engineering, Knowledge University Erbil Iraq
- Department of Petroleum Engineering, Al-Kitab University Altun Kupri Iraq
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 P. R. China
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH Nilore Islamabad Pakistan
| | - Imed Boukhris
- Department of Physics, Faculty of Science, King Khalid University P. O. Box 9004 Abha Saudi Arabia
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
2
|
Kanli G, Boudissa S, Jirik R, Adamsen T, Espedal H, Rolfsnes HO, Thorsen F, Pacheco-Torres J, Janji B, Keunen O. Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET. Methods Cell Biol 2024; 191:289-328. [PMID: 39824561 DOI: 10.1016/bs.mcb.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Georgia Kanli
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Selma Boudissa
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Radovan Jirik
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Tom Adamsen
- Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Heidi Espedal
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Western Australia National Imaging Facility, The University of Western Australia, Perth, Australia
| | - Hans Olav Rolfsnes
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Frits Thorsen
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, China
| | - Jesus Pacheco-Torres
- Institute for Biomedical Research Sols-Morreale (IIBM), Spanish National Research Council-Universidad Autónoma de Madrid, Madrid, Spain
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| | - Olivier Keunen
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
3
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Li W, Cheng J, Liu C, Zhang N, Lin H, He F, Gan Z, Zhang P, Qin M, Hou Y. Shine and darkle the blood vessels: Multiparameter hypersensitive MR angiography for diagnosis of panvascular diseases. SCIENCE ADVANCES 2024; 10:eadq4082. [PMID: 39365870 PMCID: PMC11451532 DOI: 10.1126/sciadv.adq4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024]
Abstract
Magnetic resonance angiography (MRA) is pivotal for diagnosing panvascular diseases. However, single-modality MRA falls short in diagnosing diverse vascular abnormalities. Thus, contrast agents combining T1 and T2 effects are sought for multiparameter MRA with clinical promise, yet achieving a balance in T1 and T2 contrast enhancement effects remains a scientific challenge. Herein, we developed a hypersensitive multiparameter MRA strategy using dual-modality NaGdF4 nanoparticles. Because of the longer tumbling time (τR), NaGdF4 nanoparticles can improve the longitudinal relaxivity (r1), brightening vessels in T1-weighted sequences. Simultaneously, the regular arrangement of Gd3+ in the crystal induces magnetic anisotropy, creating local static magnetic field heterogeneity and generating negative signals in T2-weighted sequences. Consequently, the efficacy of NaGdF4-enhanced high-resolution multiparameter MRA has been validated in diagnosing ischemic stroke and Alzheimer's disease in rodent models. In addition, the dual-contrast imaging has been realized on swine with a clinical 3.0-T magnetic resonance imaging scanner, highly emphasizing the clinical translation prospect.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junwei Cheng
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuang Liu
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ni Zhang
- Department of Psychiatry and Center for Preclinical Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hua Lin
- Department of Psychiatry and Center for Preclinical Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fangfei He
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhihua Gan
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peisen Zhang
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Qin
- Department of Psychiatry and Center for Preclinical Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Hou
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Shibata T, Nishijima K, Nakago S, Kotsuji F. Updated criteria for the approval of subsequent pregnancy after cesarean section with a transverse uterine fundal incision based on 17 years of experience. J Obstet Gynaecol Res 2024; 50:1485-1493. [PMID: 39073199 DOI: 10.1111/jog.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
In the case of placenta previa-accreta when the placenta covers the entire anterior uterine wall, it is difficult to avoid transecting the placenta by traditional low-transverse cesarean section (CS), resulting in catastrophic hemorrhage and fetal anemia. To prevent this critical risk, we developed the CS with transverse uterine fundal incision (TUFI) and this technique has been widely used as a beneficial surgical method in clinical practice owing to its safety advantages for the mother and neonate since our first report. However, the risk of uterine rupture during a subsequent pregnancy remains unclear. Based on our 17 years of experience, patients who require TUFI do not need to avoid this beneficial operative method simply because of their desire to conceive again, as long as certain conditions can be met. To approve a post-TUFI pregnancy, an appropriate suture method, delay in conception for at least 12 months with evaluation of the TUFI scar, and cautious postoperative management are at a minimum essential. In this article, we showed our recommendation for operative procedure and discuss the current status of the management of post-TUFI pregnancies based on the evaluation of the TUFI wound scar and experience with postoperative pregnancies.
Collapse
Affiliation(s)
- Takashi Shibata
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| | - Koji Nishijima
- General Center for Perinatal, Maternal and Neonatal Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Satoshi Nakago
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| | - Fumikazu Kotsuji
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| |
Collapse
|
6
|
Sachani P, Dhande R, Parihar P, Kasat PR, Bedi GN, Pradeep U, Kothari P, Mapari SA. Enhancing the Understanding of Breast Vascularity Through Insights From Dynamic Contrast-Enhanced Magnetic Resonance Imaging: A Comprehensive Review. Cureus 2024; 16:e70226. [PMID: 39463566 PMCID: PMC11512160 DOI: 10.7759/cureus.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Breast vascularity plays a crucial role in both physiological and pathological processes, particularly in the development and progression of breast cancer. Understanding vascular changes within breast tissue is essential for accurate diagnosis, treatment planning, and monitoring therapeutic response. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has emerged as a valuable tool for evaluating breast vascularity due to its ability to provide detailed functional and morphological insights. DCE-MRI utilizes contrast agents to highlight blood flow and vessel permeability, making it especially useful in differentiating between benign and malignant lesions. This review explores the significance of DCE-MRI in breast vascularity assessment, highlighting its principles, clinical applications, and role in detecting malignancy through vascular changes. We also examine its utility in monitoring treatment response and quantitative analysis of perfusion metrics such as Ktrans and extracellular-extravascular volume (Ve). While DCE-MRI offers remarkable diagnostic accuracy, challenges remain regarding its cost, accessibility, and potential overlap of enhancement patterns between benign and malignant conditions. The review further discusses emerging technologies and future directions for DCE-MRI, including advanced imaging techniques and machine learning-based quantification. Overall, DCE-MRI stands out as a powerful tool in the comprehensive evaluation of breast vascularity, with significant potential to improve patient outcomes in breast cancer management.
Collapse
Affiliation(s)
- Pratiksha Sachani
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Rajasbala Dhande
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Paschyanti R Kasat
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gautam N Bedi
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Utkarsh Pradeep
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | | - Smruti A Mapari
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
7
|
Rastogi A, Yalavarthy PK. Greybox: A hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data. Med Phys 2024; 51:4838-4858. [PMID: 38214325 DOI: 10.1002/mp.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND A variety of deep learning-based and iterative approaches are available to predict Tracer Kinetic (TK) parameters from fully sampled or undersampled dynamic contrast-enhanced (DCE) MRI data. However, both the methods offer distinct benefits and drawbacks. PURPOSE To propose a hybrid algorithm (named as 'Greybox'), using both model- as well as DL-based, for solving a multi-parametric non-linear inverse problem of directly estimating TK parameters from undersampled DCE MRI data, which is invariant to undersampling rate. METHODS The proposed algorithm was inspired by plug-and-play algorithms used for solving linear inverse imaging problems. This technique was tested for its effectiveness in solving the nonlinear ill-posed inverse problem of generating 3D TK parameter maps from four-dimensional (4D; Spatial + Temporal) retrospectively undersampled k-space data. The algorithm learns a deep learning-based prior using UNET to estimate theK trans $\mathbf {K_{trans}}$ andV p $\mathbf {V_{p}}$ parameters based on the Patlak pharmacokinetic model, and this trained prior was utilized to estimate the TK parameter maps using an iterative gradient-based optimization scheme. Unlike the existing DL models, this network is invariant to the undersampling rate of the input data. The proposed method was compared with the total variation-based direct reconstruction technique on brain, breast, and prostate DCE-MRI datasets for various undersampling rates using the Radial Golden Angle (RGA) scheme. For the breast dataset, an indirect estimation using the Fast Composite Splitting algorithm was utilized for comparison. Undersampling rates of 8 × $\times$ , 12 × $\times$ and 20 × $\times$ were used for the experiments, and the results were compared using the PSNR and SSIM as metrics. For the breast dataset of 10 patients, data from four patients were utilized for training (1032 samples), two for validation (752 samples), and the entire volume of four patients for testing. Similarly, for the prostate dataset of 18 patients, 10 patients were utilized for training (720 samples), five for validation (216 samples), and the whole volume of three patients for testing. For the brain dataset of nineteen patients, ten patients were used for training (3152 samples), five for validation (1168 samples), and the whole volume of four patients for testing. Statistical tests were also conducted to assess the significance of the improvement in performance. RESULTS The experiments showed that the proposed Greybox performs significantly better than other direct reconstruction methods. The proposed algorithm improved the estimatedK trans $\mathbf {K_{trans}}$ andV p $\mathbf {V_{p}}$ in terms of the peak signal-to-noise ratio by up to 3 dB compared to other standard reconstruction methods. CONCLUSION The proposed hybrid reconstruction algorithm, Greybox, can provide state-of-the-art performance in solving the nonlinear inverse problem of DCE-MRI. This is also the first of its kind to utilize convolutional neural network-based encodings as part of the plug-and-play priors to improve the performance of the reconstruction algorithm.
Collapse
Affiliation(s)
- Aditya Rastogi
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
- University Hospital Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
8
|
Kotsuji F, Shibata T, Nakago S, Kato H, Hosono S, Fukuoka Y, Nishijima K. Evaluation of incision healing status after transverse uterine fundal incision for cesarean delivery and postoperative pregnancy: a ten-year single-center retrospective study. BMC Pregnancy Childbirth 2024; 24:277. [PMID: 38622521 PMCID: PMC11017641 DOI: 10.1186/s12884-024-06446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Transverse uterine fundal incision (TUFI) is a beneficial procedure for mothers and babies at risk due to placenta previa-accreta, and has been implemented worldwide. However, the risk of uterine rupture during a subsequent pregnancy remains unclear. We therefore evaluated the TUFI wound scar to determine the approval criteria for pregnancy after this surgery. METHODS Between April 2012 and August 2022, we performed TUFI on 150 women. Among 132 of the 150 women whose uteruses were preserved after TUFI, 84 women wished to conceive again. The wound healing status, scar thickness, and resumption of blood flow were evaluated in these women by magnetic resonance imaging (MRI) and sonohysterogram at 12 months postoperatively. Furthermore, TUFI scars were directly observed during the Cesarean sections in women who subsequently conceived. RESULTS Twelve women were lost to follow-up and one conceived before the evaluation, therefore 71 cases were analyzed. MRI scans revealed that the "scar thickness", the thinnest part of the scar compared with the normal surrounding area, was ≥ 50% in all cases. The TUFI scars were enhanced in dynamic contrast-enhanced MRI except for four women. However, the scar thickness in these four patients was greater than 80%. Twenty-three of the 71 women conceived after TUFI and delivered live babies without notable problems until August 2022. Their MRI scans before pregnancy revealed scar thicknesses of 50-69% in two cases and ≥ 70% in the remaining 21 cases. And resumption of blood flow was confirmed in all patients except two cases whose scar thickness ≥ 90%. No evidence of scar healing failure was detected at subsequent Cesarean sections, but partial thinning was found in two patients whose scar thicknesses were 50-69%. In one woman who conceived seven months after TUFI and before the evaluation, uterine rupture occurred at 26 weeks of gestation. CONCLUSIONS Certain criteria, including an appropriate suture method, delayed conception for at least 12 months, evaluation of the TUFI scar at 12 months postoperatively, and cautious postoperative management, must all be met in order to approve a post-TUFI pregnancy. Possible scar condition criteria for permitting a subsequent pregnancy could include the scar thickness being ≥ 70% of the surrounding area on MRI scans, at least partially resumed blood flow, and no abnormalities on the sonohysterogram. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Fumikazu Kotsuji
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| | - Takashi Shibata
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| | - Satoshi Nakago
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| | - Hiroki Kato
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| | - Sayoko Hosono
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| | - Yasunori Fukuoka
- Department of Obstetrics and Gynecology, Takatsuki General Hospital, Takatsuki, Japan
| | - Koji Nishijima
- Center for Perinatal, Maternal and Neonatal Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan.
| |
Collapse
|
9
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Perez RC, Kim D, Maxwell AWP, Camacho JC. Functional Imaging of Hypoxia: PET and MRI. Cancers (Basel) 2023; 15:3336. [PMID: 37444446 DOI: 10.3390/cancers15133336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular and functional imaging have critical roles in cancer care. Existing evidence suggests that noninvasive detection of hypoxia within a particular type of cancer can provide new information regarding the relationship between hypoxia, cancer aggressiveness and altered therapeutic responses. Following the identification of hypoxia inducible factor (HIF), significant progress in understanding the regulation of hypoxia-induced genes has been made. These advances have provided the ability to therapeutically target HIF and tumor-associated hypoxia. Therefore, by utilizing the molecular basis of hypoxia, hypoxia-based theranostic strategies are in the process of being developed which will further personalize care for cancer patients. The aim of this review is to provide an overview of the significance of tumor hypoxia and its relevance in cancer management as well as to lay out the role of imaging in detecting hypoxia within the context of cancer.
Collapse
Affiliation(s)
- Ryan C Perez
- Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - DaeHee Kim
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aaron W P Maxwell
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Juan C Camacho
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
11
|
Chang J, Zhou H, Li C, Sun J, Wang Q, Li Y, Zhao W. Preparation of PFPE-Based Polymeric Nanoparticles via Polymerization-Induced Self-Assembly as Contrast Agents for 19F MRI. Biomacromolecules 2023. [PMID: 37235210 DOI: 10.1021/acs.biomac.3c00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) probes have received considerable research interest as imaging contrast agents (CAs), but they remain neglected and underutilized due to the limited fluorine content or poor performance of fluorinated tracers. Here, we present polymeric nanoparticles (NPs) as 19F MRI CAs with a simple synthesis method and promising imaging performance. First, hydrophilic random copolymers were synthesized from oligo(ethylene glycol) methyl ether acrylate and perfluoropolyether methacrylate by reversible addition-fragmentation chain transfer (RAFT) polymerization. The optimal fluorine content, polymer concentration, and cytotoxicity as 19F MRI CAs were investigated in detail. Then, the optimal copolymer was selected as the macromolecular chain transfer agent, and the chain extension was performed with 2-(perfluorooctyl ethyl methacrylate). Subsequently, the NPs with different morphologies, such as ellipsoidal, spherical nanoparticles and vesicles, were prepared in situ by the RAFT-mediated polymerization-induced self-assembly method. In addition, the 19F MRI signal and cytotoxicity studies further confirmed that these polymeric NPs are nontoxic and have great potential as promising 19F MRI CAs for biological applications.
Collapse
Affiliation(s)
- Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Jingjiang Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wei Zhao
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| |
Collapse
|
12
|
Rastogi A, Dutta A, Yalavarthy PK. VTDCE-Net: A time invariant deep neural network for direct estimation of pharmacokinetic parameters from undersampled DCE MRI data. Med Phys 2023; 50:1560-1572. [PMID: 36354289 DOI: 10.1002/mp.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To propose a robust time and space invariant deep learning (DL) method to directly estimate the pharmacokinetic/tracer kinetic (PK/TK) parameters from undersampled dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data. METHODS DCE-MRI consists of 4D (3D-spatial + temporal) data and has been utilized to estimate 3D (spatial) tracer kinetic maps. Existing DL architecture for this task needs retraining for variation in temporal and/or spatial dimensions. This work proposes a DL algorithm that is invariant to training and testing in both temporal and spatial dimensions. The proposed network was based on a 2.5-dimensional Unet architecture, where the encoder consists of a 3D convolutional layer and the decoder consists of a 2D convolutional layer. The proposed VTDCE-Net was evaluated for solving the ill-posed inverse problem of directly estimating TK parameters from undersampled k - t $k-t$ space data of breast cancer patients, and the results were systematically compared with a total variation (TV) regularization based direct parameter estimation scheme. In the breast dataset, the training was performed on patients with 32 time samples, and testing was carried out on patients with 26 and 32 time samples. Translation of the proposed VTDCE-Net for brain dataset to show the generalizability was also carried out. Undersampling rates (R) of 8× , 12× , and 20× were utilized with PSNR and SSIM as the figures of merit in this evaluation. TK parameter maps estimated from fully sampled data were utilized as ground truth. RESULTS Experiments carried out in this work demonstrate that the proposed VTDCE-Net outperforms the TV scheme on both breast and brain datasets across all undersampling rates. For K trans $\mathbf {K_{trans}}$ and V p $\mathbf {V_{p}}$ maps, the improvement over TV is as high as 2 and 5 dB, respectively, using the proposed VTDCE-Net. CONCLUSION Temporal points invariant DL network that was proposed in this work to estimate the TK-parameters using DCE-MRI data has provided state-of-the-art performance compared to standard image reconstruction methods and is shown to work across all undersampling rates.
Collapse
Affiliation(s)
- Aditya Rastogi
- Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Arindam Dutta
- Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | | |
Collapse
|
13
|
Predictive model based on DCE-MRI and clinical features for the evaluation of pain response after stereotactic body radiotherapy in patients with spinal metastases. Eur Radiol 2023:10.1007/s00330-023-09437-y. [PMID: 36735042 DOI: 10.1007/s00330-023-09437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the correlation of conventional MRI, DCE-MRI and clinical features with pain response after stereotactic body radiotherapy (SBRT) in patients with spinal metastases and establish a pain response prediction model. METHODS Patients with spinal metastases who received SBRT in our hospital from July 2018 to April 2022 consecutively were enrolled. All patients underwent conventional MRI and DCE-MRI before treatment. Pain was assessed before treatment and in the third month after treatment, and the patients were divided into pain-response and no-pain-response groups. A multivariate logistic regression model was constructed to obtain the odds ratio and 95% confidence interval (CI) for each variable. C-index was used to evaluate the model's discrimination performance. RESULTS Overall, 112 independent spinal lesions in 89 patients were included. There were 73 (65.2%) and 39 (34.8%) lesions in the pain-response and no-pain-response groups, respectively. Multivariate analysis showed that the number of treated lesions, pretreatment pain score, Karnofsky performance status score, Bilsky grade, and the DCE-MRI quantitative parameter Ktrans were independent predictors of post-SBRT pain response in patients with spinal metastases. The discrimination performance of the prediction model was good; the C index was 0.806 (95% CI: 0.721-0.891), and the corrected C-index was 0.754. CONCLUSION Some imaging and clinical features correlated with post-SBRT pain response in patients with spinal metastases. The model based on these characteristics has a good predictive value and can provide valuable information for clinical decision-making. KEY POINTS • SBRT can accurately irradiate spinal metastases with ablative doses. • Predicting the post-SBRT pain response has important clinical implications. • The prediction models established based on clinical and MRI features have good performance.
Collapse
|
14
|
Xu J, Ma Y, Mei H, Wang Q. Diagnostic Value of Multimodal Magnetic Resonance Imaging in Discriminating Between Metastatic and Non-Metastatic Pelvic Lymph Nodes in Cervical Cancer. Int J Gen Med 2022; 15:6279-6288. [PMID: 35911622 PMCID: PMC9326496 DOI: 10.2147/ijgm.s372154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background The status of pelvic lymph node (PLN) metastasis affects treatment and prognosis plans in patients with cervical cancer. However, it is hard to be diagnosed in clinical practice. Purpose The present study aimed to evaluate the diagnostic value of multimodal magnetic resonance imaging (MRI) in discriminating between metastatic and non-metastatic pelvic lymph nodes (PLNs) in cervical cancer. Methods This retrospective study analyzed MRIs of 209 PLNs in 25 women with pathologically proven cervical cancer. All PLNs had been assessed by pre-treatment multimodal MRIs, and their status was finally confirmed by histopathology. In conventional MRI, lymph node characteristics were compared between metastatic and non-metastatic PLNs. Signal intensity, time–intensity curve (TIC) patterns minimal and mean apparent diffusion coefficients (ADC) were compared between them in DWI. In DCE-MRI, quantitative (Ktrans, Kep and Ve) analyses were performed on DCE-MRI sequences, and their predictive values were analyzed by ROC curves. Results Of 209 PLNs, 22 (10.53%) were metastases and 187 (89.47%) were non-metastases at histopathologic examination. Considering a comparison of lymph node characteristics, the short axis size, the long axis size, and the boundary differed significantly between the two groups (P<0.05).The differences in ADCmin, TIC types, Ktrans and Ve between metastatic and non-metastatic PLNs were significant as well (P<0.05). The good diagnostic performance of multimodal MRI was shown in discriminating between metastatic and non-metastatic PLNs, with the sensitivity of 85.0% (17/20), specificity of 97.3% (184/189), and accuracy of 96.2% (201/209). ROC analyses showed that the diagnostic accuracy of ADCmin, Ktrans and Ve for discriminating between metastatic and non-metastatic PLNs in cervical cancer was 83.7%, 91.4%, and 92.4% with the cut-off values of 0.72 × 10−3mm2/s, 0.52 min−1, and 0.53 min−1, respectively. Conclusion Multimodal MRI showed good diagnostic performance in determining PLN status in cervical cancer.
Collapse
Affiliation(s)
- Jian Xu
- Department of Radiology, Ningbo Women & Children's Hospital, Ningbo, People's Republic of China
| | - Yingli Ma
- Department of Neurology, Ningbo Hospital of Traditional Chinese Medicine, Ningbo, People's Republic of China
| | - Haibing Mei
- Department of Radiology, Ningbo Women & Children's Hospital, Ningbo, People's Republic of China
| | - Qimin Wang
- Department of Radiology, Ningbo Women & Children's Hospital, Ningbo, People's Republic of China
| |
Collapse
|
15
|
Sun TG, Mao L, Chai ZK, Shen XM, Sun ZJ. Predicting the Proliferation of Tongue Cancer With Artificial Intelligence in Contrast-Enhanced CT. Front Oncol 2022; 12:841262. [PMID: 35463386 PMCID: PMC9026338 DOI: 10.3389/fonc.2022.841262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is the most common oral malignancy. The proliferation status of tumor cells as indicated with the Ki-67 index has great impact on tumor microenvironment, therapeutic strategy making, and patients’ prognosis. However, the most commonly used method to obtain the proliferation status is through biopsy or surgical immunohistochemical staining. Noninvasive method before operation remains a challenge. Hence, in this study, we aimed to validate a novel method to predict the proliferation status of TSCC using contrast-enhanced CT (CECT) based on artificial intelligence (AI). CECT images of the lesion area from 179 TSCC patients were analyzed using a convolutional neural network (CNN). Patients were divided into a high proliferation status group and a low proliferation status group according to the Ki-67 index of patients with the median 20% as cutoff. The model was trained and then the test set was automatically classified. Results of the test set showed an accuracy of 65.38% and an AUC of 0.7172, suggesting that the majority of samples were classified correctly and the model was stable. Our study provided a possibility of predicting the proliferation status of TSCC using AI in CECT noninvasively before operation.
Collapse
Affiliation(s)
- Ting-Guan Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zi-Kang Chai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xue-Meng Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Zhi-Jun Sun,
| |
Collapse
|
16
|
Di Girolamo M, Grossi A. Contrast agents for MRI and side effects. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
17
|
Agarwal R, Yap MH, Hasan MK, Zwiggelaar R, Martí R. Deep Learning in Mammography Breast Cancer Detection. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Lallemand F, Leroi N, Blacher S, Bahri MA, Balteau E, Coucke P, Noël A, Plenevaux A, Martinive P. Tumor Microenvironment Modifications Recorded With IVIM Perfusion Analysis and DCE-MRI After Neoadjuvant Radiotherapy: A Preclinical Study. Front Oncol 2021; 11:784437. [PMID: 34993143 PMCID: PMC8724034 DOI: 10.3389/fonc.2021.784437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Neoadjuvant radiotherapy (NeoRT) improves tumor local control and facilitates tumor resection in many cancers. Some clinical studies demonstrated that both timing of surgery and RT schedule influence tumor dissemination, and subsequently patient overall survival. Previously, we developed a pre-clinical model demonstrating the impact of NeoRT schedule and timing of surgery on metastatic spreading. We report on the impact of NeoRT on tumor microenvironment by MRI. METHODS According to our NeoRT model, MDA-MB 231 cells were implanted in the flank of SCID mice. Tumors were locally irradiated (PXI X-Rad SmART) with 2x5Gy and then surgically removed at different time points after RT. Diffusion-weighted (DW) and Dynamic contrast enhancement (DCE) MRI images were acquired before RT and every 2 days between RT and surgery. IntraVoxel Incoherent Motion (IVIM) analysis was used to obtain information on intravascular diffusion, related to perfusion (F: perfusion factor) and subsequently tumor vessels perfusion. For DCE-MRI, we performed semi-quantitative analyses. RESULTS With this experimental model, a significant and transient increase of the perfusion factor F [50% of the basal value (n=16, p<0.005)] was observed on day 6 after irradiation as well as a significant increase of the WashinSlope with DCE-MRI at day 6 (n=13, p<0.05). Using immunohistochemistry, a significant increase of perfused vessels was highlighted, corresponding to the increase of perfusion in MRI at this same time point. Moreover, Tumor surgical resection during this peak of vascularization results in an increase of metastasis burden (n=10, p<0.05). CONCLUSION Significant differences in perfusion-related parameters (F and WashinSlope) were observed on day 6 in a neoadjuvant radiotherapy model using SCID mice. These modifications are correlated with an increase of perfused vessels in histological analysis and also with an increase of metastasis spreading after the surgical procedure. This experimental observation could potentially result in a way to personalize treatment, by modulating the time of surgery guided on MRI functional data, especially tumor perfusion.
Collapse
Affiliation(s)
- François Lallemand
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Natacha Leroi
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Coucke
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Alain Plenevaux
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Martinive
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- Department of Radiotherapy-Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
19
|
Gerwing M, Krähling T, Schliemann C, Harrach S, Schwöppe C, Berdel AF, Klein S, Hartmann W, Wardelmann E, Heindel WL, Lenz G, Berdel WE, Wildgruber M. Multiparametric Magnetic Resonance Imaging for Immediate Target Hit Assessment of CD13-Targeted Tissue Factor tTF-NGR in Advanced Malignant Disease. Cancers (Basel) 2021; 13:cancers13235880. [PMID: 34884988 PMCID: PMC8657298 DOI: 10.3390/cancers13235880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Since the knowledge of tumor biology has advanced, a variety of targeted therapies has been developed. These do not immediately affect the tumor size, so optimized oncological imaging is needed. In this phase I study of patients with advanced malignant disease, a multiparametric imaging approach was used to assess changes in tumor perfusion after vessel-occluding therapy with the CD13 targeted truncated tissue factor with a C-terminal NGR-peptide. It comprises different sequences and the use of two different contrast media, ferucarbotran and gadobutrol. This multiparametric MRI protocol enables assessing the therapy effectiveness as early as five hours after therapy initiation. Abstract Early assessment of target hit in anti-cancer therapies is a major task in oncologic imaging. In this study, immediate target hit and effectiveness of CD13-targeted tissue factor tTF-NGR in patients with advanced malignant disease enrolled in a phase I trial was assessed using a multiparametric MRI protocol. Seventeen patients with advanced solid malignancies were enrolled in the trial and received tTF-NGR for at least one cycle of five daily infusions. Tumor target lesions were imaged with multiparametric MRI before therapy initiation, five hours after the first infusion and after five days. The imaging protocol comprised ADC, calculated from DWI, and DCE imaging and vascular volume fraction (VVF) assessment. DCE and VVF values decreased within 5 h after therapy initiation, indicating early target hit with a subsequent decrease in tumor perfusion due to selective tumor vessel occlusion and thrombosis induced by tTF-NGR. Simultaneously, ADC values increased at five hours after tTF-NGR administration. In four patients, treatment had to be stopped due to an increase in troponin T hs, with subsequent anticoagulation. In these patients, a reversed effect, with DCE and VVF values increasing and ADC values decreasing, was observed after anticoagulation. Changes in imaging parameters were independent of the mean vessel density determined by immunohistochemistry. By using a multiparametric imaging approach, changes in tumor perfusion after initiation of a tumor vessel occluding therapy can be evaluated as early as five hours after therapy initiation, enabling early assessment of target hit.
Collapse
Affiliation(s)
- Mirjam Gerwing
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
- Correspondence:
| | - Tobias Krähling
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Saliha Harrach
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Christian Schwöppe
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Andrew F. Berdel
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Sebastian Klein
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Eva Wardelmann
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Walter L. Heindel
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
| | - Georg Lenz
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Moritz Wildgruber
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
- Department of Radiology, University Hospital, LMU Munich, D-81377 Munich, Germany
| |
Collapse
|
20
|
Caro C, Avasthi A, Paez-Muñoz JM, Pernia Leal M, García-Martín ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci 2021; 9:7984-7995. [PMID: 34710207 DOI: 10.1039/d1bm01398j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Passive tumor targeting via the enhanced permeability and retention (EPR) effect has long been considered the most effective mechanism for the accumulation of nanoparticles inside solid tumors. However, several studies have demonstrated that the EPR effect is largely dependent on the tumor type and location. Particularly complex is the situation in brain tumors, where the presence of the blood-brain tumor barrier (BBTB) adds an extra limiting factor in reaching the tumor interstitium. However, it remains unclear whether these restraints imposed by the BBTB prevent the EPR effect from acting as an efficient tumor targeting mechanism for metallic nanoparticles. In this work, we have studied the EPR effect of metallic magnetic nanoparticles (MMNPs) in a glioblastoma (GBM) model by parametric MRI. Our results showed that only MMNPs ≤50 nm could reach the tumor interstitium, whereas larger MMNPs were unable to cross the BBTB. Furthermore, even for MMNPs around 30-50 nm, the amount of them found within the tumor was scarce and restricted to the vicinity of large tumor vessels, indicating that the BBTB strongly limits the passive accumulation of metallic nanoparticles in brain tumors. Therefore, active targeting becomes the most reasonable strategy to target metallic nanoparticles to GBMs.
Collapse
Affiliation(s)
- Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Jose M Paez-Muñoz
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - María L García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
21
|
Chen Y, Zhang E, Wang Q, Yuan H, Zhuang H, Lang N. Use of dynamic contrast-enhanced MRI for the early assessment of outcome of CyberKnife stereotactic radiosurgery for patients with spinal metastases. Clin Radiol 2021; 76:864.e1-864.e6. [PMID: 34404514 DOI: 10.1016/j.crad.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
AIM To explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for evaluating early outcomes of CyberKnife radiosurgery for spinal metastases. MATERIALS AND METHODS Patients with spinal metastases who were treated with CyberKnife radiosurgery from July 2018 to December 2020 were enrolled. Conventional MRI and DCE-MRI were performed before treatment and at 3 months after treatment. Patients showing disease progression were defined as the progressive disease (PD) group and those showing complete response, partial response, and stable disease were defined as the non-PD group. The haemodynamic parameters (volume transfer constant [Ktrans], rate constant [Kep], and extravascular space [Ve]) before and after treatment between the groups were analysed. Area under the curve (AUC) values were calculated. RESULTS A total of 27 patients with 39 independent spinal lesions were included. The median follow-up time was 18.6 months (6.2-36.4 months). There were 27 lesions in the non-PD group and 12 lesions in the PD group. Post-treatment Kep, ΔKtrans and ΔKep in the non-PD group (0.959/min, - 32.6% and -41.1%, respectively) were significantly lower than the corresponding values in PD group (1.429/min, 20.4% and -6%; p<0.05). Post-treatment Ve and ΔVe (0.223 and 27.8%, respectively) in the non-PD group were significantly higher than that of the PD group (0.165 and -13.5%, p<0.05). ΔKtrans showed the highest diagnostic efficiency, with an AUC of 0.821. CONCLUSIONS DCE-MRI parameters change significantly at an early stage after CyberKnife stereotactic radiosurgery for spinal metastases. DCE-MRI may be of value in determining the early treatment response.
Collapse
Affiliation(s)
- Y Chen
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - E Zhang
- Department of Radiology, Peking University International Hospital, 1 Life Science Park, Life Road, Haidian District, Beijing, 102206, PR China
| | - Q Wang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - H Yuan
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - H Zhuang
- Department of Radiotherapy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - N Lang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China.
| |
Collapse
|
22
|
van Zandwijk JK, Simonis FFJ, Heslinga FG, Hofmeijer EIS, Geelkerken RH, ten Haken B. Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI. PLoS One 2021; 16:e0256252. [PMID: 34403442 PMCID: PMC8370648 DOI: 10.1371/journal.pone.0256252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxides (USPIOs), commonly used as negative CA, might also be used for generating positive contrast in low-field MRI. The purpose of this study was to determine whether an USPIO or a gadolinium based contrast agent is more appropriate at low field strengths. Relaxivity values of ferumoxytol (USPIO) and gadoterate (gadolinium based) were used in this research to simulate normalized signal intensity (SI) curves within a concentration range of 0–15 mM. Simulations were experimentally validated on a 0.25T MRI scanner. Simulations and experiments were performed using spin echo (SE), spoiled gradient echo (SGE), and balanced steady-state free precession (bSSFP) sequences. Maximum achievable SIs were assessed for both CAs in a range of concentrations on all sequences. Simulations at 0.25T showed a peak in SIs at low concentrations ferumoxytol versus a wide top at higher concentrations for gadoterate in SE and SGE. Experiments agreed well with the simulations in SE and SGE, but less in the bSSFP sequence due to overestimated relaxivities in simulations. At low magnetic field strengths, ferumoxytol generates similar signal enhancement at lower concentrations than gadoterate.
Collapse
Affiliation(s)
- Jordy K. van Zandwijk
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, Netherlands
- * E-mail:
| | - Frank F. J. Simonis
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Friso G. Heslinga
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Elfi I. S. Hofmeijer
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert H. Geelkerken
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, Netherlands
- Multimodality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Bennie ten Haken
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| |
Collapse
|
23
|
Sridharan B, Devarajan N, Jobanputra R, Gowd GS, Anna IM, Ashokan A, Nair S, Koyakutty M. nCP:Fe Nanocontrast Agent for Magnetic Resonance Imaging-Based Early Detection of Liver Cirrhosis and Hepatocellular Carcinoma. ACS APPLIED BIO MATERIALS 2021; 4:3398-3409. [PMID: 35014424 DOI: 10.1021/acsabm.1c00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Early detection of liver tumors and cirrhotic lesions by magnetic resonance imaging (MRI) remains a great challenge. Here, we report a biomineral nanocontrast agent based on iron-doped nanocalcium phosphate (nCP:Fe-CA) for magnetic resonance imaging of early-stage liver cirrhotic and hepatocellular carcinoma nodules using rat models. We have optimized an intravenously injectable, aqueous suspension of nCP:Fe-CA having an average size of 137.6 nm, a spherical shape, magnetic relaxivity of 63 mM-1S-1, and colloidal stability for 48 h, post-resuspension in an aqueous phase. Compared to superparamagnetic iron oxide nanoparticles (SPIONs), the optimized nCP:Fe-CA could detect liver tumor lesions as small as ∼0.25 cm, whereas the current clinical detection limit is ∼1 cm. In addition, multiple cirrhotic nodules of size <0.2 cm could be detected by nCP:Fe-CA-assisted MRI. The number of nodules observed after injecting nCP:Fe-CA was ∼3 times higher than that without CA (5-10 nodules). A biocompatibility study on healthy rats injected with nCP:Fe-CA showed unaltered liver transaminases, blood urea nitrogen, serum creatinine, and insignificant hemolysis. Furthermore, hepatobiliary clearance of nCP:Fe-CA was observed in 72 h compared to prolonged retention of SPIONs for 30 days when tested under identical conditions. Overall, the nCP:Fe-CA nanoparticles showed promising results as a biocompatible, MR contrast (T2) agent for the early-stage imaging of liver cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Naveen Devarajan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Rupal Jobanputra
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Genekehal Siddaramana Gowd
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Ida Mulayirikkal Anna
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Anusha Ashokan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Shantikumar Nair
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Manzoor Koyakutty
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| |
Collapse
|
24
|
Early response assessment after CyberKnife stereotactic radiosurgery for symptomatic vertebral hemangioma by quantitative parameters from dynamic contrast-enhanced MRI. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2867-2873. [PMID: 33646419 DOI: 10.1007/s00586-021-06742-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 11/28/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The present study aimed to explore the value of DCE-MRI to evaluate the early efficacy of CyberKnife stereotactic radiosurgery in patients with symptomatic vertebral hemangioma (SVH). METHODS A retrospective analysis of patients with spinal SVH who underwent CyberKnife stereotactic radiosurgery from January 2017 to August 2019 was performed. All patients underwent DCE-MRI before treatment and three months after treatment. The parameters included volume transfer constant (Ktrans), transfer rate constant (Kep), and extravascular extracellular space volume fraction (Ve). RESULTS A total of 11 patients (11 lesions) were included. After treatment, six patients (54.5%) had a partial response, five patients (45.4%) had stable disease, and three patients (27.3%) presented with reossification. Ktrans and Kep decreased significantly in the third month after treatment (p = 0.003 and p = 0.026, respectively). ΔKtrans was -46.23% (range, -87.37 to -23.78%), and ΔKep was -36.18% (range, -85.62 to 94.40%). The change in Ve was not statistically significant (p = 0.213), and ΔVe was -28.01% (range, -58.24 to 54.76%). CONCLUSION DCE-MRI parameters Ktrans and Kep change significantly after CyberKnife stereotactic radiosurgery for SVH. Thus, DCE-MRI may be of value in determining the early efficacy of CyberKnife stereotactic radiosurgery.
Collapse
|
25
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
26
|
Stanton EH, Persson NDÅ, Gomolka RS, Lilius T, Sigurðsson B, Lee H, Xavier ALR, Benveniste H, Nedergaard M, Mori Y. Mapping of CSF transport using high spatiotemporal resolution dynamic contrast-enhanced MRI in mice: Effect of anesthesia. Magn Reson Med 2021; 85:3326-3342. [PMID: 33426699 DOI: 10.1002/mrm.28645] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Dynamic contrast-enhanced MRI (DCE-MRI) represents the only available approach for glymphatic cerebrospinal fluid (CSF) flow 3D mapping in the brain of living animals and humans. The purpose of this study was to develop a novel DCE-MRI protocol for mapping of the glymphatic system transport with improved spatiotemporal resolution, and to validate the new protocol by comparing the transport in mice anesthetized with either isoflurane or ketamine/xylazine. METHODS The contrast agent, gadobutrol, was administered into the CSF of the cisterna magna and its transport visualized continuously on a 9.4T preclinical scanner using 3D fast-imaging with a steady-state free-precession sequence (3D-FISP), which has a spatial resolution of 0.001 mm3 and a temporal resolution of 30 s. The MR signals were measured dynamically for 60 min in multiple volumes of interest covering the entire CSF space and brain parenchyma. RESULTS The results confirm earlier findings that glymphatic CSF influx is higher under ketamine/xylazine than with isoflurane anesthesia. This was extended to account for new details about the distinct CSF efflux pathways under the two anesthetic regimens. Dynamic contrast MR shows that CSF clearance occurs mainly along the vagus nerve near the jugular vein under isoflurane and via the olfactory bulb under ketamine/xylazine. CONCLUSION The improved spatial and temporal sampling rates afforded by 3D-FISP shed new light on the pharmacological modulation of CSF efflux paths. The present observations may have the potential to set a new standard for future experimental DCE-MRI studies of the glymphatic system.
Collapse
Affiliation(s)
- Evan Hunter Stanton
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Daniel Åke Persson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ryszard Stefan Gomolka
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Sigurðsson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anna Lenice Ribeiro Xavier
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Tan Z, Lam WW, Oakden W, Murray L, Koletar MM, Liu SK, Stanisz GJ. Saturation transfer properties of tumour xenografts derived from prostate cancer cell lines 22Rv1 and DU145. Sci Rep 2020; 10:21315. [PMID: 33277574 PMCID: PMC7718243 DOI: 10.1038/s41598-020-78353-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Histopathology is currently the most reliable tool in assessing the aggressiveness and prognosis of solid tumours. However, developing non-invasive modalities for tumour evaluation remains crucial due to the side effects and complications caused by biopsy procedures. In this study, saturation transfer MRI was used to investigate the microstructural and metabolic properties of tumour xenografts in mice derived from the prostate cancer cell lines 22Rv1 and DU145, which express different aggressiveness. The magnetization transfer (MT) and chemical exchange saturation transfer (CEST) effects, which are associated with the microstructural and metabolic properties in biological tissue, respectively, were analyzed quantitatively and compared amongst different tumour types and regions. Histopathological staining was performed as a reference. Higher cellular density and metabolism expressed in more aggressive tumours (22Rv1) were associated with larger MT and CEST effects. High collagen content in the necrotic regions might explain their higher MT effects compared to tumour regions.
Collapse
Affiliation(s)
- Ziyu Tan
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wilfred W Lam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Leedan Murray
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Stanley K Liu
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
28
|
Pattern Classification Approaches for Breast Cancer Identification via MRI: State-Of-The-Art and Vision for the Future. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mining algorithms for Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) of breast tissue are discussed. The algorithms are based on recent advances in multi-dimensional signal processing and aim to advance current state-of-the-art computer-aided detection and analysis of breast tumours when these are observed at various states of development. The topics discussed include image feature extraction, information fusion using radiomics, multi-parametric computer-aided classification and diagnosis using information fusion of tensorial datasets as well as Clifford algebra based classification approaches and convolutional neural network deep learning methodologies. The discussion also extends to semi-supervised deep learning and self-supervised strategies as well as generative adversarial networks and algorithms using generated confrontational learning approaches. In order to address the problem of weakly labelled tumour images, generative adversarial deep learning strategies are considered for the classification of different tumour types. The proposed data fusion approaches provide a novel Artificial Intelligence (AI) based framework for more robust image registration that can potentially advance the early identification of heterogeneous tumour types, even when the associated imaged organs are registered as separate entities embedded in more complex geometric spaces. Finally, the general structure of a high-dimensional medical imaging analysis platform that is based on multi-task detection and learning is proposed as a way forward. The proposed algorithm makes use of novel loss functions that form the building blocks for a generated confrontation learning methodology that can be used for tensorial DCE-MRI. Since some of the approaches discussed are also based on time-lapse imaging, conclusions on the rate of proliferation of the disease can be made possible. The proposed framework can potentially reduce the costs associated with the interpretation of medical images by providing automated, faster and more consistent diagnosis.
Collapse
|
29
|
Rastogi A, Yalavarthy PK. Comparison of iterative parametric and indirect deep learning‐based reconstruction methods in highly undersampled DCE‐MR Imaging of the breast. Med Phys 2020; 47:4838-4861. [DOI: 10.1002/mp.14447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Aditya Rastogi
- Department of Computational and Data Sciences Indian Institute of Science Bangalore560012 India
| | | |
Collapse
|
30
|
Combination of DCE-MRI and DWI in Predicting the Treatment Effect of Concurrent Chemoradiotherapy in Esophageal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2576563. [PMID: 32626736 PMCID: PMC7315287 DOI: 10.1155/2020/2576563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 12/26/2019] [Accepted: 01/30/2020] [Indexed: 11/17/2022]
Abstract
Background Concurrent chemoradiotherapy (CCRT) is the main treatment for esophageal cancer, but the response to treatment varies from individual to individual. MR imaging methods, such as diffusion-weighted (DW) MRI and the use of dynamic contrast-enhanced (DCE) MRI, have the potential to provide additional biomarkers that could evaluate the effect of CCRT in patients with esophageal carcinoma. Materials and Methods Fifty-six patients with esophageal carcinoma, verified by histopathology, underwent MRI examination before and at midtreatment (4th week, radiotherapy 30-40 Gy) using the Siemens 3.0 T MR System. Parameter maps of apparent diffusion coefficient (ADC), and DCE maps of volume transfer constant (K rans), rate contrast (k ep), and extracellular fluid space (v e), were computed using a Siemens Company Multimodality Workplace (MMWP) model. Comparison of histogram parameters and their diagnostic performance was determined using the Mann-Whitney U test and receiver operating characteristic (ROC) analysis. Results 56 patient MRI scans were available for analysis at baseline and at the third week, respectively. Pretreatment K rans, pretreatment k ep, pretreatment ADC (P < 0.05), and during-treatment K rans (P < 0.05) and ΔK rans and ΔADC (P < 0.05) were significantly different after CCRT. Based on the binary logistic model, the ROC analysis demonstrated that the combined predictors demonstrated a high diagnostic performance with an AUC of 0.939. The sensitivity and specificity were 98.6% and 73.8%, respectively. Conclusion The combination of DCE and DWI can be used as an early biomarker in the prediction of the effect of CCRT three weeks after treatment in esophageal carcinoma.
Collapse
|
31
|
Abstract
Optical imaging offers a high potential for noninvasive detection and therapy of cancer in humans. Recent advances in instrumentation for diffuse optical imaging have led to new capabilities for the detection of cancer in highly scattering tissue such as the female breast. In particular, fluorescence imaging was made applicable as a sensitive technique to image molecular probes in vivo. We review recent developments in the detection of breast cancer and fluorescence-guided surgery of the breast by contrast agents available for application on humans. Detection of cancer has been investigated with the unspecific contrast agents "indocyanine green" and "omocianine" so far. Hereby, indocyanine green was found to offer high potential for the differentiation of malignant and benign lesions by exploiting vessel permeability for macromolecules as a cancer-specific feature. Tumor-specific molecular targeting and activatable probes have been investigated in clinical trials for fluorescence-guided tumor margin detection. In this application, high spatial resolution can be achieved, since tumor regions are visualized mainly at the tissue surface. As another example of superficial tumor tissue, imaging of lesions in the gastrointestinal tract is discussed. Promising results have been obtained on high-risk patients with Barrett´s esophagus and with ulcerative colitis by administering 5-aminolevulinic acid which induces accumulation of protoporphyrin IX serving as a tumor-specific fluorescent marker. Time-gated fluorescence imaging and spectroscopy are effective ways to suppress underlying background from tissue autofluorescence. Furthermore, recently developed tumor-specific molecular probes have been demonstrated to be superior to white-light endoscopy offering new ways for early detection of malignancies in the gastrointestinal tract.
Collapse
|
32
|
Ng TS, Garlin MA, Weissleder R, Miller MA. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 2020; 10:968-997. [PMID: 31938046 PMCID: PMC6956809 DOI: 10.7150/thno.37215] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in the translation of therapeutic nanoparticles (TNPs) into the clinic, the field continues to face challenges in predictably and selectively delivering nanomaterials for the treatment of solid cancers. The concept of enhanced permeability and retention (EPR) has been coined as a convenient but simplistic descriptor of high TNP accumulation in some tumors. However, in practice EPR represents a number of physiological variables rather than a single one (including dysfunctional vasculature, compromised lymphatics and recruited host cells, among other aspects of the tumor microenvironment) — each of which can be highly heterogenous within a given tumor, patient and across patients. Therefore, a clear need exists to dissect the specific biophysical factors underlying the EPR effect, to formulate better TNP designs, and to identify patients with high-EPR tumors who are likely to respond to TNP. The overall pharmacology of TNP is governed by an interconnected set of spatially defined and dynamic processes that benefit from a systems-level quantitative approach, and insights into the physiology have profited from the marriage between in vivo imaging and quantitative systems pharmacology (QSP) methodologies. In this article, we review recent developments pertinent to image-guided systems pharmacology of nanomedicines in oncology. We first discuss recent developments of quantitative imaging technologies that enable analysis of nanomaterial pharmacology at multiple spatiotemporal scales, and then examine reports that have adopted these imaging technologies to guide QSP approaches. In particular, we focus on studies that have integrated multi-scale imaging with computational modeling to derive insights about the EPR effect, as well as studies that have used modeling to guide the manipulation of the EPR effect and other aspects of the tumor microenvironment for improving TNP action. We anticipate that the synergistic combination of imaging with systems-level computational methods for effective clinical translation of TNPs will only grow in relevance as technologies increase in resolution, multiplexing capability, and in the ability to examine heterogeneous behaviors at the single-cell level.
Collapse
|
33
|
Negative Predictive Value of Contrast-Enhanced Ultrasound of Liver and Kidney Thermal Ablation Sites for Local Tumour Progression During Long-term Follow-up: A Retrospective Consecutive Study. Can Assoc Radiol J 2019; 70:434-440. [PMID: 31585824 DOI: 10.1016/j.carj.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To determine negative predictive value (NPV) of contrast-enhanced ultrasound (CEUS) to demonstrate local tumour progression (LTP) at thermal ablation (TA) sites. METHODS Our institutional review board approved this retrospective study; acquisition of consent was waived. Consecutive CEUS examinations performed between 2004-2014 for TA site evaluation on patients who could not undergo enhanced computed tomography (CT) or magnetic resonance imaging (MRI), or had inconclusive CT or MRI, were retrospectively reviewed. Those reported as no abnormal enhancement in or surrounding TA site were included. CEUS examination was considered true-negative based on stability or lack of enhancement/washout on follow-up imaging for at least 1 year, and false-negative (FN), if there was an arterially enhancing focus with wash-out at or surrounding TA site on subsequent follow-up imaging. RESULTS Study population included 56 tumours in 54 patients, 11 women, 43 men; mean age 71 years. Two patients had TA of two different hepatocellular carcinomas. Thirty-six examinations were for hepatic TA and twenty for renal TA. Lesion sizes ranged from 1 cm to 7 cm (mean 3.1 ± 1.2). Mean diameter of 7 recurrences was 13.8 mm. Overall FN rate was 12.5% (7/56). Corresponding numbers were 0% (0/20) for renal TA and 19.4% (7/36) for hepatic TA. Overall NPV of CEUS was 87.5% (49/56) (confidence interval [CI]: 78.8%-96.2%). NPV for renal TA was 100% (20/20) (CI: 100%-100%) and for hepatic TA 81.5% (29/36) (CI: 67.6 %-93.5%). CONCLUSION In this cohort, CEUS showed high NPV for exclusion of LTP at renal TA sites. NPV for hepatic TA sites was high but lower than renal TA.
Collapse
|
34
|
Zhou Y, Sun Y, Yang W, Lu Z, Huang M, Lu L, Zhang Y, Feng Y, Chen W, Feng Q. Correlation-Weighted Sparse Representation for Robust Liver DCE-MRI Decomposition Registration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2352-2363. [PMID: 30908198 DOI: 10.1109/tmi.2019.2906493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conducting an accurate motion correction of liver dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging remains challenging because of intensity variations caused by contrast agents. Such variations lead to the failure of the traditional intensity-based registration method. To address this problem, we propose a correlation-weighted sparse representation framework to separate the contrast agent from original liver DCE-MR images. This framework allows the robust registration of motion components over time without intensity variances. Existing sparse coding techniques recover a 3D image containing only contrast agents (named contrast enhancement component) from a manually labeled dictionary, whose column has the same size with the original 3D volume (3D-t mode). The high dimension of the recovery target (3D volume) and the indistinguishability between the unenhanced and enhanced images make accurate coding difficult. In this paper, we predefine an ideal time-intensity curve containing only contrast agents (named contrast agent curve) and recover it from the transpose dictionary (t-3D mode), whose column has been updated into the original time-intensity curves. The low dimension of the target (1D curve) and the significant intergroup difference between contrast agent curves and non-contrast agent curves can estimate a series of pure contrast agent curves. A "correlation-weighted" constraint is introduced for the selection of a coding subset with more contrast agent curves, leading to an efficient and accurate sparse recovery process. Then, the contrast enhancement component can be estimated by the solved sparse coefficients' map and the ideal curve and subtracted from the original DCE-MRI. Finally, we register the de-enhanced images and apply the obtained deformation fields for the original DCE-MRI to achieve the goal of motion correction. We conduct the experiments on both simulated and real liver DCE-MRI data. Compared with other state-of-the-art DCE-MRI registration methods, the experimental results show that our method achieves a better registration performance with less computational efficiency.
Collapse
|
35
|
Köhnke R, Kentrup D, Schütte-Nütgen K, Schäfers M, Schnöckel U, Hoerr V, Reuter S. Update on imaging-based diagnosis of acute renal allograft rejection. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2019; 9:110-126. [PMID: 31139495 PMCID: PMC6526365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Kidney transplantation is the preferred treatment for patients with end-stage renal disease. Despite effective immunosuppressants, acute allograft rejections pose a major threat to graft survival. In early stages, acute rejections are still potentially reversible, and early detection is crucial to initiate the necessary treatment options and to prevent further graft dysfunction or even loss of the complete graft. Currently, invasive core needle biopsy is the reference standard to diagnose acute rejection. However, biopsies carry the risk of graft injuries and cannot be immediately performed on patients receiving anticoagulation drugs. Therefore, non-invasive assessment of the whole organ for specific and rapid detection of acute allograft rejection is desirable. We herein provide a review summarizing current imaging-based approaches for non-invasive diagnosis of acute renal allograft rejection.
Collapse
Affiliation(s)
- Richard Köhnke
- Department of Medicine, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster48149 Muenster, Germany
| | - Dominik Kentrup
- Department of Medicine, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster48149 Muenster, Germany
- Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham (UAB)35294 Birmingham Alabama, US
| | - Katharina Schütte-Nütgen
- Department of Medicine, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster48149 Muenster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital of Muenster48149 Muenster, Germany
- European Institute for Molecular Imaging, University of Muenster48140 Muenster, Germany
| | - Uta Schnöckel
- Department of Nuclear Medicine, University Hospital of Muenster48149 Muenster, Germany
| | - Verena Hoerr
- Department of Clinical Radiology, University Hospital of Muenster48149 Muenster, Germany
- Institute of Medical Microbiology, Jena University HospitalAm Klinikum 1, 07747 Jena, Germany
| | - Stefan Reuter
- Department of Medicine, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster48149 Muenster, Germany
| |
Collapse
|
36
|
Meyer HJ, Garnov N, Surov A. Comparison of Two Mathematical Models of Cellularity Calculation. Transl Oncol 2018; 11:307-310. [PMID: 29413764 PMCID: PMC5884215 DOI: 10.1016/j.tranon.2018.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 11/26/2022] Open
Abstract
OBJECT: Nowadays, there is increasing evidence that functional magnetic resonance imaging (MRI) modalities, namely, diffusion-weighted imaging (DWI) and dynamic-contrast enhanced MRI (DCE MRI), can characterize tumor architecture like cellularity and vascularity. Previously, two formulas based on a logistic tumor growth model were proposed to predict tumor cellularity with DWI and DCE. The purpose of this study was to proof these formulas. METHODS: 16 patients with head and neck squamous cell carcinomas were included into the study. There were 2 women and 14 men with a mean age of 57.0 ± 7.5 years. In every case, tumor cellularity was calculated using the proposed formulas by Atuegwu et al. In every case, also tumor cell count was estimated on histopathological specimens as an average cell count per 2 to 5 high-power fields. RESULTS: There was no significant correlation between the calculated cellularity and histopathologically estimated cell count by using the formula based on apparent diffusion coefficient (ADC) values. A moderate positive correlation (r=0.515, P=.041) could be identified by using the formula including ADC and Ve values. CONCLUSIONS: The formula including ADC and Ve values is more sensitive to predict tumor cellularity than the formula including ADC values only.
Collapse
Affiliation(s)
- Hans Jonas Meyer
- Department of Diagnostic and Interventional radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig
| | - Nikita Garnov
- Department of Diagnostic and Interventional radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig
| | - Alexey Surov
- Department of Diagnostic and Interventional radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig.
| |
Collapse
|
37
|
The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today 2017; 22:1637-1653. [DOI: 10.1016/j.drudis.2017.08.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|